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Human leukocyte antigen (HLA)-G is a nonclassical MHC Class I molecule, which was
initially reported as a mediator of immune tolerance when expressed in extravillous
trophoblast cells at the maternal-fetal interface. HLA-G is the only known ligand of killer
cell immunoglobulin-like receptor 2DL4 (KIR2DL4), an atypical family molecule that is
widely expressed on the surface of NK cells. Unlike other KIR receptors, KIR2DL4
contains both an arginine–tyrosine activation motif in its transmembrane region and an
immunoreceptor tyrosine-based inhibitory motif (ITIM) in its cytoplasmic tail, suggesting
that KIR2DL4 may function as an activating or inhibitory receptor. The
immunosuppressive microenvironment exemplified by a rewired cytokine network and
upregulated immune checkpoint proteins is a hallmark of advanced and therapy-
refractory tumors. Accumulating evidence has shown that HLA-G is an immune
checkpoint molecule with specific relevance in cancer immune escape, although the
role of HLA-G/KIR2DL4 in antitumor immunity is still uncharacterized. Our previous study
had shown that HLA-G was a pivotal mediator of breast cancer resistance to
trastuzumab, and blockade of the HLA-G/KIR2DL4 interaction can resensitize breast
cancer to trastuzumab treatment. In this review, we aim to summarize and discuss the role
of HLA-G/KIR2DL4 in the immune microenvironment of breast cancer. A better
understanding of HLA-G is beneficial to identifying novel biomarker(s) for breast cancer,
which is important for precision diagnosis and prognostic assessment. In addition, it is
also necessary to unravel the mechanisms underlying HLA-G/KIR2DL4 regulation of the
immune microenvironment in breast cancer, hopefully providing a rationale for combined
HLA-G and immune checkpoints targeting for the effective treatment of breast cancer.
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INTRODUCTION

Breast cancer is the most common cancer diagnosed in women worldwide, with an estimated 2.3
million new cases and 0.7 million deaths in 2020 (1). Breast cancer is a very heterogeneous disease,
both at molecular and histological levels. Five intrinsic subtypes of breast cancer were initially
identified: Luminal-A, Luminal-B, HER2+, triple negative/basal like (TNBC) and normal like, which
is based on the gene expression of estrogen receptor (ER), progesterone receptor (PR), and human
org February 2022 | Volume 13 | Article 7919751
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epidermal growth factor receptor 2 (HER2) (2). The character of
each subtype was associated with incidence, treatment response,
rate of disease progression and metastasis. The conventional
treatment options for patients with breast cancer include surgery,
chemotherapy, radiotherapy, hormonal therapy and targeted
therapy (3). Increasing evidence has showed that breast cancer
microenvironment is not only composed of tumor cells but also
of other different cell types, including endothelial cells, several
stromal cell types, and immune cells (4). Due to the potential of
the immune system in various new treatment strategies,
immunotherapy has attracted the attention of researchers,
including adoptive cell therapy, oncolytic virus and the most
noteworthy immune checkpoint blockade therapy (5).
Monoclonal antibodies against PD-1/PD-L1 and CTLA-4 have
now entered clinical trials for the clinical treatment of triple
negative breast cancer (6). Our recent study has showed that
human leukocyte antigen-G (HLA-G) was a pivotal mediator of
HER2 positive breast cancer resistance to trastuzumab and
blockade of HLA-G can improve the antitumor activity of NK
cells significantly (7).

HLA-G is a non-classical HLA Class I molecule that is first
found specifically expressed in extravillous trophoblasts (EVTs)
and plays a major regulatory role in maternal-fetal immune
tolerance (8). During pregnancy, the fetus expresses paternal
HLA, which are foreign antigens for maternal tissue, yet the fetus
is neither rejected nor attacked by the maternal immune system
(9). This phenomenon is due to the immune tolerance elicited by
interaction between EVTs expressing HLA-G and leukocytes
expressing inhibitory receptors (8). In 1998, Paul and his
colleagues first reported the abnormal HLA-G expression in
melanoma lesions rather than adjacent normal tissues (10).
Accumulated evidence have showed that HLA-G is abnormally
highly expressed in a variety of tumor cells and is involved in
immune escape of tumors (11). All these findings suggest that
HLA-G might be an important immune checkpoint in breast
cancer immunotherapy.

