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Stroke is the leading cause of death worldwide, and its treatment remains a challenge.
Complex pathological processes are involved in stroke, which causes a reduction in the
supply of oxygen and energy to the brain that triggers subsequent cascade events, such
as oxidative stress, inflammatory responses and apoptosis, resulting in brain injury. Stroke
is a devastating disease for which there are few treatments, but physical rehabilitation can
help improve stroke recovery. Although there are very few treatments for stroke patients,
the discovery of fibroblast growth factors (FGFs) in mammals has led to the finding that
FGFs can effectively treat stroke in animal models. As presented in this review, FGFs play
essential roles by functioning as homeostatic factors and controlling cells and hormones
involved in metabolism. They could be used as effective therapeutic agents for stroke. In
this review, we will discuss the pharmacological actions of FGFs on multiple targets,
including their ability to directly promote neuron survival, enhance angiogenesis, protect
against blood-brain barrier (BBB) disruption, and regulate microglial modulation, in the
treatment of ischemic stroke and their theoretical mechanisms and actions, as well as the
therapeutic potential and limitations of FGFs for the clinical treatment of stroke.
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INTRODUCTION

Stroke is defined as an acute cerebrovascular disease attributed to sudden rupture of blood vessels in
the brain or blockage of blood vessels that prevent blood from flowing to the brain (Campbell and
Khatri, 2020). The prevalence of stroke is on the rise, and it has been reported to be one of the most
common causes of mortality and morbidity worldwide (Causes of Death Collaborators, 2017), and
the number of individuals living with its effects are high due to growing and aging of the population
(Stinear et al., 2020). For a long time, intravenous recombinant tissue plasminogen activator (rt-PA,
alteplase) has been the exclusive therapeutic drug for acute ischemic stroke. Recent advances in
mechanical clot retrieval strategies, such as mechanical thrombectomy for the treatment of large
artery stroke, allow effective recanalization and have resulted in improvements in patient outcomes
(Prabhakaran et al., 2015; Griessenauer et al., 2018). However, a narrow therapeutic window limits
the benefits of these strategies. Moreover, the main strategy for secondary stroke prevention is the use
of different pharmacological agents, mainly antiplatelets and anticoagulants, but half of patients have
an increased risk of recurrent stroke (Arsava et al., 2016). Stroke has been reported to cause
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inflammation, and activation of the innate immune system is
involved in its pathogenesis (Zuo et al., 2020). Neurorestorative
progression in stroke is characterized by neurogenesis,
angiogenesis, and synaptic plasticity, which are beneficial for
functional recovery (Chen et al., 2019). Newly generated blood
vessels increase cerebral flow in the ischemic boundary to supply
oxygen and nutrients to the ischemic area to improve
neurological function (Beck and Plate, 2009). Therefore, the
enhancement of angiogenesis may become a promising
therapeutic strategy for ischemic stroke treatment.

The blood-brain barrier (BBB) is composed of endothelial cells
(ECs), pericytes, astrocyte end-feet, and a basement membrane.
Brain ECs that are connected by tight junction proteins and
adhesive proteins (e.g., Occludin, ZO-1, and Claudin-5) protect
BBB integrity. Following ischemic stroke, the BBB is acutely
disrupted, resulting in secondary brain injury due to cerebral
edema and the infiltration of peripheral immune cells into the
central nervous system (CNS). Accumulating evidence indicates
that targeting the BBB may be a promising therapeutic strategy
for the treatment of ischemic stroke (Jiang et al., 2018). On the
other hand, the production of damage-associated molecular
patterns (DAMPs) by neurons and glial cells are dramatically
increased after ischemic stroke. Ischemic stroke induces the
activation of astrocytes and microglia, the production of
proinflammatory cytokines and chemokines and further
exacerbation of tissue damage. Therefore, suppression of
proinflammatory cytokine expression or promotion of anti-
inflammatory cytokine expression by microglial regulation
may be another promising treatment for ischemic stroke
(Wang et al., 2020).

Stroke is a neurological disease with poor prognosis. The
ultimate goal of stroke treatment is to promote neurological
function. The subventricular zone (SVZ) and subgranular zone
are known to contribute to functional recovery after stroke
through the process of neurogenesis (Rahman et al., 2021).
Accumulating evidence suggests that promoting neurogenesis
in the chronic phase of ischemic stroke retards disease
progression and improves neurological dysfunction (Freret
et al., 2006; Bonsack et al., 2020). Therefore, enhancing
neurogenesis has become an attractive approach promoting
recovery of in the chronic phase of stroke.

