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Abstract: Postoperative sleep disturbance (PSD) often occurs in elderly patients after major 
surgery and exerts harmful effects on postoperative recovery. PSD may increase the inci-
dence of postoperative fatigue, severe anxiety and depression, pain sensitivity, and cognitive 
dysfunction, which can cause or aggravate neurodegenerative diseases via amyloid aggrega-
tion and tau accumulation. Exosomes are important carriers that mediate the transfer of 
active substances and genetic information among cells. Recent evidence has shown that 
exosomes are involved in the pathogenesis of end-organ morbidity caused by sleep disorders 
via increasing amyloid plaque formation, transmitting tau protein, regulating neuroinflamma-
tion, and increasing blood–brain barrier permeability. Additionally, exosomes may be useful 
for delivering therapeutic genetic materials, such as microRNAs (miRNAs) and proteins, to 
exert neuroprotective effects and reduce cognitive impairment. However, the molecular 
mechanisms underlying this process remain to be fully elucidated. This review focuses on 
exosome-related pathways and the modulatory role of exosomal miRNAs on the pathogen-
esis of sleep disturbance and neurodegeneration. Moreover, we discuss the advantages of 
reducing neurotoxic proteins via exosomal intervention and miRNA regulation. Future 
research in exosome administration may offer new insights into PSD-related pathomechan-
isms and therapeutics. 
Keywords: postoperative sleep disturbance, exosomes, exosomal miRNAs

Introduction
Postoperative sleep disturbance (PSD) is a common complication after a major 
surgery,1,2 with patients often presenting with reduced sleep quality and duration, 
early awakening, frequent nightmares, sleep terrors, and sleep-related breathing 
disorders.3 Polysomnography studies on patients with sleep disorders have sug-
gested occurrence of sleep fragmentation and deprivation as well as decrease in 
rapid eye movement (REM) and slow-wave sleep (SWS) after surgery.4 

Additionally, PSD seriously affects the quality of life and increases the difficulty 
and burden of nursing care. The onset of sleep disorders is related to multiple 
factors, including age, preoperative complications, type of anaesthesia, degree of 
surgical trauma, and postoperative pain. Moreover, studies show that sleep dis-
orders can be related to changes in postoperative brain function and increase the 
risk of postoperative cognitive decline.5,6 Early recognition and intervention of 
sleep disorders can reduce the incidence of mental dysfunction and cardiovascular 
events, improve prognosis, and shorten the duration of hospital stay.7

Exosomes are extracellular vesicles (diameter: 30–100 nm) that contain various 
active substances, such as proteins, small-interfering (si)RNAs, and microRNAs 
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(miRNAs), and act as important carriers that mediate infor-
mation exchange and material transfer among cells.8 

Regulatory molecules, such as miRNAs, are transported to 
recipient cells via exosomes, where they affect biological 
pathways, leading to changes in cell function and 
pathology.9 Several recent studies have shown that nerve cell- 
derived exosomes are related to pathological protein aggrega-
tion, synaptic morphology, and neuroinflammation, and that 
changes in exosome biological characteristics and level of 
dysfunction might be involved in neurodegeneration. Goetzl 
et al10,11 reported that in Alzheimer’s disease (AD), P-S396- 
tau, P-T181-tau, and Aβ1-42 are elevated in plasma nerve 
cell-derived exosomes and can be used to predict the transi-
tion from preclinical AD to AD. This review summarised 
current perspectives regarding the role of exosomes and 
exosomal miRNAs in PSD pathogenesis. The passways and 
pathomechanisms of relevant miRNAs is shown in Table 1.

Postoperative Sleep Disturbance
Sleep Structure and Function
The normal sleep–wake cycle is naturally rhythmic.12 

According to the American Academy of Sleep Medicine, 
sleep–wake states can be divided into wakefulness, non- 
REM sleep, and REM sleep.13 Compared with NREM, 
REM sleep is associated with stronger physiological activ-
ities, fluctuations in blood pressure and heart rate, irregular 
breathing, and increased brain metabolism.14,15

Long-term reductions in sleep time or complete sleep 
deprivation can cause cognitive deficits. Limiting sleep 
time to 4 h to 6 h per night can lead to neurobehavioral 
impairment upon waking, along with polysomnography 
results indicating prolonged REM latency and slight increase 
in SWS.16 Additionally, sleep deprivation in the time win-
dow before and after learning can impair memory and learn-
ing ability, as REM sleep deprivation 3–6 h after learning 
significantly increases levels of brain-derived neurotrophic 
factor (BDNF) in the CA1 region of the hippocampus.17 

Based on the effectiveness of anti-tumour necrosis factor 
(TNF)-α therapy, Sochal et al18 evaluated serum BDNF 
levels in Crohn’s disease patients and healthy controls to 
assess the relationship between BDNF concentration and 
the severity of insomnia, and identified a positive correlation 
between serum BDNF level and results of the Athens 
Insomnia Scale. These findings suggest that BDNF is 
involved in PSD-related mechanisms via modulating chronic 
inflammation.