Unlike the classical HLA Class I molecule, such as HLA-A,
HLA-B, and HLA-C, the gene of HLA-G displays limited
polymorphism (12). Seven different transcripts of HLA-G gene,
namely HLA-G1 to G7, have been identified. HLA-G1 can be
translated into both membrane-binding isoform and soluble
isoform; HLA-G2, G3, and G4 transcripts can be translated
into membrane-binding proteins; HLA-G5, G6, and G7
transcripts are templates for soluble proteins (11). Different
HLA-G isoforms might underlie the diverse functions in
cancer immunotherapy.

According to the recent studies, there are multiple receptors
of HLA-G, including immunoglobulin-like transcript (ILT)-2,
ILT-4, and killer inhibitory receptor (KIR) 2DL4, which are
differentially expressed on immune cells (11, 13). ILT-2 and ILT-
4 are the type I transmembrane glycoproteins with four
extracellular immunoglobulin like domains, a transmembrane
region, and an intracellular tail, which have four or three
immunoreceptor tyrosine-based inhibitory motifs (ITIMs).
ILT-2 and ILT-4 are expressed on T cells, natural killer cells
(NK), and dendritic cells (DC) (14). Based on the structure of the
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intracellular tail, ILT-2/ILT-4 can initiate inhibitory signaling
after binding to HLA-G, leading to immune suppression.
KIR2DL4 is a member of the killer cell immunoglobulin (Ig)-
like receptor (KIR) family, with two atypical extracellular
domains, a positively charged arginine residue in the
transmembrane region and an ITIM domain in its intracellular
tail. The charged arginine residue of KIR2DL4 can recruit
activation adaptors that contain immunoreceptor tyrosine-
based activation motifs (ITAMs) (14). KIR2DL4 has both the
activation and inhibitory signaling domains, suggesting that it
can function as both activating and inhibitory receptor.

Our recent study found that KIR2DL4 synergizes with FcRg
to enhance NK cell activation and degranulation, while HLA-G
binding to KIR2DL4 impairs the cytotoxicity of NK cells in
HER2 positive breast cancer microenvironment (7). These
findings suggested that KIR2DL4 might provide a switch for
NK cell activity via its association with HLA-G. Increasing
evidence has showed that HLA-G is involved in both innate
and adaptive immune responses required for immune escape.
With the unique structure, whether KIR2DL4 participates in
cancer immunotherapy remains to be explored. In this review,
we aim to summarize the roles of HLA-G/KIR2DL4 in breast
cancer immune microenvironment.
MOLECULAR STRUCTURE OF HLA-G
AND KIR2DL4

There are 8 exons and 7 introns in HLA-G gene. Most of the full-
length HLA-G transcripts contains 7 exons, as exon 7 is usually
removed by splicing. Compared with classical HLA Class I
molecules, HLA-G is relatively short, the full length of which is
only about 340 amino acids. The signal peptide was translated
from exon 1; the extracellular a1, a2, and a3 domains were
translated from exon 2-4, respectively; the transmembrane
domain was generated by exon 5; and the intracellular
cytoplasmic tail was generated by exon 6 (15). Accumulated
evidences have shown that there are 7 isoforms of HLA-G. Each
HLA-G isoform has its unique molecular structure due to
different transcript splicing. HLA-G1 has both membrane-
binding and soluble isoforms with extracellular a1, a2, and a3
domains, while HLA-G2/-G3/-G4 were membrane-binding
isoforms. HLA-G2 has extracellular a1 and a3 domains; HLA-
G3 has the only a1 domain; and HLA-G4 has a1 and a2
domains. HLA-G5/-G6/-G7 were soluble isoforms. HLA-G5
has extracellular a1, a2, and a3 domains; HLA-G6 has a1 and
a3 domains; and HLA-G7 has the only a1 domains (11). The a1
and a2 domains contain the peptide-binding sites and the a3
domain can bind to b2-microglobulin (b2m) non-covalently.
Recent studies have shown that a novel isoform of HLA-G
without a1 domain can be detected in colorectal cancer
patients and clear cell renal cell cancer patients, which might
suggest distinct clinical significance (16, 17).

