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Edwards DN, Bix GJ. Roles of blood-brain barrier integrins and extracellular
matrix in stroke. Am J Physiol Cell Physiol 316: C252–C263, 2019. First published
November 21, 2018; doi:10.1152/ajpcell.00151.2018.—Ischemicstroke isa leading
cause of death and disability in the United States, but recent advances in treatments
[i.e., endovascular thrombectomy and tissue plasminogen activator (t-PA)] that
target the stroke-causing blood clot, while improving overall stroke mortality rates,
have had much less of an impact on overall stroke morbidity. This may in part be
attributed to the lack of therapeutics targeting reperfusion-induced injury after the
blood clot has been removed, which, if left unchecked, can expand injury from its
core into the surrounding at risk tissue (penumbra). This occurs in two phases of
increased permeability of the blood-brain barrier, a physical barrier that under
physiologic conditions regulates brain influx and efflux of substances and consists
of tight junction forming endothelial cells (and transporter proteins), astrocytes,
pericytes, extracellular matrix, and their integrin cellular receptors. During, embry-
onic development, maturity, and following stroke reperfusion, cerebral vasculature
undergoes significant changes including changes in expression of integrins and
degradation of surrounding extracellular matrix. Integrins, heterodimers with � and
� subunits, and their extracellular matrix ligands, a collection of proteoglycans,
glycoproteins, and collagens, have been modestly studied in the context of stroke
compared with other diseases (e.g., cancer). In this review, we describe the effect
that various integrins and extracellular matrix components have in embryonic brain
development, and how this changes in both maturity and in the poststroke envi-
ronment. Particular focus will be on how these changes in integrins and the
extracellular matrix affect blood-brain barrier components and their potential as
diagnostic and therapeutic targets for ischemic stroke.
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INTRODUCTION

Stroke is the fifth most common cause of death in the United
States (separate from cardiovascular disease), with a person
experiencing a stroke every 40 seconds (12). The most com-
mon type of stroke, ischemic stroke, is defined as obstruction
of blood flow to part of the brain due to a thrombus or blood
clot, and results in a one year patient survival rate of 60% (12,
46, 104, 105). While all are potentially at risk for having a
stroke, factors such as being male (or a postmenopausal fe-
male), African-American, being of advanced age, and the
presence of hypertension all increase a person’s risk of expe-
riencing a stroke in their lifetime (32, 35, 36, 60, 106, 110,
147). Additionally, functional deficits induced by ischemic
stroke are the leading cause of disability in the United States
and cause a $36–65 billion economic burden that is expected
to increase to $180 billion by 2030 (60). Taken together,

ischemic stroke is a significant health issue with limited ther-
apeutic options. The current therapies, exogenously adminis-
tered clot-busting tissue plasminogen activator (t-PA) and
endovascular mechanical thrombectomy (clot removal), are
efficient in removing the thrombus, thereby increasing reper-
fusion rates by 60%, and decreasing mortality (since 2013)
(104, 105). However, increased efficacy (i.e., morbidity) due to
therapeutic input has largely lagged behind these gains in
mortality (31, 153).

A proposed hypothesis to explain the lack of correlation
between improved mortality rates and patient outcomes in-
volves the mechanisms following reperfusion, so-called reper-
fusion-induced injury. When reperfusion injury occurs, it often
expands the initial brain injury caused by the occlusion (re-
ferred to as the core) to at risk brain tissue (referred to as the
penumbra or peri-infarct region (17, 30, 113). This occurs, in
part, as the result of cerebral edema (brain swelling). The first
phase of edema occurring at 0–24 h after injury is cytotoxic
[ionic and metabolic dysfunction (113)] in nature, followed by
vasogenic [new blood vessel growth (angiogenesis) and reas-
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sembly of endothelial cell tight junctions (TJs) (56, 113, 115)]
causes.

Edema greatly contributes to breakdown of the blood-brain
barrier (BBB), a three layer defense system around the vascu-
lature preventing unwanted molecules from entering the brain
parenchyma, and composed of nonfenestrated endothelial cells
with intercellular tight junctions and various influx and efflux
cellular transporters, extracellular matrix (ECM) and its cellu-
lar integrin receptors, pericytes, and astrocytic endfeet (Fig. 1)
(113). BBB dysfunction in transient ischemic stroke models, in
which a cerebral blood vessel is closed for a predetermined
period of time and then reopened, occurs in two phases (bi-
phasic permeability); at 30 min after reopening of the blood
vessel, and then again at 2–5 days after occlusion, lasting for
up to 5 wk (1, 81, 123, 144). The loss of organization leading
to BBB dysfunction can be observed by the loss of sharp
distinction in the basement membrane 12–24 h after ischemia,
as shown by transmission electron microscopy (72). The im-
portance of BBB dysfunction has come under high scrutiny
over recent years, as studies have shown that BBB dysfunction
can predict the probability of having an ischemic stroke as well
as its outcome (34, 38, 39, 134, 149). This review focuses on
the modulation of integrins and ECM components (existing in
and around all cell types in the cerebrum) following reperfu-
sion, and how this can lead to BBB dysfunction following
ischemic stroke (Fig. 2).