The interstitial fluid (ISF) of the brain transports soluble 
proteins, metabolic waste, and excess extracellular fluid along 
the paravenous drainage pathway, which relies on aquaporin 
4 expressed in glial cells. Approximately 55% of soluble Aβ 
in the interstitium is cleared by the lymphoid pathway.19 

During sleep, the interstitial volume of the cerebral cortex 
increases by up to 60%, and the convection of ISF and 
cerebrospinal fluid (CSF) increases to enable effective clear-
ance of Aβ. Both sleep and anaesthesia can improve clear-
ance efficiency, indicating that the sleep state itself may be 
the main factor promoting the clearance of metabolic waste.20

Effects of PSD on Postoperative 
Outcomes
Patients often show decreased daytime physical strength, 
functional limitations, and vulnerable emotions, which 
negatively affect post-surgery recovery. Severe PSD is 
manifested by changes in the sleep cycle. REM is signifi-
cantly reduced on the night after surgery, followed by 
a rebound of REM sleep in the following 2 to 4 days 
and an increase in the proportion of REM sleep in total 
sleep time.21 REM sleep rebound causes hemodynamic 
instability and changes in pulmonary ventilation, thereby 
increasing the incidence of postoperative fatigue, severe 
anxiety and depression, pain sensitivity, and cognitive 
dysfunction and also resulting in longer hospital 
stays.22,23 Kessler et al24 found that sleep disorders and 
low daytime physical activity reflect delayed recovery 
after discharge. Therefore, sleep intervention may be 
important for timely rehabilitation. Moreover, improving 
the sleep environment is recommended to alleviate sleep 
disturbances in postoperative patients.25 Pharmacological 
methods, including administration of zolpidem, melatonin, 
and/or dexmedetomidine, have recently been employed to 
improve sleep post-discharge. Specifically, administration 
of zolpidem one night before and on the first night after 
surgery improves sleep quality and fatigue.3,26

Sleep disturbances in AD patients are characterised by 
increased duration of awakenings, loss of SWS and REM 
sleep, and excessive daytime napping. AD patients spend 
a significant proportion of their day asleep, although this 
almost completely comprises stages 1 and 2 sleep, which 
barely compensates for night-time absences of SWS and 
REM sleep.27,28 Thus, abnormal shifts in the sleep–wake 
rhythm of AD patients may be implicated in PSD, result-
ing in more prominent cognitive deficits.29
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Exosomes
Exosome Formation and Production
Exosome formation begins in the endocytic system of the 
cell, with formation of intraluminal vesicles when the cell 
compartment is recessed inward and buds outward. 
Although exosomes were originally considered the “gar-
bage bin” of cells, studies have revealed that these vesicles 
are not specific products of reticulocytes but are rather 
released from most mammalian cells.30 Later studies 
reported that exosomes released from mast cells contain 
~1200 functional mRNAs, which could be transferred to 
other cells.31 Exosomes participate in several key biologi-
cal processes by delivering biologically active substances, 
such as DNA, RNA (mRNAs, miRNAs, and circular 
RNAs), and proteins. In the CNS, neuronal cells, micro-
glia, and astrocytes secrete exosomes. As mediators of 
cell–cell communication, exosomes are related to amyloid 
degradation, brain clearance, and intercellular diffusion of 
tau, which can induce neuronal apoptosis and lead to 
neuron loss.32

Exosome production varies according to different cell 
states. Dutkowska et al33 evaluated the expression of inter-
leukin (IL)-1β, IL-6, and IL-17 in tumours versus surgical 
margins, and observed significantly higher expression of 
IL-6 in tumours relative to adjacent tissue, thereby indicat-
ing that inflammatory processes play a role in tumorigen-
esis. Additionally, they evaluated miR-9 and miR-122 as 
cytokine regulators in pre- and postoperative peripheral 
blood exosomes, revealing elevated levels of both miRs 
after tumour resection.