Killer cell immunoglobulin-like receptor 2DL4 (KIR2DL4) is
the only KIR receptor recognized by HLA-G. KIR2DL4 belongs
to the killer cell Ig-like receptors (KIR) family, which is expressed
February 2022 | Volume 13 | Article 791975

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Zheng et al. HLA-G/KIR2DL4 in Cancer Microenvironment
mainly on NK cells (7). KIRs can recognize both classical and
nonclassical HLA Class I molecules. The KIR genes are located in
chromosome 19q13.4, with each spanning 10,000-15,000 bp and
separated by 1,000 bp. KIRs are encoded by up to nine exons: the
leader peptide was encoded by the first two exons (exon 1 and
exon 2), the two or three extracellular Ig-like domains (2D or 3D)
by exons 3-5, the stem structure by exon 6, the transmembrane
region by exon 7, and the cytoplasmic tail by exons 8-9 (18).
Generally, KIRs have two or three extracellular immunoglobulin
domains that were named KIR2D or KIR3D. Inhibitory KIRs
including KIR2DL or KIR3DL contain a long cytoplasmic tail (L)
with two immunoreceptor tyrosine-based inhibitory motifs
(ITIMs). Activating KIRs like KIR2DS or KIR3DS contain a
short cytoplasmic tail (S) and a positively charged residue in the
transmembrane region, which can recruit adaptors that contain
the immunoreceptor tyrosine-based activation motif (ITAM)
(19). Unlike the conventional KIR2DL receptors, KIR2DL4
contains only one ITIM instead of two in its cytoplasmic tail
and a positively charged arginine in its transmembrane region,
which can recruit activation adaptors (19–21). Based on the
unique structure, both activating and inhibitory functions have
been described for KIR2DL4 on NK cells. Rajagopalan et al.
found that KIR2DL4 is an activating receptor that can induce
IFN-g production by but not cytotoxicity of resting NK cells (22).
Yusa and her colleagues showed that the single ITIM of
KIR2DL4 can inhibit cytotoxic response of NK cells efficiently,
which depends on SHP-2, but not SHP-1, and phosphorylated
tyrosine (20). Our recent study has showed that HLA-G can
desensitize breast cancer cells to trastuzumab by binding to the
NK cell receptor KIR2DL4. Unless engaged by HLA-G,
KIR2DL4 promotes ADCC function and forms a regulatory
circuit with the IFN-g production pathway, in which IFN-g
upregulates KIR2DL4 via JAK2/STAT1 signaling, and then
KIR2DL4 synergizes with the CD16 to increase IFN-g secretion
by NK cells (7). Recent studies have showed that the IFN-g
production can impair the function of immune cells by
upregulating PD-L1 on tumor cells (23–25). Consistent with
previous reports, we observed that IFN-g significantly increased
the level of PD-L1 in breast cancer cells. Blockade of PD-L1
increased the cytotoxicity of NK cells against trastuzumab-
treated HER2-overexpressing breast cancer cells (7). These
findings suggested that since KIR2DL4 functions as either an
activating receptor or an inhibitory receptor, it can affect the
outcome of immunotherapy through the complicated cross-talk
between different immune checkpoints and cytokines in the
breast cancer immune microenvironment.
HLA-G/KIR2DL4 EXPRESSION IN BREAST
CANCER IMMUNE MICROENVIRONMENT