There are serious barriers to the clinical translation of drug
treatments for stroke. More than 1,000 therapeutic drugs that
were shown to have preclinical therapeutic potential for the
treatment ischemic brain injury failed in clinical trials
(Candelario-Jalil and Paul, 2021). There are still no effective
therapeutic strategies that have been shown to improve
outcomes after stroke. The complexity of stroke and its
associated comorbidities may limit the effectiveness of
neuroprotective drugs.

Fibroblast growth factors (FGFs) are polypeptide growth
factors involved in numerous processes, such as growth,
development, neuronal functions, metabolism, proliferation,
migration, apoptosis, wound repair, and angiogenesis (Itoh
and Ornitz, 2011). In humans, FGFs support blood vessels to
help supply of nutrients to the brain and other organs (Matkar
et al., 2017). Similarly, their homeostatic functions enable them to

repair tissues, accelerate wound healing and control the nervous
system (Beenken and Mohammadi, 2009). The angiogenic and
neurotrophic characteristics of FGFs suggest that they may be
effective therapeutic agents for ischemic stroke treatment. Many
studies have shown that some FGFs are associated with stroke. In
this review, we summarize the potential roles of FGFs in
promoting neural protection, neuroregeneration, vascular
protection, angiogenesis, and BBB protection after ischemic
stroke and suggest that FGFs may be candidate agents for
improving stroke outcome through multiple pathways.

FGF FAMILY

The FGF family is made up of signaling and nonsignaling
proteins that are structurally related and grouped into 6
subfamilies based on their properties and sequences (Itoh and
Ornitz, 2011; Ornitz and Itoh, 2015). The FGF1 subfamily
includes FGF1 and FGF2; the FGF4 subfamily comprises
FGF4, FGF5, and FGF6; the FGF7 subfamily includes FGF3,
FGF7, FGF10, and FGF22; the FGF8 subfamily comprises FGF8,
FGF17, and FGF18; the FGF9 subfamily includes FGF9, FGF16,
and FGF20; the FGF11 homologous subfamily comprises FGF11,
FGF12, FGF13, and FGF14; and the FGF15/19 subfamily includes
FGF15/19, FGF21, and FGF23 (Krejci et al., 2009). The FGF
family exerts survival-promoting and protective effects to
promote neural outgrowth and neurogenesis in the brain
(Mudo et al., 2009). Signaling FGFs are expressed in nearly all
tissues, and they play roles in embryonic development and
organogenesis at the onset of development and function as
homeostasis factors for repair, regeneration and maintenance
in adults (Ornitz and Itoh, 2001). Nonsignaling FGFs are called
intracellular FGFs because they serve as cofactors for the
regulation of voltage-gated sodium channels and other
molecules, making them essential regulators of neuronal and
myocardial excitability (Goldfarb, 2005). The various
characteristics of FGF family members and their receptors
make them attractive targets for drug development (Belov and
Mohammadi, 2013). Members of five other subfamilies, i.e., the
FGF1, FGF4, FGF7, FGF8, and FGF9 subfamilies, have paracrine
functions; however, FGF9, FGF16, and FGF20 have bipartite
signal sequences that are not cleaved (Revest et al., 2000). The
table below provides a summary of the FGF subfamilies, their
expression sites and their functions (Table 1).

FIBROBLAST GROWTH FACTORS IN THE
TREATMENT OF STROKE

FGF1 in Stroke
The administration of FGF1 is by a non-invasive method, where it
is intranasally delivered into the CNS because it cannot pass
through the BBB (Cheng et al., 2011). This intranasal delivery
enhanced peripheral nerve regeneration in vivo (Jacques et al.,
1999) with protective effect against neurofunctional deficit shown
to be partially regulated by PI3K/Akt (Wu et al., 2017).
Furthermore, FGF1 administered in middle cerebral artery
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TABLE 1 | FGF subfamily and their function.