PROTEINS OF THE BLOOD-BRAIN BARRIER

Integrins

Integrins as a whole are located on every cell type in the
body. They are heterodimeric transmembrane proteins com-
posed of non-covalently bound � and � subunits forming 24
known combinations (128). The different subunits have vary-
ing roles; the � subunit is responsible for binding the respective
ligand, while both the � and � subunits are responsible for
intracellular signaling (28, 138, 148). Integrins exist in three
states—active, at rest, and inactive—represented by different
conformations (21, 113). The conformational states differen-
tially expose the binding domain, typically arginine-glycine-

aspartate (RGD) and determine the relative (none, intermedi-
ate, or high) affinity an integrin will have for ECM components
(26, 111). Once bound to their corresponding ECM protein, the
integrin-ECM complex functions to promote cellular signaling,
proliferation, migration, differentiation, and survival (58, 59,
63, 150). We will first discuss several key integrins that have
been implicated in BBB function after stroke, and, where
known, their respective therapeutic target potential. Here, we
will discuss integrins associated with the extracellular matrix,
though blood-borne integrins (�2�1 and �11b�3) are also
affected following ischemic stroke.

�v�3 Integrin. Embryonically, �v�3 integrin is highly ex-
pressed on endothelial cells, astrocytes, and microglia, binding
to a number of ECM components including fibronectin, vitro-
nectin, osteopontin, laminin, etc. (7, 33, 95, 141). Functionally,
�v�3 is essential to angiogenesis, as 80% of �v knockout mice
are embryonically lethal by E10–12 with placental and heart
defects, though this is not completely attributed to the �3
subunit as �v can also associate with �3, �5, �6, and �8
subunits with varying viability (29). The remaining 20% of
mutants survive through gestation, but they end up succumbing
to intestinal and cerebral hemorrhages at birth (29). Interest-
ingly, conditional �v knockout mice also result in nonsurviv-
ability due to intracerebral hemorrhages, but not by loss of
integrin �v on endothelial cells. Instead, integrin �v absence
on glial cells and astrocytes facilitates detachment of astrocytes
from the ECM, an increase in permeability of the BBB, and
intracerebral hemorrhage (83). Completion of development
results in total loss of �v�3 expression under physiologic
conditions (95).

After experimental ischemic stroke [middle cerebral artery
occlusion (MCAO)] in adult rodents, expression of �v�3
integrin is significantly increased by 2 h in the ischemic core
and continues to increase in the ischemic penumbra until
expression peaks at 7 days poststroke (2, 57). This correlates
with increases in the ECM proteins fibronectin and vitronectin
as well as increasing vascular density (as determined through
brain endothelial proliferation) through poststroke day 14 in
the ischemic penumbra (2, 57). Furthermore, vascular endo-
thelial growth factor (25), a known inducer of �v�3 integrin
expression, activity, and ligand affinity, has a similar pattern of
upregulation after MCAO, increasing around 1 h postreperfu-
sion and remaining for up to 7 days (2, 103). The increase in
�v�3 poststroke induces occludin and zonula occludens
(ZO-1) (tight junctions of brain endothelial cells) internaliza-
tion, disrupts VE-cadherin localization (a tight junction regu-
lating protein), induces stress fiber formation, and increases
expression of ECM degradation proteins, matrix metallopro-
teinase (MMP) -2 and -9 (4, 37, 43, 95, 97, 116, 134, 139).
These outcomes initiate angiogenesis, a process that was pre-
viously thought to be beneficial by increasing blood supply to
a previously hypoperfused area, but is now known as a main
contributor to the chronic (2–5 days) increase in BBB perme-
ability after reperfusion (113). As �v�3 is a known promoter
of the chronic (2–5 days) increase in permeability observed
after reperfusion, it may be a good target for ischemic stroke
intervention (113).