HLA-G expression in cancer microenvironment was regulated
by several intracellular and extracellular mechanisms mediated
by microRNAs, RNA-binding proteins, heat shock proteins,
cytokines, et al. There are several microRNAs were correlated
with the expression of HLA-G, such as miR-133a, miR-148a,
Frontiers in Immunology | www.frontiersin.org 3
miR-148b, miR-152, miR-199b-5p, miR-548q and miR-628-5p
et.al, mainly investigated in vitro (26–28). Reches A et al. found
that the RNA-binding protein, the heterogeneous nuclear
ribonucleoprotein R (HNRNPR) can regulate the expression of
HLA-G by binding to the 3’UTR of the HLA-G transcripts (29).
Heat shock proteins was also reported to induce the HLA-G
expression via the heat shock transcription factor 1 binding to
the heat shock element of HLA-G promoter (30). The expression
of HLA-G was regulated not only by intracellular post-
transcriptional regulation, but also by extracellular mediators.
HLA-G expression was found to be induced by progesterone via
the interaction between progesterone receptor and progesterone
response element (PRE) in the HLA-G promoter (31). Cytokines
were also found to regulate the expression of HLA-G, such as
GM-CSF, IL-10, TGF-b and IFN-b et al. (7, 32–34). All these
findings indicated that the HLA-G expression in cancer
microenvironment might be a key factor to investigate the
progression of disease.

Many studies have shown that HLA-G/KIR2DL4 expression
in immune microenvironment were correlated with the
prognosis and progression of breast cancer. In 2002, Lefebvre
et al. found that HLA-G was up-regulated at high frequencies in
human breast cancer and it may impair anti-tumor immunity by
recognizing inhibitory receptors, ILT-2 (35). Meanwhile,
Urosevic and colleagues made an editorial comment,
proposing that HLA-G and related killer cell inhibitory
receptor might represent another mechanism for tumor
immune escape (36). However, a recent study has showed that
HLA-G expression did not significantly correlate with poor
clinical outcome of cancer patients, which indicated that HLA-
G express ion might not necessar i ly part ic ipate in
immunosuppression in carcinogenesis (37). Palmisano et al.
analyzed the HLA-G expression at both RNA and protein
levels in 25 breast cancer patient tissues. They failed to detect
HLA-G expression in breast cancer tissues and cell lines, which
was later found attributed to stromal cell contamination in tissue
samples (38). In 2003, a comparative study reported that soluble
HLA-G can be detected in the malignant ascites of breast cancer
patients (39). In the same year, Korkola JE et al. Found in
microarray assays that HLA-G were differentially expressed in
lobular versus ductal breast cancer (40). Later investigations have
established that HLA-G is an important marker of tumor
immune escape (41, 42). Several studies have shown that the
expression of HLA-G is significantly associated with progression
and poor prognosis in a variety of tumors including aggressive
breast carcinoma (43–45). Based on previous studies, whether
HLA-G can be used as a marker for clinical diagnosis and
treatment of breast cancer patients has also been extensively
investigated (46, 47). In 2010, a comparative study reported that
estradiol/progesterone-induced HLA-G expression can inhibit
allo-cytotoxic lymphocyte response to human breast cancer
MCF-7 cells (48). Chen et al. found that high soluble HLA-G
levels was significantly correlated with the increased infiltration
of Treg in breast cancer patients, which indicated that HLA-G
might play an important role in the immunosuppressive breast
cancer microenvironment (49, 50). HLA-G expression was also
February 2022 | Volume 13 | Article 791975
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associated with subtypes of breast cancer. Provatopoulou X et al.
found that HLA-G expression was increased in co-existing ductal
and lobular breast cancer patients, compared to those with pure
ductal cancer or pure lobular cancer alone (51). Yang’s team
reported that there were more cases with high expression of
HLA-G in non-luminal than in luminal subtypes, and HLA-G
expression was associated negatively with the density of tumor-
infiltrating lymphocytes (52). The mRNA stability of HLA-G was
found associated with a 14-bp insertion/deletion in exon 8 of the
3’ untranslated region. A series of studies have shown that HLA-
G polymorphism could be a diagnostic and prognostic marker
for the susceptibility and pathogenesis of breast cancer in
populations from different regions (53–59). MicroRNAs were
also found to be involved in the regulation of HLA-G expression
in breast cancer. Tao et al. found that G protein-coupled estrogen
receptor (GPER) mediated the regulation of HLA-G by miR-
148a, which was induced by estrogen (E2) in 2 human breast
cancer cell lines, MCF-7 and MDA-MB-231 (60). It has been
shown that HLA-G is expressed on immune cells such as NK
cells and T cells (61, 62).

