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Abstract

Background: Cerebellar cortical molecular layer interneurons (MLIs) play essential roles in sensory information processing
by the cerebellar cortex. However, recent experimental and modeling results are questioning traditional roles for molecular
layer inhibition in the cerebellum.

Methods and Main Results: Synaptic responses of MLIs and Purkinje cells (PCs), evoked by air-puff stimulation of the
ipsilateral whisker pad were recorded from cerebellar cortex Crus II in urethane-anesthetized ICR mice by in vivo whole-cell
patch-clamp recording techniques. Under current-clamp (I = 0), air-puff stimuli were found to primarily produce inhibition in
PCs. In MLIs, this stimulus evoked spike firing regardless of whether they made basket-type synaptic connections or
not. However, MLIs not making basket-type synaptic connections had higher rates of background activity and also
generated spontaneous spike-lets. Under voltage-clamp conditions, excitatory postsynaptic currents (EPSCs) were recorded
in MLIs, although the predominant response of recorded PCs was an inhibitory postsynaptic potential (IPSP). The latencies
of EPSCs were similar for all MLIs, but the time course and amplitude of EPSCs varied with depth in the molecular layer. The
highest amplitude, shortest duration EPSCs were recorded from MLIs deep in the molecular layer, which also made basket-
type synaptic connections. Comparing MLI to PC responses, time to peak of PC IPSP was significantly slower than MLI
recorded EPSCs. Blocking GABAA receptors uncovered larger EPSCs in PCs whose time to peak, half-width and 10–90% rising
time were also significantly slower than in MLIs. Biocytin labeling indicated that the MLIs (but not PCs) are dye-coupled.

Conclusions: These findings indicate that tactile face stimulation evokes rapid excitation in MLIs and inhibition occurring at
later latencies in PCs in mouse cerebellar cortex Crus II. These results support previous suggestions that the lack of parallel
fiber driven PC activity is due to the effect of MLI inhibition.
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Introduction

Purkinje cells (PCs) are the most investigated neurons in the

mammalian cerebellum. Their unique discharge of two distinct

types of spike firing patterns, simple spikes and complex spikes,

enables their positive identification under in vivo recording

conditions. An assumption is that information coming from

mossy fibers produces beam-like excitation of parallel fibers,

which sequentially induces the activity of their innervated PCs

[1,2]. However, more natural stimulation of afferent cerebellar

cortical activation failed to produce ‘‘beam-like’’ excitation of

PCs [3–7]. Instead, the peripheral stimuli induced patch-like

patterns of excitation or inhibition in PCs [3,4,8] and the

excitation patterns were found to be above the region of the

activated granule cell layer [4,7,9,10]. Under the stimulation

conditions used in these experiments, all of the recorded PC

responses were inhibitory. However, excitatory synaptic re-

sponses were uncovered when inhibition was blocked, a result

consistent with recent modeling and experimental results

suggesting that the inability of parallel fibers to directly drive

PC firing may be due to the presence of feed-forward molecular

layer inhibition [11–15]. Our results therefore support the

proposal that the molecular layer inhibitory interneurons play

a complex, subtle and perhaps more central role in PC

responses to afferent input and therefore in the physiological

and functional organization of the cerebellar cortex.

The molecular layer interneurons (MLIs) of the cerebellar

cortex have historically been divided into basket and stellate

cells [1], receiving excitatory input from parallel fibers and

inhibitory input from other interneurons, and exerting GA-

BAergic inhibition on PCs [16–20]. Basket cells are usually

found in the inner third of the molecular layer and their somas

are close or within PC layer, they are characterized by the

basket-like structures that their axonal arborizations envelop

PCs soma [1,16,21–23]. The stellate cells are usually located in
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the outer two thirds of molecular layer, and the inhibitory

inputs of stellate cells directly innervate the dendrites of PCs

[1,16,24]. Although basket and stellate cells have been further

classified into several subtypes according to their exact axonal

shape [1,16], the separation of MLIs into two different classes

has been challenged by recent studies [14,25–28]. However, the

stellate-type dendritic and basket-type somatic inhibition are

predicted to play different functional roles and have different

post-synaptic effects on PCs [14]. The stellate-type dendritic

inhibition is predicted to specifically counterbalance the parallel

fiber excitation in local regions of the PC dendrites [29–30],

resulting in no direct influence on PC spiking output [13]. In

contrast, basket-type somatic inhibition is powerful and rapid

[22,31], and results in direct influence on PC spiking output by

inhibition of the soma and initial segment of PCs

[13,14,22,23,31]. Although the model-based studies suggest that

both stellate-type dendritic and basket-type somatic inhibition

are involved in controlling PC responses to parallel fiber input

[13,14], the physiological roles and difference of stellate-type

and basket-type MLIs in sensory information processing in

mouse cerebellar cortex Crus II in vivo are not well understood.