Over the last few years, different modes of targeting integrin
�v�3 therapeutically have been attempted with contrasting
results. The first and most promising combined a 1 h pre-MCAO
and 3 h post-MCAO therapeutic treatment with an �v�3 integrin
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Fig. 1. Representation of the blood-brain barrier during normal conditions.
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selective inhibitor, cyclo�RGDfV, which showed reduced infarct
volumes and BBB permeability (118). However, prophylactic
treatment for ischemic stroke is not a viable clinical option as
we cannot predict the moment a stroke will occur. Because of
this, the same group attempted to inhibit �v�3 3 h post-
MCAO. A decrease in BBB permeability was still observed,
but the resulting decrease in infarct volume was not significant
in this dosing paradigm (117). Additional results with the
cyclo-RGDfV inhibitor demonstrated a decrease in phosphor-

ylated Flk-1, a specific VEGF receptor, that when phosphory-
lated, increases VEGFa production, consistent in both dosing
windows (117, 118). This suggests that the decreases in BBB
permeability are due to changes in VEGF- �v�3-mediated
angiogenesis, but inhibition of this mechanism alone is insuf-
ficient to modulate infarct volumes. This may be due to
inhibitor dosing schedule (first dose is too late or repetitive
dosing is necessary) or that additional mechanisms are required
for effects on infarct volume.
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Fig. 2. Representation of integrin and extracellular matrix
(ECM) effects of the cerebral neurovascular unit during
maturity (A) and following reperfusion after ischemic stroke
(B). BBB, blood-brain barrier.

C254 ROLES OF INTEGRINS AND EXTRACELLULAR MATRIX IN STROKE

AJP-Cell Physiol • doi:10.1152/ajpcell.00151.2018 • www.ajpcell.org
Downloaded from journals.physiology.org/journal/ajpcell (106.051.226.007) on August 4, 2022.



�5�1 Integrin. The �5�1 integrin’s main function is to
promote embryonic angiogenesis, but it has also been impli-
cated in cell migration, cell adhesion, and cell survival (114).
It is also present on many different cell types, most notably on
endothelial cells and astrocytes in the cerebrum, with a pref-
erence for interacting with the ECM proteins fibronectin,
laminin 10, and osteopontin (114). Even with its diverse
binding preferences, �5�1 integrin is primarily known as a
fibronectin receptor (114). Interestingly, recent research has
shown that �v�3 integrin competitively binds to fibronectin,
creating cross-talk signals that recruit �5�1 integrin at an
opposite, unspecified site on fibronectin (14). Ultimately, these
interactions increase the adhesion of both �v�3 and �5�1
integrins to fibronectin (14). Unlike with integrin �v�3=s
nondetectable expression in adult microvasculature, after em-
bryogenesis, �5�1 integrin’s expression decreases but is still
present at low levels in adult vasculature (57, 95, 114). The
relevance of �5�1 integrin in development is apparent, as
multiple �5 knockout mice models do not survive past E11 due
to neural tube defects, lack of angiogenesis, and leaky blood
vessels (29, 44, 45, 152).

The �5�1 integrin may play a key role in many different
diseases. Notably, targeting �5�1 in cancer has been highly
studied as it is significantly upregulated in tumorigenesis, with
functions in tumor development, angiogenesis, and progression
(114). This increase is not limited to cancer but is observed in
models of experimental ischemic stroke, increasing in the
ischemic penumbra around day 4 until peak expression at 7
days poststroke, the same pattern of expression as �v�3
integrin and brain endothelial cell proliferation (57). Unlike
with �v�3, there is a compensatory increase in �5�1 integrin
when �v�3 integrin is inhibited (76). Furthermore, �5�1 is
closely linked to VEGF receptor 1 (as seen by a solid-phase
binding assay), and upon cross-talk, enhances cell migration,
proliferation, and adhesion, processes that are blocked upon
use of integrin �5 antibodies and knockout mice (77, 137a).
Because of its strong angiogenic ties, �5�1 integrin has been
highly targeted as a means for therapeutic intervention in
inhibiting angiogenesis for many decades with varying results
(refer to Ref. 9 for further information), but its role in angio-
genesis and stroke pathology has been largely ignored until
recently.

Roberts et al. (108) studied the effects of �5�1 integrin in
endothelial specific knockout mice after MCAO with surpris-
ing results. These mice, unlike the previously discussed pan-
knockouts, are not embryonically lethal and have no obvious
vascular or developmental changes (108, 133). Surprisingly,
these knockout mice suffered significantly smaller infarcts
compared with their wild-type controls through apparent sta-
bilization of the BBB as shown by an absence of IgG
(150 kDa) extravasation into the brain parenchyma (108). This
is suited toward the hypothesis that inhibition of angiogenesis,
in this case through inhibition of �5�1 integrin, prevents a
remodeling of neurovasculature initiated by vasogenic edema.
As embryonic pan-deletion of �5 integrin contributes to ab-
normal angiogenesis and leaky blood vessels (44, 45, 152),
inhibition of �5�1 integrin therapeutically in already devel-
oped, adult vasculature could be an avenue for future ischemic
stroke intervention.