A previous study investigating the expression of tissue 
inhibitor of metalloproteinases (TIMPs) in tumour and 
normal neighbouring tissues revealed decreased TIMP3 
levels in non-cancerous tissue, whereas preoperative 
miR-17 expression in serum exosomes was significantly 
higher in cancer patients compared to healthy controls.34 

These findings suggest that exosome production can be 
influenced by removal of tumour tissue, which could 
enable the detection of early biomarkers related to tumor-
igenesis and metastasis.35–37

Exosomes and Sleep Disorders
Rhythmic activities, such as the sleep–wake cycle, are 
regulated by the circadian rhythm, which is an autono-
mous, endogenous oscillator in all living organisms and 
comprises transcriptionally active clock genes (CLOCK, 
BMAL1, PER1, PER2, PER3, CRY1, and CRY2) and their 

protein products. Khalyfa et al38 found that Bmal1, Cry2, 
and Per1 expression was significantly reduced in plasma 
exosomes obtained from mice with sleep-rhythm disor-
ders, indicating that exosomes can act as a bridge between 
peripheral clock-controlled genes and central rhythms and 
transmit the effects of circadian-rhythm disorders to target 
organs, thereby disturbing end-organ homeostasis. In type 
2 diabetes, visceral white adipose tissue secretes exosomes 
that transport functional proteins and RNAs, resulting in 
alteration of metabolic functions in nearby and distant 
tissues.39 The associated molecular mechanism may 
involve α-subunit of hypoxia-inducible factor 1 (HIF-1α), 
which regulates oxygen metabolism. Hepatocyte-specific 
Hif1a knockout hindered this metabolic disorder by redu-
cing GLP-1 degradation.40 Moreover, several studies 
investigating the impact of blood oxygen saturation on 
HIF-1α mRNA levels showed decreases in these levels 
following continuous positive airway pressure (CPAP) 
treatment.41–43 These findings support the hypothesis that 
hypoxia is an independent risk factor for insulin resistance.

The Role of Exosomes in the 
Pathogenesis of Sleep Disturbance
Amyloid Aggregation
Rajendran et al44 found that a fraction of Aβ in MVBs is 
loaded into exosomes and secreted into the extracellular 
environment. Aβ and its products are transferred to MVBs, 
followed by APP hydrolysis by β-secretase, which mainly 
occurs in early endosomes. The association between exo-
somes and Aβ suggests that inhibition of exosome secre-
tion may reduce AD-like pathological processes; however, 
exosome function in the process of AD remains 
controversial.45 Exosomes secreted in vivo in brains of 
APP-overexpressing mice contain higher levels of APP 
C-terminal fragments (CTFs) compared with normal 
brain tissue. These data support the hypothesis that an 
exosome-secretory pathway is beneficial to APP CTFs 
clearance.46 An in vitro study by Kyongman et al47 

found that exosomes derived from N2a cells counteracted 
Aβ-mediated damage to synaptic plasticity and rescued 
long-term potentiation. Exosomes enhance the uptake of 
Aβ into microglia through their surface glycosphingoli-
pids, and ultimately reduce the formation of amyloid 
plaques.

The effect of sleep in amyloid pathogenesis has been 
assessed by wakefulness and sleep deprivation studies. 
Kang et al48 monitored hippocampal Aβ levels in vivo 
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using microdialysis in both wild-type mice and human 
APP transgenic (Tg2576) mice. They found that Aβ levels 
were significantly elevated during the waking period rela-
tive to the sleep period in control and Tg2576 mice, and 
that ISF Aβ levels positively correlated with wake-time 
duration. Xie et al20 reported that sleep facilitates the 
clearance of Aβ from the ISF via the glymphatic system 
as observed on the two-photon imaging of the brain of 
adult mice, which revealed improved exchange between 
the glymphatic system and the systemic circulation in the 
brains of sleeping or anesthetised mice relative to awake 
mice. These findings suggest that attenuated clearance of 
Aβ under sleep-deprivation conditions may also contribute 
to increased ISF Aβ levels.