KIR2DL4 is the only killer cell Ig-like family receptor
recognized by HLA-G. In 1999, Long EO et al. first reported
that KIR2DL4, which is expressed at the surface of all NK cells
including activated NK cells and resting NK cells, can bind to
cells expressing HLA-G (22, 63). Goodridge et al. found that
there are two KIR2DL4 alleles with either 9 or 10 consecutive
adenines (9A or 10A) in exon 6, which encodes the
transmembrane domain (64). The 9A alleles can produce a
secreted receptor due to the splicing out of the transmembrane
region, which might cause a lack of KIR2DL4 expression (65). In
contrast, the “10A” alleles encode a membrane-expressed
receptor that is constitutively expressed on resting CD56bright

and CD56dim NK cells (65). The It has been described that the
interaction of the KIR2DL4 receptor with the HLA-Gmolecule is
mediated by the a1 domain, which indicated that all the seven
identified isoforms of HLA-G can be recognized by KIR2DL4
(66). In breast cancer immune microenvironment, HLA-G
can bind to its receptor, such as KIR2DL4, to induce
immunosuppression. Ueshima C et al. found that human mast
cells expressing KIR2DL4 can promote invasion of HLA-G-
expressing malignant cells and the subsequent metastasis of
breast cancer and choriocarcinoma (67). Recently, we have
found that HLA-G expression can predict a low trastuzumab
response in HER2 positive breast cancer patients (7). We also
detected abundant KIR2DL4 expression on infiltrating NK cells
in HER2 positive breast cancer tissues. These findings indicated
that HLA-G/KIR2DL4 in immune microenvironment might
play an important role in the progression of breast cancer and
become a new target for breast cancer treatment.
HLA-G/KIR2DL4 AS THE NOVEL TARGETS
IN BREAST CANCER IMMUNOTHERAPY

So far, the role of HLA-G/KIR2DL4 in breast cancer
immunotherapy has been progressively elucidated. Roberti et
Frontiers in Immunology | www.frontiersin.org 4
al. found that blockade of ILT-2 with antibodies can restore
cetuximab-mediated ADCC in triple-negative breast cancer
patients and revert immunosuppression mediated by HLA-G
(68). In 2016, Ishibashi and colleagues found that an MHC Class
II-binding peptide HLA-G26-40 can elicit tumor-reactive CD4+