FGF
subfamily

Expression sites Function References

FGF 1 subfamily
FGF 1 Brain, pituitary, nerve tissue, retina, adrenal gland, heart,

and bone
Promotes mitosis, wound healing, angiogenesis,
hematopoiesis, tumorigenesis, and neurogenesis

Cheng et al. (2011), Zou et al.,
(2020)

FGF 2 Various tissues and organs derived from mesoderm and
neuroectoderm, and tumor tissues

Promotes mitosis vascular remodeling, bone formation,
pulmonary fibrosis, neurodevelopment, and tumor
metabolism

Charoenlarp et al. (2017), Koo
et al. (2018)

FGF 4 subfamily
FGF 4 Posterior part of the limb buds HST-1; is involved in limb development and internal organs

development
Robertson et al. (1997), Okunieff
et al. (2003)

FGF 5 Brain Is involved in hair follicle development, regulates neuronal
differentiation and survival and regulates GFAP expression

Lindholm et al. (1994), Reuss
et al. (2003)

FGF 6 Developing skeletal muscle HST-2; is involved in myogenesis and muscle regeneration de Lapeyriere et al. (1990)
FGF 7 subfamily
FGF 3 Mammary tumors Controls the inner ear plan Dickson et al., (1989)
FGF 7 Fetal lung mesenchymal tissue KGF; prevents lung branch formation, and lung inflammation Finch and Rubin (2004)
FGF 10 First observed in the limb bud Knockout mice, show absence of lungs and complete

resection of the fore and hind limbs, promotes the
proliferation of mammary gland epithelial cells and reduced
apoptosis

Cui and Li (2013)

FGF 22 Mammalian brain and skin wounds Presynaptic molecule; is involved in repair, stimulates the
formation of inhibitory presynaptic terminal, alleviates
depression, and is involved in vesicle clustering, and skin
development

Beyer et al. (2003), Xu et al.
(2017)

FGF 8 subfamily
FGF 8 Progenitor cells in the midbrain and hindbrain AIGF; sets up and maintains the midbrain border and

regulates the growth and differentiation of progenitor cells to
generate midbrain and hindbrain structures

Lim et al. (2015)

FGF 17 Cortex Has similarities with FGF8; acts as an autocrine growth factor
in neoplastic prostate epithelial cells and is involved in
neocortex development

Polnaszek et al. (2004)

FGF 18 Skin and cortical neurons Promotes chondrogenesis, cortical neurons, skin repair, and
neuroprotection

Ellsworth et al. (2004)

FGF 9 subfamily
FGF 9 Neurons in the cortex hippocampus, thalamus,

cerebellum, spinal cord, epithelium and mesothelium
Stimulates glial cell growth, is involved in fetal lung
development, and enhances the survival of
acetylcholinesterase (AChE)-positive neurons

Kanda et al. (2000), Ellsworth
et al. (2004), Lum et al. (2009)

FGF 16 Embryonic brown adipose tissue, and the inner ear Is involved in proliferation of embryonic brown adipose tissue
and fate determination of otic cells

Konishi et al. (2000)

FGF 20 Brain Enhances the survival of midbrain dopaminergic neurons and
protects against PD.

Boshoff et al. (2018), Xu et al.
(2018)

FGF 15/19 subfamily
FGF 15 Absorptive cells of the mouse ileum Is involved in feedback inhibition of hepatic bile acid synthesis

and regulates glucose and lipid metabolism
Potthoff et al. (2011), Huang
et al. (2018)

FGF 19 Absorptive cells of the human ileum; can be found in the
brain, skin, retina, gallbladder, small intestine, kidney and
umbilical cord

Acts as a hormone to protect against infarction in response
to bile acid absorption, regulates glucose and lipid
metabolism, and nonmitogenic effects

Nishimura et al. (1999), Potthoff
et al. (2011)

FGF 21 Muscle, liver, islet β-cells in the pancreas and thymus
adipose tissue

Plays important role in glucose and lipid metabolism and
protects the cardiovasculature in the heart

Chen et al. (2018), Wang et al.
(2018)

FGF 23 Bone, lung, brain, heart, muscle and spleen Regulates phosphate concentration in plasma, decreases
absorption and increases the excretion of phosphate

Kendrick et al. (2011), Ix et al.
(2012), Zheng et al. (2020)

FGF homologous family
FGF 11 Neuroblastoma, retinoblastoma and brain tumors Expression is in ECs by HIF-1α; stimulates capillary-like

endothelial tube formation, which is associated with
angiogenesis

Lee et al. (2017)

FGF 12 Brain, eye, heart and testis Contributes to skeletal growth and developmental failure in
grade II and III kashin-beck disease (KBD).