�6�4 Integrin. �6�4 integrin is mainly expressed on astro-
cytes, but also on endothelial cells, though it is not expressed

during embryogenesis, but rather during adult vasculogenesis
due to the switch from fibronectin- to laminin-driven angio-
genesis (87, 88, 137). Initially, �6�4 decreases within 2–4 h
after MCAO, but begins to increase at day 4 and continues to
peak expression by day 14 (87, 88, 126, 137). Increased �6�4
expression also correlates to increasing brain endothelial cell
proliferation (reaching its peak at day 7), which swaps with
astrocytic proliferation that peaks at day 14 (57, 88). The
astrocytic effects after ischemic stroke will be discussed later
in this review.

�6�1 Integrin. As with most �1 integrins, �6�1 integrin is
expressed on endothelial cells in the brain (7). During embryo-
genesis, the endothelial integrins �5�1 and �v�3 are the most
highly expressed, but an integrin switch occurs for the laminin
binding �6�1 integrin in adulthood (88). The �6�1 continues
to be the dominantly expressed �1 integrin in mature vessels,
but this is quickly switched for �5�1 after cerebral hypoxia,
once angiogenesis is initiated (76). Current research on thera-
peutically targeting this integrin has focused on blocking it to
prevent angiogenesis in solid tumors with very limited study in
ischemic stroke.

�1�1 Integrin. The �1�1 integrin is present on endothelial
cells and astrocytes, preferably binding to the ECM compo-
nents collagen IV and perlecan. Embryonically, �1 integrin
subunit knockout mice show no lethality and finite defects,
limited to cell proliferation complications (29). On the con-
trary, �1 integrin subunit knockout mice, eliminating all the
various integrins with a �1 component, show neonatal lethality
at E6 while embryonic stem cells without �1 integrin result in
hematopoietic defects (29). After experimental ischemic
stroke, �1�1 expression (by probing �1 and �1 separately)
decreases by 30% within 2 h, and 75% by 24 h after occlusion
(126). Further studies with integrin �1 inhibitory antibodies
have resulted in severe deficiencies in BBB stability as well as
promoting a decrease in expression of the tight junction protein
claudin-5 and shifting its localization away from the extracel-
lular wall, suggesting a significant role in BBB maintenance
embryonically and at maturity (98), though no further research
has been conducted in this regard in ischemic stroke.

Integrins: conclusion. As described here, the variety of
integrins in the brain is expansive in terms of type, function/
preferred ligand(s), and expression. The highly reactive nature
of integrins suggests a new approach for potential ischemic
stroke therapy, as evidenced by a relatively recent increase in
the number of studies focused on them. However, the success
of modulating these integrins to therapeutic effect is thus far as
varied as is the integrins themselves.

Extracellular Matrix Proteins

Collectively, the ECM consists of multimeric proteins that
participate in cellular migration and differentiation as well as
functioning as a support system for endothelial cells and
astrocytes when in complex with integrins and is composed of
a combination of proteoglycans, glycoproteins, and collagens
(71, 94). The ECM is vital for development, function, and
regulation of vasculature, tight junctions, neurons, and astro-
cytes through cellular signaling and adhesion (10). Defects in
any ECM protein can result in serious developmental and
functional complications (10). Here, we will discuss the cere-
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brovascular extracellular matrix proteins that interact with
integrins following ischemic stroke.

Fibronectin. The ECM glycoprotein fibronectin is a disul-
fide-linked dimer (~250 kDa per monomer) that can exist as a
soluble form, plasma fibronectin produced by hepatocytes in
the liver, or insoluble form, cellular fibronectin produced by
fibroblasts in the basement membrane (64, 87, 101, 132).
Developmentally, fibronectin is significantly increased in the
basement membrane, driving angiogenesis in developing vas-
culature through binding to �5�1 and �v�3 integrins (91, 93).
Fibronectin knockout mice are embryonically lethal at E10
because of severe vascular, notochord, and somite deformities,
due to genetic manipulation to the fibronectin gene before
isoform formation due to splicing can occur (44). This is
evident as the cellular fibronectin isoform is necessary for
cerebral vascular development, but these vasculature and no-
tochord deformities, in addition to preventing lethality from the
null gene, are prevented in the plasma fibronectin-null mouse
(87, 112, 140).