Here, we used in vivo whole-cell patch-clamp recording with

biocytin histochemistry to investigate the synaptic responses of

cerebellar PCs and MLIs in response to tactile stimulation in

urethane-anesthetized mice. Our results showed that air-puff

stimuli were found to primary produce inhibition in PCs, but

evoked spike firing regardless of whether they made basket

connections or not in MLIs, in cerebellar cortex Crus II. Our

results support previous suggestions that the lack of parallel fiber

driven PC activity is due to the effect of MLI inhibition, and that

structure of molecular layer circuitry supports a precise timing

relationship and interaction between MLIs and PCs that is likely

important for sensory information processing.

Results

Air-puff Stimulation of the Ipsilateral Whisker Pad Evoked
Excitation in MLIs
In total, 36 MLIs were recorded under whole-cell patch-

clamp recording conditions and were identified by biocytin

labeling. These MLIs possessed somas of 10.2660.23 mm

(n=36 cells) in diameter. Under current-clamp (I = 0), they

exhibited a low average rate of irregular spontaneous simple

spiking activity (2.7660.48 Hz; n=36) at the resting potential

(254.760.6 mV; n=36; Fig. 1B, 2B), but expressed high

frequency spike firing (134.6616.1 Hz; n=36) in response to

a depolarizing current pulse (100 pA; Fig. 1A, 2A). Spontaneous

spikelet activity (Fig. 2E) was also observed in some of the MLIs

at resting potentials, consistent with a previous study [26]. The

mean value of the input resistance (Rinput) was 255.8623.5 MV

(n=36), which was significantly higher than that for PCs

(86.8613.4 MV, n=17; P=0.00001). Notably, air-puff stimula-

tion of the ipsilateral whisker pad evoked simple spike firing in

29 of 36 MLIs (Fig. 1B, 2B). The tactile stimulation-evoked

excitation in the MLIs was completely blocked by 50 mM

AMPA (a-amino-3-hydroxy-5-methyl-4-isoxazole propionate) re-

ceptor antagonist, NBQX, and abolished by 10 mM tetrodotox-

in (TTX; not shown). Biocytin histochemistry revealed that the

tactile stimulation-sensitive MLIs included basket-type (n = 11)

and stellate-type (n = 25) MLIs, which were dye coupled to

other MLIs with some distance of their somas (Fig. 1D, 2D).

Distinct Properties of Basket-type and Stellate-type MLIs
in Response to the air-puff Stimulation of Ipsilateral
Whisker Pad
The basket-type MLIs are found in the bottom 1/3 of molecular

layer just above PCs, their soma diameter is 12.3060.40 mm

(n=11 cells). Their identification depends on the presence of

characteristic terminals that dropped descending collaterals to

wrap around several somas and axon initial segments of PCs

(Fig. 1D). In contrast, stellate-type MLIs possessed somas with

a mean diameter of 9.1360.16 mm (n= 25), which was significant

smaller than basket-type MLIs (12.3060.40 mm; n=11; P=0.01).

However, the mean value of the Rinput was 260.3.8623.1 MV

(n=25), which was similar to the basket cells (245.1624.2 MV;

n=11; P=0.65). The stellate-type MLIs exhibited irregular

spontaneous spike firing at a mean frequency of 4.2660.78 Hz

(Fig. 2B; n=25), which was significantly higher than basket-type

MLIs (0.0860.02 Hz; n=11; p=0.005). Air-puff stimulation of the

ipsilateral whisker pad evoked reliable spike firing in 11 of 11

basket-type MLIs (Fig. 1B) but in 18 of 25 stellate-type MLIs

(Fig. 2B). Seven of 25 stellate-type synaptic connection MLIs

exhibited an increase in spike firing rate and spikelet discharge in

response to the stimulus: the mean frequency of spike firing within

50 ms after onset of responses was 13.6060.92 Hz (n=7), which

was significantly higher than the baseline (4.6960.91 Hz; n=7;

P=0.0004; Fig. 2E). The mean amplitude of the evoked spikelet

was 4.2760.53 mV (n=7). Under voltage-clamp conditions

(Vhold=270 mV), the stimulus evoked fast EPSCs (Fig. 1C) with

a mean amplitude of 163.7614.8 pA (n=11) in basket-type MLIs,

which was significant larger than the mean amplitude of EPSCs

(96.42614.3 pA; n=18) evoked in stellate-type MLIs (Fig. 2C).