Zhang et al. (2016)

FGF 13 Brain and heart Is involved in neural differentiation in xenopus early
development and controls. proliferation and differentiation of
skeletal muscle

Lu et al. (2015), Yue et al. (2018)

FGF 14 Adult cerebellum Regulates intrinsic excitability of cerebellum purkinje neurons Shakkottai et al. (2009)
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occlusion (MCAO) after 14 days of ischemia insult was seen that,
the cerebral infarction area was reduced and the number of blood
vessels increased as well (Xu et al., 2009). Intranasal non-
mitogenic FGF1 (nm-FGF1) administration for 10 consecutive
days enhanced angiogenesis via sphingosine-1-phosphate
receptor 1 (S1P1) signaling pathway following stroke (Zou
et al., 2020). The mixture of FGF1 and fibrin glue (a slow-
release carrier and adhesive agent) in the CNS when applied
topically after injury reduced the cerebral infarction, protects
cortical cells from loss and reduce microglia penetration thereby
promoting a recovery system (Tsai et al., 2015). Treatment with
FGF1 preceded in ischemia preserved BBB integrity by regulating
tight junctions and adherens junctions’ expressions (Cheng et al.,
2011; Chen et al., 2020). In addition, brain cells with FGF1
exhibited protective effects by upregulating tight junction
proteins and inhibiting RhoA through PI3K-Akt-Rac1
pathway regulation to protect the BBB (Wu et al., 2017). From
the above, application of FGF1 after stroke create a favorable
condition to regulate the injury from neuronal regeneration,
neuroprotection, angiogenesis, and BBB protection (Figure 1).

FGF2 in Stroke
FGF2, also called basic fibroblast growth factor (bFGF), was first
purified from the bovine pituitary gland in 1975 (Gospodarowicz,
1975) and is widely expressed in the CNS, especially in the
hippocampus (Woodbury and Ikezu, 2014). FGF2 is mainly
expressed in neurons and glial cells during puberty and
adulthood. It is a polypeptide that has potent trophic and
protective effects on the brain and confers neuroprotection
after brain injury (Wada et al., 2003). When the expression of
FGF2 in the nervous system is high, it shows that FGF2 has
neuroprotective effects in animal models of stroke (Kawamata
et al., 1997). Reports have proven that FGF2 exerts a
neuroprotective effect after stroke (Zhao et al., 2016). FGF2
enhances functional recovery after stroke by promoting

progenitor cell proliferation, migration and differentiation in
the brain (Bao et al., 2011). Transfection of mesenchymal
stromal cells (MSCs) with a herpes simplex virus type 1
(HSV-1) vector expressing FGF2 promotes functional recovery
and leads to a reduction in the infarct volume in rats after MCAO
(Ikeda et al., 2005). Several other reports have demonstrated a
significant reduction in infarct volume in the FGF2-treated group
compared to the group that received vehicle treatment only (Ay
et al., 1999; Li and Stephenson, 2002). Interestingly, animals given
FGF2 show significant improvement, supporting the claim that
FGF2 enhances neurogenesis, which contributes to recovery after
ischemia (Sun et al., 2009). Platelet-derived growth factor
receptor β (PDGFRβ), which is expressed in pericytes and
pericyte-derived fibroblast-like cells, plays important roles in
the maintenance of the BBB (Hutter-Schmid and Humpel,
2016). It has been reported that the expression of PDGFRβ is
markedly increased in pericytes after ischemic insult (Shibahara
et al., 2020). FGF2 increases the number of pericytes to promote
pericyte functions via its interaction with PDGF-BB, thus exerting
neuroprotective and angiogenic effects (Nakamura et al., 2016).
Moreover, injury induces the expression of FGF2 in reactive glial
cells to promote synthesis and enhance cell proliferation and
neuronal survival; thus, FGF2 has a neuroprotective effect in the
brain and maintains the BBB (Wang Z. G. et al., 2016).
Sphingosine-1-phosphate (S1P) is a member of sphingolipid
family known for regulating cellular processes such as cell
growth, angiogenesis and survival (Iwasawa et al., 2018).
Following oxygen-glucose deprivation/reperfusion (OGD/R) in
human microvascular endothelial cell monolayers, exogenous
administration of FGF2 prevents BBB damage by upregulating
sphingosine-1-phosphate receptor-1 (S1PR1) protein expression
(Lin et al., 2018). Recent studies reported that when the S1P1 is
activated, it could ameliorate injuries in MCAO models, and also
the S1PR1 modulators involved in S1P1 signaling pathway
could restore microvascular circulation to the cerebral