Hypoxia can enhance Aβ production via increased 
expression of BACE1, which increases the activity of β- 
secretase and increases APP hydrolysis.49 Bu et al50 com-
pared blood Aβ levels under oxygen saturation in 49 
patients with OSA, and found that plasma Aβ levels posi-
tively correlated with hypoxic intensity. Additionally, to 
determine mechanism underlying hypoxia-induced 
increases in Aβ, Xie et al51 investigated the effect of 
hypoxia on Aβ metabolism in a human neuroblastoma 
model stably expressing APP. They found that Aβ export 
via exosomes increased after exposure to hypoxia, and that 
expression of CD147, a transmembrane glycoprotein pre-
sent on exosomes, was also elevated under hypoxic con-
ditions. CD147 is a subunit of γ-secretase, and its 
degradation is inhibited by the tubulin HOOK1.52 Cui 
et al53 collected bone marrow-derived mesenchymal stem 
cells (MSCs) from App transgenic mice, found Aβ con-
centration decreased in the frontal cortex and hippocam-
pus, and memory was improved which possibly due to an 
exosome-mediated increase in the expression of synapsin 
1 and PSD95. Further clarification of the role of exosomes 
under hypoxic conditions will be beneficial for the preven-
tion and treatment of abnormally increased Aβ levels 
caused by sleep disorders.

Tau Release and Transmission
Sleep disorders cause hyperphosphorylation and aggrega-
tion of tau protein, resulting in formation of neurofibrillary 
tangles, neuritic plaques, and other structures. Compared 
with Aβ, pathological tau accumulation is more closely 
related to cognitive decline.54 Tau spreads in the brain in 
a layered manner by first aggregating in the entorhinal 
cortex and then spreading to the hippocampus before 
eventually extending to the neocortex and surrounding 

areas. Sleep regulates the metabolic homeostasis in neu-
rons. Holth et al55 evaluated the effect of the sleep-wake 
cycle on tau levels in brain-tissue fluids in mice, and found 
that tau levels increased during the waking state and 
decreased during sleep; however not all protein levels 
increased in the CSF after sleep deprivation, and ISF tau 
level increased following prolonged wakefulness.

The mechanism associated with tau release and diffu-
sion in the brain has long been a focus of tau-pathology 
research. Recent studies have suggested that tau protein 
may spread among neurons via exosomes. Wang et al56 

found that cultured cerebral cortical neuron cells release 
tau through exosomes. However, compared with cytoplas-
mic tau, tau in exosomes was in a relatively low- 
phosphorylation state and accounted for <2% of the total 
tau level. When intersynaptic connections are broken, exo-
somes cannot be taken up by neurons, which suggests that 
tau diffusion via exosomes depends on synaptic-structure 
integrity. Proteins (annexin 7 and Alix) extracted from the 
lysates of exosomes that secrete tau are involved in signal 
transduction and vesicle transport.57 The recruitment of 
these proteins to exosomes may promote tau release; how-
ever, the specific molecular mechanism associated with tau 
release via exosomes remains unknown, and further 
research is needed to confirm this hypothesis.

In vitro experiments indicate that tau mutations 
enhance their phosphorylation to promote tau release.58 

Recent evidence shows that sleep deprivation can activate 
different kinases and phosphatases in the brain, leading to 
tau hyperphosphorylation.59 However, due to the depho-
sphorylation of tau by non-specific alkaline phosphatase in 
the brain, both phosphorylated and dephosphorylated tau 
proteins can exist outside the cells; therefore, it remains 
unclear whether phosphorylation promotes tau release.

Blood–Brain Barrier (BBB) Integrity
The BBB is a multicellular vascular structure comprising 
pericytes, astrocytes, end feet, brain endothelial cells, and 
the tight junctions between endothelial cells, which control 
the metabolic exchange between brain and peripheral cir-
culation to protect brain tissue from microorganisms or 
toxins.60 Normal BBB function maintains brain homeos-
tasis. Certain molecules in the brain, such as amyloid 
protein. TNF-α, and prostaglandins, move in and out of 
the CNS rhythmically.61 Aβ periodically oscillates in the 
ISF of mouse brain tissues, and circadian-rhythm disorders 
can affect Aβ metabolism. Lack of the circadian-clock 
gene BMAL1 leads to a decrease in daily Aβ oscillations 
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and an increase in amyloid plaque formation.62 The trans-
port of Aβ through the BBB is one of the main steps in the 
Aβ metabolism. In rodents, ISF enters the brain parench-
yma from the paravascular space of the arteries and flows 
out from the venous vascular space via the glymphatic 
system. Sleep can promote this pathway for clearing meta-
bolic waste from the brain, and the interstitial space can 
increase by up to 60% during sleep, which may promote 
ISF and CSF convection.20