However, there was no significant different in time to peak (BC:

3.0460.25 ms; n = 11; SC: 3.4560.46 ms; n=18; P=0.13) and

half-width (BC: 3.4360.42 ms; n= 11; SC: 3.1760.30; n= 18;

p=0.42) of the evoked-EPSCs between basket-type and stellate-

type MLIs. Further, we investigated the relationship between the

properties of the evoked-EPSCs and the depth of MLIs somas in

molecular layer using linear regression analysis. As shown in

Figure 3, the amplitude of the EPSCs correlated positively with the

depth of MLIs somas in molecular layer (Fig. 3B; R=0.29;

P=0.0015), exhibited an increase with depth of MLIs somas in

molecular layer. The time to peak of the EPSCs correlated

negatively with the depth of MLIs somas in molecular layer

(Fig. 3C; R=0.18; P=0.013), expressed a decrease with depth of

MLIs somas in molecular layer. The half-width of the EPSCs

expressed no significant correlation with the depth of MLIs somas

in molecular layer (Fig. 3D; R=0.0.02; P=0.23). The 10–90%

rising time of the EPSCs correlated negatively with the depth of

MLIs somas in molecular layer (Fig. 3E; R=0.13; P=0.03),

expressed a decrease with depth of MLIs somas in molecular layer.

Taken together, the latencies of the evoked-EPSCs were similar for

all MLIs, but the time course and amplitude of the EPSCs were

varied with depth in the molecular layer. The highest amplitude,

fastest EPSCs were recorded from MLIs deep in the molecular

layer, which also made basket-type synaptic connections. These

results consistent with modeling prediction, suggested differences in

the dendritic tree of those basket-type connections, may reflect

increased drive from ascending granule cell axons on these cells

[14].

MLIs Expressed More Rapid Responses than PCs
The time courses of the evoked responses in MLIs and PCs were

compared by arbitrarily recording them (100–500 mm in distance)

in the same cerebellar cortex Crus II (Fig. 4D, 5D). The

Roles of Cerebellar Molecular Layer Interneurons
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stimulation evoked spike firing in MLIs and IPSP in the PCs

(Fig. 4A, 5A). The latency of the responses was 16.3160.22 ms

(n=10) for MLIs, which was no significant different from the

latency for PCs (16.3760.23 ms; n=10; P=0.86; paired Student’s

t test). However, the evoked spike in the basket-type MLIs peaked

at 19.7260.68 ms (n=5) after onset of stimulation, which was

significantly earlier than the onset of evoked IPSP in PCs

(20.6460.59 ms; n=5; P=0.0095; paired Student’s t test). The

difference between the evoked spike firing in basket-type MLIs and

the onset of evoked IPSP in PCs was 0.9260.17 ms (n=5),

suggested that tactile stimulation-evoked spike firing in basket-type

MLIs resulted in a perisomatic inhibition of PCs within ,1 ms. In

contrast, the evoked spike in the stellate-like MLIs peaked at

20.6260.69 ms (n=5) after onset of stimulation, which was not

significantly different from the onset of the evoked IPSP in PCs

(20.7260.49 ms; n=5; P=0.68; paired Student’s t test). Under

voltage-clamp conditions (Vhold=270 mV), the air-puff stimulus

evoked fast EPSCs in the MLIs but induced a tiny inward currents

followed by strong IPSCs in the PCs (Fig. 4B, 5B). The strong

IPSCs expressed outward currents which were not reversed at the

holding potential of –70mV, suggesting poor space clamping of

PCs under in vivo conditions. The cerebellar PCs express large

soma, abundant dendrites and very long axons, especially in the

intact cerebellum, therefore, the somatic membrane potential may

be well controlled, but the membrane potential of the axon initial

segment may be poorly controlled [13]. The time-to-peak of the

evoked EPSCs was 3.2660.37 ms (n=10) in the MLIs, which was

significantly faster than that in the PCs (5.7960.50 ms; n=10;

P=0.004; Fig. 4C, 5C).