FIGURE 1 | Pharmacological effect of FGFs on stroke and its possible mechanism.
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ischemia (Li et al., 2019; Zou et al., 2020). In Lin et al. report,
they demonstrated the protective ability of recombinant FGF2
on BBB integrity in OGD/R-induced endothelial monolayer
permeability, and it was shown that the protective effect of
FGF2 was mediated via S1PR1 upregulation (Lin et al., 2018).
These results indicate that FGF2 can improve functional
recovery and reduce the infarct volume after stroke through
various mechanisms. Zhao et al. has demonstrated that FGF2
possess neuroprotective effects through PI3K/Akt activation in
a rodent stroke model Zhao et al. (2016). A recent study on the
mechanism underlying the effects of cyclic adenosine
monophosphate (cAMP)/protein kinase A (PKA) on
ischemic injury depends on regulating apoptosis and
inflammation, and FGF2-mediated cAMP/PKA/cAMP-
response element binding protein (CREB) pathway to
promote dendritic and synaptic plasticity (Li et al., 2020).
Besides, It has been reported that FGF2 decreased the levels
of pro-inflammatory cytokines (IL-6 and TNF-α), through the
regulation of the upstream toll-like receptor 4/nuclear factor κB
(TLR4/NFκB) signaling pathway (Ye et al., 2015) (Figure 1).

FGF21 in Stroke
FGF21 is expressed in different tissues and organs, such as the
liver, pancreas, skeletal muscle, thyroid and adipose tissue
(Nishimura et al., 2000; Watanabe et al., 2020). FGF21 exerts
its activity by binding to FGFR and β-klotho (KLB). It has the
ability to regulate endocrine processes during glucose and lipid
metabolism to aid the production and consumption of energy
(Inagaki et al., 2007; Chau et al., 2010). Majority of stroke patients
have type 2 diabetes (T2D). Recent studies showed that T2D
affects the integrity of BBB and implicates the BBB permeability
state after ischemic stroke, but the use of recombinant FGF21
(rFGF21) has been beneficial to the treatment of stroke mice with
T2D (Jiang et al., 2020). A report has shown that FGF21 is a
suitable mediator for adaptive responses to tissue injury,
suggesting it to be a novel therapeutic agent that has a
protective ability against stroke stresses in T2D that could
improve the neurological outcomes (Jiang et al., 2018). Also,
delayed recanalization is another promising alternative for stroke
patients who could not meet the window time after stroke injury
(Kelly and Holloway, 2018). The delay increases endogenous
FGF21 in the penumbra when administered, thereby decreasing
the neuronal apoptosis for the enhancement of a better
neurological outcome through FGF21/FGFR1/PI3K/caspase-3
signaling pathway (Zheng et al., 2019). Some reports showed
that FGF21 plays a significant role in cardiocerebrovascular
disease and has the ability to prevent arteriosclerosis by
suppressing the hepatic sterol regulatory element (Lin et al.,
2015; Wu et al., 2020). A recent report revealed that FGF21
has a low binding affinity for heparan and therefore has a
tendency to pass through the BBB (Chen et al., 2018). The
peroxisome proliferator-activator receptor gamma (PPARγ)
signaling pathway is one of the important downstream
pathways of FGF21 and regulates the transcription of genes
known to be involved in adipocyte growth and differentiation
(Dutchak et al., 2012). Studies have shown that primary neurons
expressing FGF21 have a neuroprotective effect against