Decreased clearance of Aβ through the BBB is one of 
the mechanisms of pathological Aβ deposition.63 

Transporters at the BBB, such as receptor for advanced 
glycation end-products, low-density lipoprotein receptor- 
related protein 1, apolipoprotein, and P-glycoprotein 
(P-gp), mediate Aβ transfer from the brain to peripheral 
circulation.64,65 Due to their structural and physiological 
characteristics, exosomes can enter the brain through the 
BBB. Pan et al66 used recombinant brain microvascular 
endothelial cell exosomes to increase the expression of 
P-gp receptors, and found that exosomes enter cells via 
endocytosis and prevent the lysosome-mediated degrada-
tion of P-gp receptors. In mice, increased intracellular 
P-gp receptor levels reduce Aβ in the hippocampus and 
improve cognitive impairment caused by Aβ aggregation.

After 6 days of sleep restriction, levels of the tight- 
junction proteins occludin, claudin-1, claudin-5, and 
zonula occludens (ZO)-2 were significantly reduced in 
the brain microvessels of mice but returned to the baseline 
levels in 24 h after resuming sleep.67 Khalyfa et al68 

investigated the effects of plasma exosomes on different 
types of endothelial cells in 30 children with OSA. 
Compared with exosomes from children with normal cog-
nitive function, plasma exosomes obtained from children 
with OSA altered the morphology of ZO-1 and increased 
BBB permeability, which indirectly affected the microen-
vironment and neural network in the brain. Following 
treatment with exosomes transfected with a specific 
mimic of miR-630, ZO-1 levels increased in endothelial 
cells, whereas transfection with selective inhibitors of 
miRNA-630 disrupted tight-junction permeability in 
endothelial cells.69

Exosomal miRNAs
miRNAs in Neurodegeneration
miRNAs are noncoding RNAs of ~22 nucleotides that 
exist widely in eukaryotes. It is estimated that the human 
genome encodes >1000 functional miRNAs that regulate 

the expression of 30% of protein-coding genes.70 In the 
nucleus, primary transcription products are hydrolysed by 
ribonuclease III Drosha to generate miRNA precursors. 
These precursors are transferred to the cytoplasm and 
processed by Dicer to form mature miRNAs that bind to 
the 3ʹ untranslated region (UTR) of target mRNAs via 
RISC and Argonaute family proteins. This blocks transla-
tion initiation and results in translation inhibition or target 
degradation.71 As key regulators of neuronal morphology 
and function, miRNAs are overexpressed in the brain 
during different developmental stages of the CNS. Loss 
of Dicer can cause dopaminergic neuronal death and neu-
rodegeneration, while loss of Dicer in the cortex and 
hippocampus affects nerve cell development, suggesting 
that miRNAs play important regulatory roles in various 
cellular processes, including neuronal morphogenesis, 
neuronal apoptosis, and neurodegeneration.72,73 With the 
discovery of exosome as a carrier of miRNAs, Xin et al 
demonstrated that in vitro MSCs stimulate the neurite 
outgrowth by transferring miR-133b to astrocytes and 
neurons via exosomes.74 The regulatory role of miRNAs 
has also been noted in the inflammatory response. In 
animal models of persistent pulmonary hypertension, exo-
somes mediate a decrease in levels of monocyte chemoat-
tractant proteins and mitogens through miRNAs, thereby 
inhibiting macrophage infiltration and proinflammatory- 
mediator release.75

Mutations in the apolipoprotein gene are risk factors 
for AD. The ε4 allele of this gene is a genetic risk factor 
for protein-related pathology characterised by misfolded 
protein deposition in neurodegenerative diseases.76 

Several studies have investigated the role of epigenetic 
mechanisms (mainly posttranscriptional modifications) in 
the pathogenesis of neurodegenerative diseases. 
Specifically, studies compared differential miRNA expres-
sion in the AD brain and revealed that miRNA-expression 
levels in the hippocampus, prefrontal cortex, CSF, and 
other tissues vary during the course of AD.77 

Neurodegeneration may result from changes in multiple 
cellular pathways. For example, miRNAs modulating cen-
tral components of the amyloid cascade, such as APP and 
BACE1, have been identified.78,79 Moreover, in the CNS, 
neurons, microglia, and astrocytes can be regulated by 
miRNAs via exosomes. Immunomodulatory miRNAs are 
involved in activating the inflammatory response of micro-
glia, which is reportedly a key pathomechanism in AD.80 

Neurocognitive deficits are linked to loss of synaptic trans-
mission and plasticity in murine models of AD, as well 
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as AD patients. In this review, we have focused on how 
various miRNAs exert their modulatory function on AD- 
related biological pathways.