Fibronectin is highly reactive after stroke, increasing in the
ischemic penumbra until peak expression at 7 days post-
MCAO, but the researchers did not separate expression by
isoform (57, 75). Previous studies suggest that the increase is
due to trafficked plasma fibronectin to the infarct area 2 days
post-MCAO (112). To further reinforce this concept, plasma
fibronectin-null mice that underwent MCAO had significantly
increased infarct volumes and increased TUNEL (apoptotic
cells) staining compared with their wild-type controls with no
compensation from cellular fibronectin (112, 129).

Not only is fibronectin responsive after stroke, but it is also
vulnerable to degradation from proteases, most notably MMPs
(65, 146). MMP-9 is increased by 48 h after ischemic stroke in
humans (22), but also after intracerebral hemorrhage induced
by VEGF injections and IL-1�-induced systemic inflammation
by nearly six-fold (74, 84), increasing the degradation of ECM
proteins. With this relationship in mind, serum levels of cel-
lular fibronectin and MMP-9 are increased in patients who
experience a hemorrhagic transformation following ischemic
stroke (18, 19). Interestingly, the higher levels of both cellular
fibronectin and MMP-9 predict increased bleeding associated
with the hemorrhage.

Laminin. Laminin is a heterotrimeric protein composed of
different �, �, and � subunits to form 15 different isoforms (24,
51, 78, 90) that exists in endothelial cells and astrocytes. While
embryonic angiogenesis is driven by fibronectin, this is sub-
stituted by laminin during adult angiogenesis (88, 157), though
this process will continually alternate during VEGF-stimulated
injury (i.e., tumor growth and metastasis, ischemia, wound
healing, etc.) (57, 75, 88, 138). Of the 5 �, 4 �, and 3 � laminin
subunits, laminin 8 (�4�1�1) and 10 (�5�1�1) are endothelial
specific, while laminin 1 (�1�1�1) and 2 (�2�1�1) are ex-
pressed solely on astrocytes (61, 119, 121, 156). It is important
to note that only laminin 8 is expressed during development,
while the first detectable levels of laminin 10 are 3–4 wk
postbirth in mice (51, 131). The importance of laminin to
vascular integrity is obvious as laminin �4 knockout mice and
laminin �1 knockout mice suffer from leaky vasculature and
experience intracerebral hemorrhages, leading to lethality at E6
(120, 131). Further study with conditional laminin �4 knockout
mice showed similar defects in vasculature that again led to
intracerebral hemorrhages (20, 155).

Laminin’s main role after ischemic stroke appears to be
more aligned with its endothelial cell interactions. Within 24 h
after MCAO, increases in laminin in both endothelial cells
(laminin 8 and 10) and astrocytes (laminin 1 and 2) in the
ischemic penumbra are observed (61, 125). Alternatively, there
is a decrease in endothelial laminin located in the ischemic core
due to loss of vasculature from ischemic conditions (75).
Endothelial laminin, specifically laminin 10, is also essential
for BBB integrity after in vitro oxygen glucose deprivation by
regulating occludin and ZO-1 expression and localization to
the extracellular cell wall, decreasing paracellular resistance
through the endothelial cells (62). Finally, activation of �2�1
integrin by its binding to endothelial laminin halts endothelial
proliferation (86), a process that is slowed around 7 days
post-MCAO (59) when astrocytic proliferation takes over
(57, 88).

Chronic repair has been implicated in laminin-initiated
mechanisms driving neurogenesis after MCAO. Endothelial
laminin promotes neurite growth in vitro (99) but has yet to be
detected in in vivo studies. Recent studies have shown laminin
in conjunction with �1 integrin in providing scaffolds, a neural
chain that promotes neuronal migration toward injury, 16 days
after occlusion (41). Although laminin-mediated neurogenesis
after MCAO is poorly understood, the impact that this glyco-
protein has on neurogenesis could be significant.