excitotoxicity induced by glutamate (Leng et al., 2015).
Lyophilized recombinant human FGF21 (rhFGF21) protects
against cerebral ischemia in MCAO rats and neuronal cells by
decreasing endoplasmic reticulum (ER) stress (Yang et al., 2018).
Ischemia/reperfusion (I/R) was shown to inhibit the activity of
endogenous antioxidant enzymes and promote the
overproduction of ROS (Lo et al., 2003), ultimately leading to
cellular apoptosis (Fleury et al., 2002). Wan et al. found that
FGF21 is involved in the signaling pathway responsible for
I/R-mediated hippocampal injury (Wan et al., 2019). FGF21
protects against hypoxia stress-induced injury in cerebral
microvascular ECs by inducing heat shock protein expression
(Wang et al., 2019). Wang et al. found that FGF21 protects
against Ang II-induced cerebrovascular aging in ischemia by
improving mitochondrial biogenesis and inhibiting p53
activation in an AMPK-dependent manner (Wang X. M.
et al., 2016). FGF21 was shown to alleviate MCAO-induced
brain injury via activation of PI3K/Akt and inhibition of GSK-
3β (Wang et al., 2016). Furthermore, FGF21 decreases the
expression of ER stress-related proteins in MCAO rats and
PC12 cells (Yang et al., 2018). In addition, in our recent study,
we discovered that rhFGF21 treatment alleviates motor nerve
dysfunction by modulating microglia/macrophage-mediated
neuroinflammation via inhibition of NF-κB signaling
pathways (Wang et al., 2020). Overall, FGF21 protects
against stroke through actions affecting multiple targets,
including promotion of neuronal survival and induction of
ER stress and microglia/macrophage-mediated neuroinflammation
reductions (Figure 1).

Other FGFs in Stroke
In addition, other FGFs exhibit potential pharmacological actions
against stroke. FGF10 belongs to the FGF7 subfamily and was first
cloned in rat embryos (Yamasaki et al., 1996). In vitro findings
have concluded that exogenous FGF10 is expressed in neurons
but not in astrocytes because it is found at levels content in
neuronal culture medium and exerts protective effects in neurons
deprived of oxygen and glucose (Li et al., 2015). In another study,
it was reported that neuron-derived FGF10 can inhibit NF-κB-
dependent neuroinflammation and promote neuronal survival by
activating the PI3K/Akt signaling pathway in an MCAO mouse
model (Li et al., 2016). Comparative genome analysis of stroke-
related gene expression profiles has revealed that combination
treatments may cause overexpression of the FGF12 gene (Liu
et al., 2012). FGF13, which belongs to a homologous FGF
subfamily and has a molecular weight of 22 kDa, is distributed
widely throughout the developing brain (Lu et al., 2015). Studies
have proven that intravenous administration of FGF13 is capable
of reducing the infarct volume and brain swelling and alleviating
focal cerebral ischemia. The possible mechanism of action of
FGF13 may be similar to that of FGF2 (Yao et al., 1999). FGF18 is
mainly expressed in the brains of developing embryos (Maruoka
et al., 1998). Reports have shown that FGF18 stimulates neurite
outgrowth (Ohbayashi et al., 1998) and has mitogenic effects on
glial cells and astrocytes (Hoshikawa et al., 2002). Ellsworth and
collaborators assessed the neuroprotective effects of FGF18 in
MCAO rats and the appropriate treatment time window
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(Ellsworth et al., 2003; Ellsworth et al., 2004). The results revealed
that FGF18 induced a reduction in the infarct volume and
improvements in motor ability and exploratory behavior
associated with increased cerebral blood flow. FGF18 might be
more efficacious than FGF2. FGF18 administration may be
effective at both early and later time points. FGF23 is a bone-
derived hormone that is expressed in tissues such the lungs, heart,
brain, muscles, and spleen and helps ameliorate
hyperphosphatemia in patients (Taylor et al., 2011; van
Venrooij et al., 2014). A high level of FGF23 in the blood
results in a greater risk of cardiovascular disease and stroke
(Wright et al., 2014). Previous studies have reported that
higher FGF23 expression is associated with a higher risk of
stroke (Panwar et al., 2015; Jiang et al., 2016). A health study
report revealed that FGF23 is independently associated with a
higher risk of stroke (Ix et al., 2012). However, Kendrick’s
research and the Northern Manhattan Study (NOMAS)
reported opposite findings (Kendrick et al., 2011; Wright et al.,
2014). This discrepancy might have resulted from the differences
in the associations between FGF23 and stroke subtypes, such as
ischemic stroke and hemorrhagic stroke (Yao et al., 2018).
Furthermore, higher FGF23 expression exacerbates
atherosclerosis (Coban et al., 2018) and toxicity to vessels,
leading to the pathophysiology of stroke (Fandler-Höfler et al.,
2019). In addition, only one study has focused on FGF7, which
exerts a protective effect against ischemic hippocampal neuron
damage (Sadohara et al., 2001).