Putative Roles of miRNAs in Sleep 
Disturbance and Pathogenesis
The Neuroinflammatory Response
After tissue injury or destruction, the inflammatory 
response can remove harmful substances and damaged 
tissues; however, excessive nervous system inflammation 
can cause neurotoxicity and cell death.81 Activation of 
microglia is an important step in initiating the neuroin-
flammatory response. Cytokines IL-1, IL-6, and TNF-α 
can induce microglial differentiation into the M1 (proin-
flammatory) phenotype, whereas IL-4, IL-10, and other 
cytokines promote their differentiation into the M2 (anti- 
inflammatory) phenotype.82 Additionally, Aβ deposition, 
tau phosphorylation, and neurofibrillary tangles can induce 
microglial differentiation into the M1 phenotype, leading 
to impaired axonal transport and APP aggregation.83 

Damaged neurons can also release Aβ to cause inflamma-
tion, initiating a cycle of continued Aβ release. CNS 
inflammation can affect neurotrophic factor levels, thereby 
damaging synaptic plasticity and leading to decreased 
nerve regeneration ability.84 Wadhwa et al85 showed that 
after 48 h sleep deprivation, levels of IL-1, IL-6, and TNF- 
α increased significantly in the hippocampus of mice and 
resulted in impaired spatial memory; however, following 
minocycline treatment, the BDNF level increased signifi-
cantly in the brain.

A previous report indicated that miR-26b suppressed 
microglial activation and decreased the levels of IL-6 in 
the CA1 region of the hippocampus. This study also 
showed that miR-26b can bind the 3′ UTR of IL-6 to 
inhibit its transcription, thereby effectively reducing neu-
ronal apoptosis.86 Excessive daytime sleep leads to 
increased levels of miR-188-5p, which targets heteroge-
neous nuclear ribonucleoprotein A1 (HNRNPA1), 
a transcriptional regulator of IL-6. A previous study 
showed that HNRNPA1 overexpression increases IL-6 
mRNA expression.87 miR-188-5p acts as a tumour sup-
pressor and is related to ventricular remodelling and 
synaptic plasticity.88,89 Ni et al90 reported that BMAL1 
expression in microglia is significantly reduced in App 
transgenic mice with a disturbed sleep cycle, whereas 
mRNA expression of Tnfa, Il1b, and Il6 was increased. 
Experimental results indicate that decreased BMAL1 

expression reduces the negative regulatory effect of 
IκBα on NF-κB, thus, upregulating NF-κB and leading 
to increased Tnfa, Il1b, and Il6 transcription.

Toll-like receptors (TLRs) are surface receptors 
expressed on various cells, including microglia. TLR acti-
vation induces. Although TLRs are not exclusively 
expressed in microglia, the activation of downstream 
inflammatory signalling pathways by TLRs is an important 
step in AD pathogenesis.91 miRNAs can participate in 
TLR-mediated inflammation signalling pathways at differ-
ent levels. miR-155 can promote TLR activation by inhi-
biting negative regulators of TLR, such as c-Maf and 
suppressor of cytokine signalling 1. In animal models, 
miR-155 knockout reduces the sleep-promoting effect of 
endotoxin, increases wakefulness time, and reduces 
NREM, suggesting its role as a mediator of the regulatory 
effect of sleep on the immune response.92 By contrast, 
miR-146a acts as an anti-inflammatory regulator in the 
brain. Upon injection of bone marrow-derived MSC exo-
somes into the brains of AD mice, microglia differentiated 
into the M2 phenotype, and astrocytes began to take up 
exosomes, followed by miR-146-mediated reductions in 
levels of NF-κB.93 In addition to miR-155 and miR- 
146a, miR-21, miR-23, miR-224-5p, and miR-181c regu-
late proteins involved in the TLR signalling pathway.94–96 

TRIM2, a target of miR-181c, reduces the ubiquitination of 
nerve-fibre filaments (neurofilament light), and promotes 
neuronal remodelling in the hippocampus exposed to 
hypoxia.96 Although activation of the inflammatory path-
way is clearly an important factor in the development of 
cognitive impairment, additional research is needed to 
identify a direct link.