Moreover, we compared the properties of the evoked EPSCs in

PCs and in MLIs. As shown in Figure 6A, the stimulation-evoked

EPSCs in PCs were obtained in the presence of the GABAA

receptor antagonist, SR95531 (20 mM). The latency of the EPSCs

in PCs was 16.6860.42 ms (n=8), which was not significantly

Figure 1. Air-puff stimulation of the ipsilateral whisker pad evoked reliable spike firing in basket-type MLIs. A, Left, whole-cell patch-
clamp recording from a basket-type MLI in response to hyperpolarizing (2100 mA), followed by a series of depolarizing (+50 pA/step) current pulses.
Right, enlarged trace from the quadrangle shown in the left panel. B, Left, under current-clamp (I = 0), superposition of 20 sequential traces (upper)
and raster plot of spike firing (lower) showing the basket-type MLI in response to the air-puff stimulus (arrow, 30 ms). Right, enlarged traces (upper)
and raster plot (lower) of left panel. Time point (0) denotes the onset of stimulus. C, Under voltage-clamp (Vhold=270 mV) conditions, five
consecutive traces demonstrate the air-puff stimulation (bar, 30 ms)-evoked EPSCs (right) in the basket cell. D, Left, a photomicrograph depicting the
morphology of the basket-type MLI (asterisk) filled with biocytin. Note that the basket cell drops descending collaterals that wrap around at least five
PCs soma (arrowheads) and is dye-coupled with a group of other MLIs (arrows). Right, magnified photomicrographs from the quadrangles in the left
panel showing the dye-coupled stellate cells at different focal planes. PCL, Purkinje cell layer; ML, molecular layer.
doi:10.1371/journal.pone.0037031.g001
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different from that in the MLIs (16.3660.35 ms, n=29; P=0.63;

Fig. 6B). However, the time to peak of the EPSCs in PCs was

6.6360.70 ms (n=8), which was significantly slower than that in

the MLIs (3.3060.25 ms; n=29; P=0.002; Fig. 6C). The half-

width of the EPSCs in PCs was 25.4662.01 ms (n= 8), which was

significantly wider than that in the MLIs (3.2860.30 ms; n=29;

P,0.00001; Fig. 6D). The 10–90% rising time of EPSCs in PCs

was 4.3960.52 ms (n= 8), which was significantly slower than that

in the MLIs (2.4060.18; n=29; P=0.003; Fig. 6E). These data

indicated that blocking GABAergic inhibition revealed large

EPSCs in PCs not as readily apparent when inhibition was intact.

However, the EPSCs evoked in PCs expressed much more slowly

than in the EPSCs evoked in MLIs. The blockade of GABAergic

inhibition is maybe included the granule cell layer inhibition,

which may also contribute to the large EPSCs evoked by the tactile

stimulation.

Discussion

In the present study, we found that air-puff stimulation of

ipsilateral whisker pad evokes responses in both MLIs and PCs in

Figure 2. Air-puff stimulation of the ipsilateral whisker pad
evoked spike firing in stellate-type MLIs. A, Whole-cell patch-
clamp recording from a stellate-type MLI in response to hyperpolarizing
pulses (2100 pA) followed by a series of depolarizing current pulses
(+50 pA/step). B, Under current clamp (I = 0), superposition of 20
consecutive traces (upper) and a raster plot of spike firing (lower)
showing the stellate-type MLI response to air-puff stimulation (black
triangle, 30 ms). Time point 0 denotes the onset of the air-puff
stimulation. C, Under voltage-clamp (Vhold=270 mV), five sequential
traces showing air-puff stimulation (bar, 30 ms)-evoked EPSCs in the
stellate-type MLI. D, A photomicrograph depicting the morphology of
the stellate-type MLI (asterisk) filled with biocytin and dye-coupled to
several other MLI s (arrows). E, Under current-clamp conditions (n = 0),
example traces (n = 5) showing the air-puff stimulation-evoked spike
firing or spikelet discharge in a stellate-type MLI. Spikelet discharges are
indicated by asterisks.
doi:10.1371/journal.pone.0037031.g002