Perlecan. Perlecan is a heparan sulfate proteoglycan that
contains a protein core with five different domains (domain
I–V) and three glycosaminoglycan chains at the NH2 terminus
and is most commonly found in hyaline cartilage, but it is also
located in basement membranes throughout the body (67, 85,
142). Overall, perlecan plays a major role in cellular migration,
proliferation, and differentiation, but the individual domains
have functions and binding domains unique to their sequence
and structure (35, 142). Perlecan, like fibronectin and laminin,
is upregulated during embryogenesis around cerebral vascula-
ture to provide maintenance and assemble the developing
basement membranes (25, 54). When absent from the basement
membrane, complete perlecan knockout mice result in embry-
onic lethality at E12 resulting from cardiac failure and exen-
cephaly, with surviving embryos soon succumbing to their
skeletal, cardiac, and cerebral defects (25, 40, 54). On the other
hand, a second type of transgenic mouse with truncated perle-
can (producing 10% of total perlecan, perlecan hypomorphs)
yields surviving neonates that have a normal basement mem-
brane but are still susceptible to exencephaly as well as
exhibiting truncated skeletal features (25, 109). Collectively,
the loss of perlecan embryonically and in maturation is signif-
icant in both transgenic mouse models, indicating its high
importance in basement membrane maintenance in both devel-
opment and adulthood, and although perlecan is mostly known
for its functions in hyaline cartilage, it has shown interesting
promise as a target for ischemic stroke therapy (67, 90).

Perlecan is decreased by 43–63% within 2 h of reperfusion
after MCAO and is continually degraded through day 7 by
cathepsin (caspase) B and L (23, 76). Cleavage by cathepsin L
on perlecan releases the COOH-terminal fragment domain v
within hours after experimental ischemic stroke, resulting in a
strong increase by 24 h postreperfusion that is sustained
through 7 days (73). Treatment with exogenous recombinant
domain V after MCAO not only is neuroprotective in wild-type
mice, but rescues pathology in perlecan-deficient mice (i.e.,
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perlecan hypomorphs), thus reducing infarct volumes and im-
proving functional outcomes (neuroprotection and neurorepair)
(15, 23, 73). Furthermore, the neuroprotective effects of do-
main V were blocked upon administration of an anti-�5�1
antibody. Interestingly, �5�1 integrin is a potential receptor of
domain V, but not perlecan (73). Collectively, these results
suggest that perlecan, and its domain V in particular, play a
fundamental role in the brain’s response to ischemic stroke
injury.

Collagen IV. Collagens are an abundant basal lamina protein
expressed on all tissue types in the body (102). Of the variety
of collagens, the most abundant in the basement membrane in
the body is collagen IV, a nonfibrillary collagen (102). Even
though collagen IV is one of the three main components of the
basement membrane (laminin and heparan sulfate proteogly-
cans composing the rest), embryonically knocked out collagen
IV results in no cerebral deficits, but rather only appearing to
affect renal development (29, 102). Interestingly, mature mu-
tations can result in ischemic strokes in young patients, poten-
tially resulting in a significant role in poststroke pathology
(130). Studies in collagen IV expression have been contradic-
tory. One study using Western blot analysis shows a reduction
in collagen IV after experimental ischemic stroke that corre-
sponds to a decrease in cerebral vasculature (52). Although,
more recent studies have observed the opposite phenomenon
when analyzing by immunohistochemistry (55). Here, the
authors themselves admit the potential false-positive in the
results because of a potential increase in degradation (i.e., more
proteins available for targeting) or as a result of the neurovas-
culature overcompensating to stabilize damaged vessels (55).
These conflicting results need more investigation and improve-
ment before any determination of collagen IV’s impact on
stroke severity or poststroke recovery can be made.

Extracellular matrix proteins: conclusion. The proteins in
the extracellular matrix surrounding endothelial cells and as-
trocytes are primarily composed of collagen IV, laminin, hepa-
ran sulfate proteoglycans, and fibronectin. This diverse group
has a variety of reactions following stroke, but overall are
attributed to the BBB stability, an important target to reduce
the expansion of damage and edema. The interest in targeting
these proteins has been limited at best, most likely due to a
decrease in accessibility on the basal side of the endothelium.
Current focus is on modulating these proteins through other
mechanisms, such as reducing MMPs, targeting integrins, and
understanding the full reactive mechanisms after ischemic
stroke.

CELLULAR COMPONENTS OF THE BBB

As discussed, integrins and ECM proteins are not limited to
endothelial cells but span all cell types in the neurovascular unit
including astrocytes and pericytes. When ischemia and the fol-
lowing inflammatory, vasogenic, etc. mechanisms influence these
BBB components, it can directly affect BBB permeability (113).
Below, we briefly describe the rest of the cells that comprise the
BBB with a particular focus on how their interactions with the
ECM via integrins affect the BBB after ischemic stroke.