Neuroregeneration
The upregulated transcription of miRNAs in specific brain 
regions is driven by neuronal activity. For instance, miR- 
132 expression is transcriptionally stimulated by neural 
activity and regulated by the cAMP response element- 
binding protein (CREB) signalling pathway. Aβ downre-
gulates BDNF levels in AD by inhibiting the transcription 
of CREB, a downstream target of BDNF, thereby resulting 
in early decreases in miR-132.97 Furthermore, deletion of 
miR-132 in App transgenic mice enhances amyloid plaque 
accumulation and tau protein phosphorylation.98 However, 
in AD-induced synaptic dysfunction, the effects of 
miRNA-mediated downstream gene dysregulation remains 
unknown.
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Recent studies have revealed that a lack of miR-132 
may lead to a decreased number of dendrites, which is 
closely related to the loss of synaptic function and cogni-
tive impairment. Following transfection of miR-132 
into AD mice, expression of the synaptic proteins 
PSD95, synapsin-1, and p-synapsin increased significantly 
in the temporal cortex and memory deficit was partially 
restored.99 Changes in synaptic plasticity and imbalances 
in the regulatory mechanism are related to the destruction 
of neural circuits, especially of the complex neuronal net-
work formed by dendritic spines. There exists a complex 
miRNA-transcription-feedback system in the brain. For 
example, miR-134 expression is strictly regulated by 
synaptic activity via the transcription factor MEF2; miR- 
134 promotes dendritic growth by inhibiting Pumilio2.100 

Additionally, (sirtuin 1) SIRT1 is an NAD+-dependent 
protein acylase that can reduce miR-134 expression via 
an inhibitor complex containing the transcription factor 
YY1. A decrease in SIRT1 activity leads to increase in 
miR-134 levels, resulting in downregulation of CREB and 
BDNF levels, and impairment of synaptic plasticity.101 

Patients with AD exhibit increased miR-134 expression 
in CSF, and AD exosomes contain higher levels of miR- 
134.102 Furthermore, miR-134 can modulate exosomal 
transport, which is involved in AD pathogenicity, and 
miR-206-knockdown exosomes increase BDNF expres-
sion and inhibit neuronal apoptosis following acute brain 
injury.103 These findings suggest the feasibility of exoso-
mal miRNAs as therapeutic markers.

Cerebral Hemodynamic Changes
Chronic cerebral hypoperfusion and decreased glucose 
metabolism before cognitive decline are high-risk factors 
for AD.104 Due to decreased lung ventilation, brain meta-
bolism and cerebral blood flow are reduced during NREM 
sleep.15 Brayet et al monitored cerebral blood flow during 
REM sleep and found that hypoperfusion of the anterior 
cingulate gyrus under REM is related to functional defects, 
which may lead to the onset of AD.105 miRNAs regulate 
BACE1 and APP expression at the posttranscriptional 
level; numerous transcription factor-binding sites have 
been identified in the promoter regions of BACE1 and 
APP to complement these miRNAs, suggesting an impor-
tant role of miRNAs in the pathogenesis of cerebral blood- 
flow deficiency.106

In vivo experiments have shown that hypoxia or Aβ 
downregulates miR-124 expression in the hippocampus. 
The underlying mechanism might involve activation of 

the exchange protein activated by cAMP (EPAC)–Rap1 
pathway. Downregulation of miR-124 promotes hypo-
methylation of BACE1, increases BACE1 levels in the 
hippocampus, and leads to increased Aβ production.107 

Unlike miR-124, miR-195 can reduce Aβ production 
under chronic cerebral hypoperfusion and thereby protect 
neurons; this effect is possibly related to negative regula-
tion of NF-κB.105,108 As an imbalanced miRNA expres-
sion is related to neuronal damage caused by cerebral 
insufficiency, promoting normal miRNA function may 
thus, have a protective effect on cerebral blood flow.