Figure 3. Relationships between properties of the evoked-
EPSCs in MLIs and the depth of their somas location. A,
Representative currents traces show the air-puff stimulation-evoked
EPSCs in a basket-type MLI (BC; red) and a stellate-type MLI (SC; green).
The time point (0) indicates the onset of the responses. B-E, Plots show
the amplitude (B), time to peak (C), half-width (D) and 10–90% rising
time (E) of EPSCs versus the depth of the somas in the molecular layer,
respectively. The stellate-type MLIs are indicated by green color dots,
and the basket-type MLIs are indicated by red color dots. The solid lines
indicate linear regression (R).
doi:10.1371/journal.pone.0037031.g003
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mouse cerebellar cortex Crus II. MLIs responded with rapid

excitation, whereas PC responses were dominated by inhibition

occurring at later latencies. The highest amplitude, fastest EPSCs

were recorded from MLIs deep in the molecular layer, which also

made basket-type synaptic connections.

MLIs of cerebellar cortex were originally described as two

separate molecular layer cell classes, so-called basket and stellate

cells, which were distinguished by their specific inhibitory axon

collaterals [1]. Basket cells are usually found in the inner third of

the molecular layer and their somas are close or within PC layer

[1], they are characterized by the basket-like structures that their

axonal arborizations envelop PCs soma to form pinceau synapses

and provide a strong basket-type somatic inhibition of the PCs

[1,16,21–23]. Stellate cells do not display axosomatic contacts and

are usually found in the middle and outer part of the molecular

layer and their inhibitory input directly to the dendrites of PCs

[1,16,24]. Consistent with previous reports [1,16,21–23], our

biocytin histochemistry analysis indicated that the basket cells were

located in the inner of molecular layer and their somas are close to

PCs, their basket-like axonal arborizations enveloped PCs soma.

However, a clear separation of MLIs into two distinct classes has

been challenged by recent morphological and physiological studies

[14,25–28]. Using principal component analysis, Sultan and

Bower [25] have shown that basket and stellate cells varied

continuously in their morphology depending on the location of the

soma in the molecular layer. Anatomical and modeling studies of

MLIs have suggested that basket and stellate cells are one

homogenous population of cells, a MLI makes a basket-type

connection was simply related to the depth of the soma in the

Figure 4. Comparison of the air-puff stimulation-evoked
responses in a basket-type MLI and a PC in the same mouse
cerebellar Crus II. A, Under current-clamp (I = 0) conditions, air-puff
stimulation (grey shadow) evoked spike firing in a basket-type MLI
(lower), and an IPSP with a pause in spike firing in a PC (upper), in the
same mouse cerebellar Crus I I . B, Under voltage-clamp
(Vhold=270 mV), air-puff stimulation (grey shadow) evoked fast EPSCs
in the basket-type MLI (lower) and IPSCs in the PC (upper). C, Enlarged
current traces from (B) and the mean values (6 SEM) of the time to peak
for the current traces evoked by air-puff stimulation in the PC (black;
n= 5) and the basket-type MLI (red; n=5). D, Consecutive photomicro-
graphs showing the basket-type MLI (white arrow; left) and the PC
(white arrow; right) filled with biocytin. The two recorded cells were
apart from ,150 mm in coronal plane. PCL, PC layer; ML, molecular
layer.
doi:10.1371/journal.pone.0037031.g004

Figure 5. Comparison of the air-puff stimulation-evoked
responses in stellate-type MLIs and PCs in the same mouse
cerebellar Crus II. A, Under current-clamp (I = 0) conditions, the air-
puff stimulation (grey shadow) evoked spike firing in a stellate-type MLI
(lower), and an IPSP with a pause of spike firing in a PC (upper), in the
same mouse cerebellar Crus II. Asterisks indicate spikelets discharge. B,
Under voltage-clamp (Vhold=270 mV), tactile stimulation (grey shad-
ow) evoked fast EPSCs in the stellate-type MLI (lower) and IPSCs in the
PC (upper). C, Enlarged current traces from (B) and the mean values (6
SEM) of the time to peak for the current traces evoked by the air-puff
stimulation in the PCs (black; n=5) and the basket-type MLIs (red; n=5).
D, Photomicrographs show the morphology of the cells in A-C. The left
column shows an overview of the location of the biocytin-labeled
stellate-type MLI, which is indicated with a black circle in the left
photomicrograph. The middle column shows the detail of the biocytin-
labeled stellate-type MLI. The right column shows the detail of the
biocytin-labeled PC. The two recorded cells were apart from ,300 mm
in coronal plane. PCL, PC layer; ML, molecular layer.
doi:10.1371/journal.pone.0037031.g005
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molecular layer [14,25]. Here, we used in vivo whole-cell recording