Endothelial Cells

Endothelial cells are responsible for the first layer of the
BBB, providing a scaffold for TJs, junctional adhesion mole-

cules, and the extracellular matrix (as discussed throughout this
review). Heavy scrutiny has been placed on paracellular per-
meability, permeability between endothelial cells, as the main
regulator for poststroke edema (68). Until recently, little im-
portance has been placed on transcellular permeability, perme-
ability through an endothelial cell. It has now been shown that
endothelial cells undergo a four-step process after ischemic
stroke, localized to the core (49). First, endothelial cells swell,
potentially attributed to activation of connexin-43, a gap junc-
tion protein (68), Next, endothelial cells gain a permeable
surface. Here, an increase in transcytotic, particularly caveo-
lin-1, and pinocytotic vesicles begins to compromise the en-
dothelial cells and cause an increase in BBB permeability at
4–6 h (49, 66, 68, 69). Interestingly, at this time, there appears
to be limited compromise of the tight junctions. This process
leads to free movement of molecules across the endothelial
cell, eventually resulting in a loss of endothelial integrity
(68). Finally, this is followed by a loss of endothelial
integrity, Once the extracellular matrix is exposed, endothe-
lial cell loss occurs (69). The endothelial role in BBB
permeability is shown to be resolved 24 h poststroke (49).
Because of this process, the early damage done to endothe-
lial cells following ischemic stroke could be a potential
therapeutic target of acute treatment.

Astrocytes

Astrocytes, particularly their extended endfeet surrounding
the ECM and pericytes, are the last line of defense to prevent
unwanted proteins, molecules, etc. (3). The endfeet are also
stabilizers of the BBB by releasing paracrine signaling (as
determined by neurons), but they can modulate cerebral blood
flow, neuronal functions, and tight junction formations as well
(5, 53, 82, 89, 145, 158). Astrocytic dysfunction, as seen by the
separation of astrocytic endfeet with the basement membrane,
occurs early after MCAO, within 2 h (44, 116). This process is
referred to as astrocytic swelling and corresponds to increases
in BBB permeability by way of cytotoxic edema, the loss of
two astrocytic-endothelial cell anchoring proteins, �1�1 and
�6�1 integrins, and an increase in excretion of MMPs (74, 84,
126). Overall, this acute mechanism after ischemia is re-
sponsible for cellular death of astrocytes, exacerbating cy-
totoxic edema and BBB dysfunction and thus the damage
after ischemic stroke (126, 127, 129).

Interestingly, expression of the astrocytic-associated integ-
rins has been the focus of poststroke research, but little atten-
tion has been placed on their potential as a therapeutic target
(see above). A possible explanation for this may be due to the
loss of astrocytes inducing demyelination in the white matter
that is absent in gray matter (80). Previous research has
described a higher contact between the astrocytes and endo-
thelium in the white matter (20). Because rodents possess
significantly less white matter than humans, this increases the
difficulty and potential lack of translation of any therapy
targeting astrocytic associated integrins.

Pericytes

Pericytes exist between astrocytes and the ECM to form a
support system (scaffold) for endothelial cells as well as to
send paracrine signals by direct contact to the endothelium
(13, 143). Additionally, pericytes are essential for regulation
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of ECM proteins, particularly astrocytic laminins 1 and 2
(6). After ischemia, pericyte detachment occurs within 2 h
postreperfusion, inducing hypoperfusion. Increases in post-
stroke VEGF levels facilitate the detachment of pericytes
from the endothelium, promoting an increase in MMP-9
expression (increasing ECM degradation) and caveolae-
mediated transcytosis (increased BBB permeability) in both
in vivo and in vitro models (8, 11, 32, 42, 47, 143, 151,
154). Furthermore, these pericytic-induced increases in
BBB permeability are region specific, occurring more prom-
inently in the cortex, striatum, and hippocampus (136).
Administration of a VEGF inhibitor in vitro reversed the
BBB permeability effects (8). Pericytes are also composed
of actin and myosin filaments, generating smooth muscle
type actions (9, 16). Contraction of the pericytes, decreasing
the diameter of capillary vessels, is due to the acute ATP
depletion following ischemic reperfusion, resulting in a
reduced or complete lack of cerebral blood flow even after
removal of a thrombus (“no-reflow” phenomenon) (27, 50,
107, 156).

FUTURE CONSIDERATIONS

Integrins, ECM constituents, and the rest of the components
of the BBB are significantly impacted after ischemic stroke.
From the influence of integrin-ECM complexes, growth fac-
tors, TJ remodeling, MMPs, etc. there are many different
targets that one could turn their attention to for potential
breakthroughs in understanding stroke pathophysiology and
developing new therapies, although some may have more
promise than others (Fig. 3).