T cell responses effectively (69). With the wide application of
immunotherapy in cancer, the relationship between
immunological signature and progression of breast cancer has
also been intensively investigated. A study reported that the
expression of HLA-G was associated with both improved
relapse-free survival (RFS) and overall survival (OS) of basal-
like breast cancer, which might indicate a better status of
lymphocyte infiltrating (70). Zhang’s team reported that
overexpression of HLA-G in breast cancer cells was induced by
abnormal DNA methylation modification, which was mediated
by DNA methyltransferase (DNMT) and ten-eleven
translocation (TET) (71). Therefore, TET inhibitor can prevent
aberrant HLA-G expression via maintenance of DNA
methylation, which provides a novel potential target for cancer
immunotherapy (71). Jørgensen et al. also found that HLA-G
expression was regulated partially by DNA methylation since the
DNA methyltransferase inhibitor, 5-aza-2’-deoxycytidine,
induced HLA-G expression, suggesting the feasibility of
manipulating HLA-G expression for immunotherapy in breast
cancer (72). In 2020, Schwich et al. reported that soluble HLA-G
can induce a an immunosuppressive/exhausted phenotype, and
the purified soluble HLA-G1 protein or extracellular vesicles
derived from an HLA-G1-positive human breast cancer cell line,
SUM149, can affect the anti-tumor function of CD8+ T cells by
binding to ILT-2 (73). Our recent study reported that KIR2DL4,
an alternative receptor of HLA-G, might be a novel target in
breast cancer immunotherapy (7). We found that HLA-G
impaired trastuzumab-triggered ADCC by binding to
KIR2DL4 on NK cells, and blockade of HLA-G/KIR2DL4 can
enhance the antitumor activity of trastuzumab in vivo. However,
unless engaged by HLA-G, KIR2DL4 can promote ADCC and
form a regulatory circuit with the IFN-g production pathway via
JAK2/STAT1 signaling in NK cells. In addition, paracrine TGF-b
and IFN-g in breast cancer microenvironment can induce PD-1/
PD-L1 expression on NK cells and tumor cells, which might
further enhance intercellular signaling that leads to
immunosuppression. These findings demonstrated the
applicability of combined HLA-G/KIR2DL4 and PD-1/PD-L1
targeting in the treatment of trastuzumab-resistant breast
cancer (Figure 1).
CONCLUSIONS

The immune system played an important role in the occurrence
and progression of breast cancer. Many immunotherapy
approaches have been investigated for breast cancer, including
antibodies against tumor antigens, immune checkpoint blockade
and CAR-T cells (4). Recent studies have shown that the
combination of conventional chemotherapy or radiotherapy
with immunotherapy contributes to improved outcome of
February 2022 | Volume 13 | Article 791975
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breast cancer patients (74, 75). The therapeutic strategies for
breast cancer have shifted from cytotoxic therapy to priming
anti-tumor immune responses. Nonetheless, only a small
part of breast cancer patients can currently benefit from
immunotherapy. The relatively low responsive rate and the
immunosuppressive tumor microenvironment even in the
responding populations have limited the benefit of
immunotherapy for breast cancer patients. The abnormal
expression of immune checkpoint molecules is the main cause
of immune escape. Thus, immune checkpoint blockade
represents an important approach to reversing the
immunosuppressive status of tumor microenvironment.

In this review, we summarized the special structural features
of HLA-G and KIR2DL4. Then, we reviewed the expression of
HLA-G/KIR2DL4 in breast cancer immune microenvironment
and the potential of HLA-G/KIR2DL4 application in breast
Frontiers in Immunology | www.frontiersin.org 5
cancer immunotherapy. HLA-G, a non-classical HLA Class I
molecule, was highly expressed in breast cancer tissues and
associated with tumor progression and poor prognosis of
patients. HLA-G engagement of its cognate receptors, ILT-2,
ILT-4 and KIR2DL4 expressed on immune cells, can significantly
induce immunosuppression and result in tumor immune escape.
KIR2DL4 is the only KIR receptor that binds to HLA-G.
KIR2DL4 contains an ITIM domain in its cytoplasmic tail and
a positively charged arginine in its transmembrane region, which
can recruit activation adaptors containing a ITAM domain.
Based on its special structure, KIR2DL4 can mediate a
complicated cross-talk between immune checkpoint and
cytokines in breast cancer microenvironment, and dictate
distinct outcome of immunotherapy depending on whether or
not HLA-G is engaged. A deep understanding of the regulatory
role of HLA-G/KIR2DL4 in the immune microenvironment of
FIGURE 1 | The potential roles of HLA-G/KIR2DL4 signaling in the NK cell mediated immunotherapy of breast cancer.
February 2022 | Volume 13 | Article 791975

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Zheng et al. HLA-G/KIR2DL4 in Cancer Microenvironment
breast cancer might provide new ideas for the treatment of
breast cancer.
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