with biocytin staining technique to study the spontaneous activity

of MLIs. Our results showed that all the MLIs share properties of

the resting potential, half-width of spikes, input resistance and dye-

coupling to other MLIs in common. Although the stellate-type

MLIs had higher rates of background activity, all the MLIs

exhibited irregular spontaneous spike firing at resting potential and

expressed similar high frequency firing in response to depolarizing

current pulses. Importantly, all the MLIs expressed rapid

excitation in response to the air-puff stimulation of ipsilateral

whisker pad. Linear regression analysis of the relationship between

the properties of the evoked-EPSCs and the depth of MLIs somas

in molecular layer revealed that the time course and amplitude of

the evoked-EPSCs were varied with depth in the molecular layer.

The highest amplitude, fastest EPSCs were recorded from MLIs

deep in the molecular layer, which also made basket-type synaptic

connections. These results consist with previous studies [14,25–

28], suggesting that both stellate-type and basket-type MLIs are

one homogenous population of cells, whose response properties

change depending on the position of its soma in the molecular

layer.

The functional organizational studies indicate that the MLIs are

activated by the information coming from the mossy fiber-granule

cell-parallel fiber pathway [16]. Under in vivo conditions, activity of

vestibular primary afferent mossy fibers during ipsilateral roll tilt

can increase the spike firing of basket and stellate cells [38]. Our

results showed that air-puff stimuli on ipsilateral whisker pad

evoked spike firing in MLIs, and the evoked responses were

blocked by AMPA receptor antagonist, NBQX, indicated that the

tactile stimulation information excited MLIs via the mossy fiber-

granule cell-parallel fiber pathway [16,38]. The MLIs receive the

excitatory inputs from granule cell axons that produce two types of

inhibition have distinctly different postsynaptic effect on PCs

[14,16,32,25]. The powerful and rapid basket-type somatic

inhibition is predicted that to result in direct influence on PC

spiking output by inhibition of their somas and initial segments

[13,14,22,31]. However, the weak stellate-type dendritic inhibition

is predicted to counterbalance the parallel fiber excitation in local

regions of the PC dendrites and to result in no direct influence on

PC spiking output [13,14,29,30,33].

In the current as well as previous studies [12] air-puff

stimulation of the ipsilateral whisker pad failed to provoke strong

EPSCs and spike firing in PCs. Instead, the response of PCs was

dominated by rapid activation of strong GABAA receptor-

mediated inhibitory postsynaptic currents. Notably, the MLIs

responded with rapid excitation, the highest amplitude, fastest

EPSCs evoked by air-puff stimulation were basket-type MLIs.

These results suggest that the IPSCs recorded in the PCs are due

to activity in the MLI’s and in particular, in those basket-type

MLIs. Our present results were supported by several anatomical

and physiological evidences. First, the MLIs are small, have high

input resistance, exhibit a low threshold for activation ([24,34],

this study) and can be reliably triggered to spike with a sub-

millisecond delay by a single parallel fiber input [35,36], the

spike firing of molecular layer interneurons could be activated by

stimulation of a single granule cell, and was strongly influenced

by individual quanta release from parallel fibers [36]. In contrast,

PCs are large, have low input resistance. It is estimated that 50

simultaneously active granule cells are need to excite a PC [35].

Second, the MLIs are electrically coupled: an input to one

interneuron can activate a group of interneurons through gap

junctions [26]. Third, the basket-type inhibition on PCs is rapid

and profound [13,14,22,31], and the MLIs whose somas are

deep in the molecular tayer have receptive fields similar to those

of nearby and not distant regions of the granule cell layer

[28,37,38], these cells might preferentially receive inputs from the

ascending branch of the granule cell axon [14]. Finally, our

present data showed the time to peak of the evoked-spike in the

basket-type MLIs was significantly earlier than the onset of

evoked IPSP in PCs, indicated that the IPSP recorded in PCs

were induced by basket-type MLIs, suggesting that the stimula-

tion-evoked spike firing in basket-type MLIs and resulted in

a rapid perisomatic inhibition of PCs [13,14,23,31].