The importance of these components, particularly integrins and
ECM proteins, in embryonic development conveys their funda-
mental necessity for cerebral vasculature development and main-
tenance as demonstrated by embryonic lethality of nearly every
knockout. Because of this, genetic changes (mutations, dele-
tions, etc.) may influence the probability of experiencing a
stroke and/or a stroke’s severity, whether from BBB dysfunc-
tion or clot formation (i.e., �2�1). For example, recent inves-
tigation has found that a polymorphism in the �2 subunit at
C807T increases the probability of stroke by 1.266 times (79).
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Fig. 3. Proposed future applications for integrins and extracellular matrix (ECM) in ischemic stroke.

C258 ROLES OF INTEGRINS AND EXTRACELLULAR MATRIX IN STROKE

AJP-Cell Physiol • doi:10.1152/ajpcell.00151.2018 • www.ajpcell.org
Downloaded from journals.physiology.org/journal/ajpcell (106.051.226.007) on August 4, 2022.



This discovery is limited to clot formation, most likely due to
increases in cholesterol in these patients (79), but the signifi-
cance of potential genetic alterations cannot be understated.

As discussed, it is proposed that vasogenic edema after
ischemic stroke is driven by angiogenesis (56, 113, 115) and
the reorganization of BBB that must occur during this process.
Angiogenesis after ischemic stroke is separated into three
stages, initiation, migration and stabilization of new vascula-
ture, and maturation (48, 122). Previous studies that have
focused on increasing angiogenesis after ischemic stroke,
based on the fact that patients with increased cerebrovascula-
ture experience better outcomes, have had limited success (70,
92). Instead, our focus may need to turn toward inhibiting
proangiogenic integrins (�5�1 and �v�3) and ECM proteins
(fibronectin) to prevent early angiogenesis. This appears coun-
terintuitive; why prevent the growth of new blood vessels to an
area that has experienced significant loss of cerebral blood flow
and damaged vasculature in the ischemic core? As discussed in
this review, mechanisms following ischemic stroke increase
proangiogenic proteins, but also growth factors (VEGF) that in
turn facilitate the release of pericytes from vasculature, and
MMPs, increasing BBB breakdown. Furthermore, the novel
finding that �5 endothelial specific knockout mice have smaller
infarcts and less BBB disruption after MCAO (108) reinforces
the idea that early angiogenesis, by destabilizing the BBB, is
detrimental to acute stroke injury and could be a therapeutic
target in the future.

Furthermore, because components of the BBB are highly
reactive after ischemic stroke, novel imaging techniques could
be used to visualize the ischemic core and penumbra days after
the initial injury. Efforts in this direction have been made,
specifically with gadolinium-tagged �v�3 in both ischemic
stroke and myocardial infarction (Ga-PRGD2) under computed
tomography (CT) scans (124). Interestingly, researchers were
able to detect �v�3 differences between control patients and
injury patients, up to 14 yr poststroke, but significant differ-
ences were observable only up to 3 wk poststroke (124).
Furthermore, the amount of �v�3 correlated to the severity
of the injury, thus the more severe the injury, the more �v�3
was detectable by CT with Ga-PRGD2 (124). This tech-
nique is in early development, especially for stroke, as most
significant differences were observed in patients who expe-
rienced a myocardial infarction (124), but this establishes
precedent for targeting proteins that are upregulated after
stroke.

Finally, biomarkers for stroke severity and/or BBB dys-
function are highly sought after as an inexpensive, quick
diagnostic. As previously discussed, increased levels of
cellular fibronectin and MMP-9 in the serum could predict
hemorrhagic transformation and severity of bleeding in
ischemic stroke patients. Additionally, the degraded por-
tions of TJ proteins enter the lumen of the vasculature and
can be analyzed in a time-dependent manner. Specifically,
levels of the TJ protein occludin increase in the serum by 4.5
h after ischemic stroke and continue 20 h later (24 h after
ischemia) (100). Collectively, these potential serum biomarkers
could predict the risk of hemorrhagic transformation after isch-
emic stroke, specifically when determining the use of tissue
plasminogen activator (t-PA).

CONCLUSION

Taken together, ischemic stroke has a complex multifacto-
rial and spatiotemporal impact on the BBB. Because of this,
previous hopes that targeting any singular aspect of BBB
stroke pathophysiology might produce a “magic bullet” for
ischemic stroke treatment are unlikely to bear fruit. Instead, an
effective therapeutic target(s) is likely to require multifactorial
mechanisms of action on the BBB and multiple treatments may
need to be used in combination to affect such benefit. Conse-
quently, interest in the BBB, integrins, and the ECM, in the
context of stroke, has never been higher and will undoubtedly
lead to novel discoveries and new stroke therapies in the not
too distant future.
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