PROGRESS IN FGF RESEARCH FOR
CLINICAL STROKE TREATMENT

Therapeutic Potential
Although the therapeutic potential of FGFs in stroke has been
indicated by studies in animal models, it has not been reported in
the clinic. The main factors that impede the use of FGF in trials is
the difficulty in the translation of doses and targeting of the BBB.
A phase II/III safety and efficacy trial of FGF2 showed that FGF2
can likely be given safely to stroke patients. The ideal time
window for the administration of this agent may exceed 5 h
after stroke (Bogousslavsky et al., 2002). However, another study
performed in North America was terminated by the sponsor at
the advice of an independent data and safety monitoring
committee because the incidence of adverse neurological
outcomes and mortality was higher in the active treatment
groups than the control group (Clark et al., 2000). The most
common adverse events associated with FGF2 treatment during
and within 2 days after the infusion period were fever, leukocyte
activation, vomiting and hypokalemia. Similarly, the intravenous
delivery of FGF2 or placebo in the European-Australian phase II/
III trial on the 286 acute ischemic stroke patients for more than
24 h showed no significant neuroprotection, but rather caused
hypotension and high death rate in treated patients
(Bogousslavsky et al., 2002). The basis for the clinical trials of
FGF2 were as a result of the improvements shown in the animal
models such as the reduction of infarct size, cell proliferation,
apoptosis, and improved survival of new mature neurons

(Lanfranconi et al., 2011). FGF2 clinical failure raised concerns
about the significance of BBB in achieving a remarkable
therapeutic level in the brain, and reducing the adverse effects
in peripheral tissues. One possible way to consider delivering
therapeutic agents to the brain to avoid peripheral side effects is
by intranasal administration; thus, a non-invasive method to
bypass the BBB into the CNS (Hanson and Frey, 2008). The side
effects andmortality rates for the clinical trials of FGF2 were high,
and therefore, further experimental investigations are needed to
assess the possibility to achieving a pharmacological therapeutic
level in the brain, and also focusing on the potential mechanisms
of FGF2 delivery outcomes in the pre-clinical trials can be
strategy to help researchers determine when to administer
treatment to stroke onset. No other studies comparing FGF2
with placebo in patients with acute stroke have been carried out
since these studies.

Furthermore, studies were carried out on the association of
FGF23 with stroke (Kendrick et al., 2011; Ix et al., 2012), but these
studies were limited because they did not examine FGF23
association with other subtypes of ischemic stroke. Kendrick
et al. conducted a study and found no significant association of
FGF23 with stroke on 43 persons who had advanced chronic
kidney disease (CKD) (Kendrick et al., 2011), whereas the study
from Heart and Soul reported 36 individuals with higher FGF23
that was associated with higher risk of incident stroke (Parker et al.,
2010). The Northern Manhattan Study (NOMAS) conducted on
212 patients also reported no association of FGF23 with ischemic
stroke after adjusting the risk of stroke factors (Wright et al., 2014).
However, Panwar et al. demonstrated that there was no significant
association of FGF23 concentrations with all incident stroke, but in
a prespecified analyses, only cardioembolic stroke occurred due to
the high level of FGF23 (Panwar et al., 2015), which is consistent
with “FGF23 association with ischemic stroke and its subtypes”
study by Zheng et al. (Zheng et al., 2020). Nearly two decades
passed, and more randomized clinical trials of FGF in patients with
acute ischemic stroke are needed (Wahlgren and Ahmed, 2004).
The new goal of treatment may be enhancing functional recovery
rather than achieving immediate neuroprotection. Furthermore,
artificial FGFR agonists may be useful alternatives to FGF for the
treatment of ischemic vascular disease (Ballinger et al., 1999).