In addition, the inhibitory axon of Golgi cell terminals to

cerebellar glomeruli, the principle sites of mossy fiber termination

on granule cells, therefore, Golgi cells modulate the activity of

thousands of granule cells [38] but may not contribute to the

tactile stimulation-evoked inhibition of PC. The PC axon re-

Figure 6. Properties of the air-puff stimulation-evoked EPSCs
in MLIs and PCs. A, Representative currents traces showing the air-
puff stimulation-evoked EPSCs in a MLI (MLI; red) and a PC (blue). The
EPSCs in the PC were evoked in the presence of SR95531 (20 mM),
a GABAA selective antagonist. The time point (0) indicates the onset of
the responses. B, Bar graph showing the mean amplitude of the EPSCs
evoked by the air-puff stimulation in the MLIs (MLI; red; n = 10) and the
PC (blue; n = 10). C, Summary of data showing the time to peak for the
EPSCs in the MLIs (MLI; red; n = 10) and the PC (blue; n = 10). D, Pooled
data showing the half-width of the EPSCs in the MLIs (MLI; red; n = 10)
and the PC (blue; n = 10). E, Summary of data showing the 10–90%
rising time of the EPSCs in the MLIs (MLI; red; n = 10) and the PC (blue;
n = 10).
doi:10.1371/journal.pone.0037031.g006
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current collaterals were unlikely to contribute to the tactile

stimulation-evoked inhibition of PC. Because no PCs were excited

by the tactile stimulation in mouse cerebellar Crus II ([11,12] this

study) and the IPSCs induced in the PCs are too fast to be a result

of PC axon collaterals. Collectively, our results consistent with

modeling studies [13,14,25,29,30], suggested that stellate-type

dendritic and basket-type somatic inhibition play different

functional roles. The tactile stimulation induced IPSP and pause

of spike firing is due to the direct influence of the powerful and

rapid basket-type inhibitory inputs on the somas and initial

segments of the PCs. On the other hand, the stellate-type MLIs

might contribute to shunting inhibition of PCs dendrites,

preventing the parallel fiber excitatory inputs flowing into the

somas of PCs, and counterbalancing the parallel fiber excitation in

local regions of the PC dendrites.

Moreover, urethane was preferred to the mixture of ketamine/

xylazine and barbiturates for anesthesia, because both of them

strongly affect neuronal synaptic transmission, especially GABAA

receptor-mediated synaptic transmission [39–41]. However, ure-

thane depresses neuron excitability, without effects on excitatory

glutamate mediated or inhibitory synaptic transmission [42].

One of the ongoing controversies in the physiological

organization of molecular layer circuitry is the role played by

parallel fibers in the response properties of PCs [1,2]. While it

has generally been assumed that parallel fibers directly drive PC

output, results with tactile stimulation of the sort used in this

study have consistently failed to find the expected ’beams’ of

active PCs [3–7], and instead have reported much more

restricted regions of excited PCs [3,4,8]. Consistent with this

result, we have previously reported [11,12] and report again here

that, in the mouse cerebellum, the dominant form of PC

responses to air-puff stimuli are inhibitory. In fact, in this and

previous studies [11,12] we have failed to find excitatory PC

responses likely because we have not specifically identified the

location of granule cell activation. In rats, it has been shown that

the only PCs that respond with short latency excitatory responses

are located over activated regions of the granule cell layer, and

even some PCs over that activated region respond primarily with

inhibition [4,7,9,10]. Consistent with several other recent reports

in rats [4,7,9,10,13,14], the data presented here suggests that PCs

do receive excitatory inputs, but that their response to those

inputs is blocked by molecular layer inhibition. Accordingly, our

results are consistent with the hypothesis that the lack of parallel

fiber induced beams of PCs results from the activity of

MLIs. Further, our comparison of the timing of activity in MLIs

and PCs in nearby regions of Crus II demonstrate that the

organization of molecular layer circuitry as well as the bio-

physical properties of MLIs result in a rapid afferent activation of

MLIs followed by a rapid induction of inhibition in PCs. These

findings are consistent with recent network modeling studies

[13,14,25,29,30] and are also consistent with the model-based

suggestion that basket type somatic inhibition performs a different

functional role than stellate-type dendritic inhibition [13,14].