Apoptosis
Hypoxia, insufficient energy, inflammatory responses, and 
Aβ and tau proteins increase the accumulation of ROS in 
nerve cells and cause mitochondrial DNA mutations. 
miRNAs and their downstream molecules can regulate 
apoptosis pathways, as downregulation of miR-26 inacti-
vates the BCL-2-related mitochondrial apoptosis pathway 
and activates Bax to induce apoptosis of liver cancer 
cells.109 Circadian-rhythm disorders affect DNA repair, 
cell cycle, and cell apoptosis and are associated with neuro-
degenerative diseases and cancer.110 Gao et al111 found that 
intermittent hypoxia affects the expression of pro-apoptotic 
and anti-apoptotic proteins in the hippocampus of a mouse 
model of OSA. Additionally, they found that miR-26b 
expression in the hippocampus increased three-fold, whereas 
miR-207 expression remained low in response to intermit-
tent hypoxia. Moreover, miR-207 may play a protective role 
by participating in autophagy, as a murine model of PD 
showed that miR-207 inhibited apoptosis of mesencephalon- 
derived dopaminergic neuronal cells, suggesting that miR- 
207 may be a potential therapeutic target of PD.112 Recently, 
some studies investigated the feasibility of modulated miR- 
125b/p38 mitogen-activated protein kinase (MAPK) signal-
ling to induce varying levels of neurons apoptosis. One 
study showed that upregulating p38 MAPK via loss of 
miR125b expression could regulate the expression of apop-
tosis-specific proteins in SH-SY5Y cells.113 Furthermore, 
p38 MAPK was reported to play a role in cascade reactions 
involved in inflammation, oxidative stress, and Aβ-mediated 
cell apoptosis.114

Exosomes and Exosomal miRNAs as 
Potential Treatment options for PSD
A large body of evidence indicates that sleep disorders may be 
involved in the pathogenesis of neurodegenerative diseases 
and increase the risk of dementia.115 Exosomal miRNAs 
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participate in sleep-disorder pathogenicity via two mechan-
isms: 1) direct regulation of signal pathway components or 2) 
regulation of proteins involved in signal pathways or key 
enzymes.116,117 Exosomes can carry altered genetic material 
derived from diseased cell and appear in early or advanced 
disease stages. In App transgenic mice, rabies virus-modified 
MSC-derived exosomes significantly reduced soluble Aβ40 
and Aβ42 levels in the brain. Furthermore, following exosome 
treatment, expression of TNF-α and IL-1β and levels of glial 
fibrillary acidic protein decreased, whereas glial cell function 
was significantly improved.118 In mice, MSC-derived exo-
somes significantly increased miR-21 levels after hypoxic 
preconditioning, resulting in downregulation of signal transdu-
cer and activator of transcription 3 phosphorylation and inhibi-
tion of NF-kB activation, which reduced the 
neuroinflammatory response in the brain.94 Additionally, 
other studies reported that miR-21 levels are related to attenu-
ated inflammatory responses, and that reduced miR-206 
expression via exosome delivery upregulates BDNF/tropo-
myosin receptor kinase B/CREB signalling, which exerts 
a neuroprotective effect on subarachnoid haemorrhage.103 

Exosomes are naturally produced by human cells. Compared 
with other carriers of gene therapy, exosomes are advantageous 
in terms of achieving therapeutic effect, lower immune rejec-
tion, and better targeting.119 The delivery of therapeutic RNAs 
to target cells via exosomes for correcting protein dysfunction 
is a potential therapeutic strategy for brain diseases charac-
terised by genetic abnormalities.120 Notably, exosomal 
miRNAs can act on different target genes, and expression of 
one gene can be regulated by multiple miRNAs. This suggests 
that intervention based on targeting the activity and/or treat-
ment of a single gene would have limited efficacy. Moreover, 
sequential gene damage caused by sleep disorders requires 
a multi-pronged therapeutic approach for improving memory 
and learning dysfunctions.

Conclusion
Exosomes represent potential tools to therapeutically tar-
get sleep-disorder pathogenesis. Studies show that exo-
somes can promote protein misfolding and hinder their 
successful translation. Furthermore, miRNAs transferred 
by exosomes modulate the neuroinflammatory cascade, 
Aβ generation, and neuronal apoptosis. The role of exo-
somes in pathological mechanisms related to neuronal 
damage offers insights into their potential roles as biomar-
kers of and therapeutic targets for sleep-induced neuronal 
dysfunction. Elucidating the underlying mechanisms will 
promote the establishment of sleep-disorder models, 

prediction of dementia risk, and devise gene-therapy stra-
tegies. Future work should focus on detailed investigation 
of changes in exosome status and exosomal miRNAs 
under different types of sleep disturbance for disease pre-
vention and early-stage diagnosis.
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