Serum Biomarkers
The use of blood biomarkers for stroke is being increasingly
accepted since biomarkers might help neurologists evaluate
stroke. Guo et al. demonstrated that the increase in FGF levels
is maintained during the first 2 weeks after stroke (Guo et al.,
2006). Previous studies have reported that serum FGF levels in
patients with acute ischemic stroke are significantly higher than
those of patients in the control group (Song et al., 2002; Golab-
Janowska et al., 2019). The prognostic value of FGF21 was
conducted on patients with acute ischemic stroke. Proteomic
analysis of 25 patients revealed that FGF 21 is expressed at lower
levels in intracranial blood than in systemic arterial blood
(Maglinger et al., 2020). The potential mechanism associated
with FGF21 and acute ischemic stroke outcomes has not been
fully elucidated due some limitations (Zheng et al., 2021). Firstly,
there might be a selection bias and generalizability concern, since
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other race/ethnics were not part of the study. However, a balance
for including and excluding patients based on the baseline
characteristics from the China National Stroke Registry (Wang
et al., 2011) was of a benefit, because the participants for the study
were fromChina Antihypertensive Trial in Acute Ischemic Stroke
(CATIS). Secondly, changes were not detected from the time of
hospitalization because the FGF21 levels and blood pressure were
taken once at baseline for the participants, resulting in no
evidence of data to determine the association of FGF21 levels
and acute ischemic stroke (Wang Z. et al., 2011). Lastly,
individuals hospitalized for more than 24 h were included in
this study which might be a possibility of inaccuracy of FGF21
levels from the onset of stroke, though a report showed that FGFs
are still maintained for 3 days after ischemia (Wang et al., 2016).

The prognostic value of the mechanism of higher levels of
FGF23 associated with the risk of stroke is still under exploration,
but some contributions have been made to help understand its
concept from a meta-analysis study. Studies showed that FGF23
has the ability to exert a direct toxic effect on the heart and vessels
which could lead to the activation of renin-angiotensin-aldosterone
due to the toxicity of FGF23 (Yao et al., 2018), and this could later
induce the pathophysiology of stroke and hypertension (Ma et al.,
2010). A clinical study revealed that the population with higher
FGF23 concentrations have higher occurrence of left ventricle
hypertrophy (LVH) (Mirza et al., 2009). Therefore, considering
the relation of LVHwith elevated arteriosclerosis, it could be partly
explained that FGF23 has an effect on stroke risk. Also, the
association of FGF23 with ischemic stroke and its subtypes has
some limitations, because the methodologies used to measure the
FGF23 levels could cause some biasness in the results (Zheng et al.,
2020). Bioinformatics analysis of genes revealed that brain FGF9
gene expression levels are increased in stroke patients (Zou et al.,
2019). However, a prospective study including 109 stroke patients
did not reveal differences between FGF plasma levels at different
time points. Therefore, more research on FGF levels in stroke
patients and healthy people involving a larger number of samples
should be is needed.

CONCLUSION AND PROSPECT

As presented in this review, FGFs could be used to treat stroke
due to their pharmacological actions on multiple targets,
including the ability to directly promote neuronal survival,
enhance angiogenesis, protect against BBB disruption, regulate
microglia, reduce the infarct size and promote neurological

function (Lin et al., 2018; Yang and Torbey, 2020).
Biochemical studies have revealed the mechanisms by which
FGFs improve neurological function after ischemic stroke.

The most studied FGFs to date are FGF1 and FGF2. There are
some limitations to the application of FGF1, as it cannot cross the
BBB to enter the brain and can lead to metastasis and
tumorigenesis because of its mitogenic effect. These limitations
could be limiting factors to the development of FGF2 as a
protective agent affecting multiple targets for the treatment of
stroke, and should be carefully considered. Combination
therapies involving FGFs have been shown to exert therapeutic
effects against stroke via multiple mechanisms in animal
experiments but have not yet been applied clinically
(Asgharzade et al., 2020).

In this review, we summarized the protective and survival-
promoting effects of FGFs in stroke models. Future research
on FGFs and the development of FGFs as novel drugs to treat
ischemic stroke are needed to improve clinical outcomes and
develop a strategy for functional recovery. The safety,
efficacy, timing and dose-dependent effects of FGF in
animals and patients following stroke need to be
determined in the future. Ongoing studies investigating
FGF as a new drug target in the ischemic brain will
provide novel insights into the role of FGF in the
development of stroke pathogenesis and aid in the
development of therapies to enhance stroke recovery.
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