Taken together, our data indicate that tactile face stimulation

evokes responses in both MLIs and PCs in mouse cerebellar cortex

Crus II. MLIs responded with rapid excitation, whereas PC

responses were dominated by inhibition occurring at later

latencies. These results suggested that the lack of parallel fiber

driven PC activity is due to the effect of MLI inhibition, and that

structure of molecular layer circuitry supports a precise timing

relationship and interaction between MLIs and PCs that is likely

important for sensory information processing.

Materials and Methods

Anesthesia and Surgical Procedures
The anesthesia and surgical procedures have been described

previously [11,12]. In brief, the experimental procedures were

approved by the Animal Care and Use Committee of Jilin

University and were in accordance with the animal welfare

guidelines of the U.S. National Institutes of Health. The permit

number is SYXK(Ji)2007-0011. Adult (6–8-week-old) HA/ICR

mice were anesthetized with urethane (1.3 g/kg body weight i.p.).

A watertight chamber was created and a 1–1.5 mm craniotomy

was drilled to expose the cerebellar surface corresponding to Crus

II. The brain surface was constantly superfused with oxygenated

artificial cerebrospinal fluid (ACSF: 125 mM NaCl, 3 mM KCl,

1 mM MgSO4, 2 mM CaCl2, 1 mM NaH2PO4, 25 mM

NaHCO3, and 10 mM D-glucose) with a peristaltic pump (Gilson

Minipulse 3; Villiers, Le Bel, France) at 0.4 ml/min. Rectal

temperature was monitored and maintained at 37.060.2uC using

body temperature equipment.

Stimulation and Drug Application
Tactile stimulation of the ipsilateral whisker pad was performed

by air-puff (30 ms, 50 psi) through a 12-gauge stainless steel tube

connected to a pressurized injection system (PicospritzerH III;

Parker Hannifin Co., Pine Brook, NJ). Air-puff was delivered to

the ipsilateral C2–C3 whisker pad at 0.33 Hz, with synchronized

electrophysiology recording via a Master 8 controller (A.M.P.I.,

Jerusalem, Israel) and Clampex 8.1 software (Molecular Device,

Foster City, CA). All drugs were dissolved in ACSF and applied

onto the cerebellar surface at 0.4 ml/min. NBQX (2,3-dioxo-6-

nitro-1,2,3,4- tetrahydrobenzo[f] quinoxaline-7- sulfonamide) and

SR95531 hydrobromide (6-imino-3-(4-methoxyphenyl)-1 (6H)-

pyridazinebutanoic acid hydrobromide) were purchased from

Tocris Cookson (Bristol, UK). Tetrodotoxin was purchased from

Sigma (Sigma-Aldrich, Shanghai, China).

Whole-cell Recording and Biocytin Histochemistry
The whole-cell recording and biocytin histochemistry proce-

dures have been described previously [12]. In brief, the in vivo

whole-cell patch-clamp recordings from basket and stellate cells

were performed using an Axopatch-1D amplifier (Molecular

Device, Foster City, CA). Patch pipettes were made with a puller

(PB-10; Narishige, Tokyo) from thick-wall borosilicate glass (GD-

1.5; Narishige). They were filled a solution consisting of 120 mM

potassium gluconate, 10 mM HEPES, 1 mM EGTA, 5 mM KCl,

3.5 mM MgCl2, 4 mM NaCl, 8 mM biocytin, 4 mM Na2ATP

and 0.2 mM Na2GTP (pH adjusted to 7.3 with KOH). Patch-

pipettes were mounted using a micromanipulator (MP-285, Sutter

Instrument Company, Novato, CA). The patch pipette resistances

were 6–7 MV in the bath, with series resistances in a range of 10–

40 MV, compensated by 80%. The depth of the recorded cell was

roughly obtained from the display value of the micromanipulator.

The MLIs and PCs were roughly identified by spontaneous spike

activity and the depth of the recording site before the whole-cell

patch-clamp recording was performed. PCs were distinguished

from MLIs by their location in the Purkinje cell layer, as well as

the presence of climbing fiber type discharges [11,12]. All

recorded MLIs were biocytin filled, and therefore could be

distinguished by the presence of their somas within the molecular

layer and the characteristic shapes of their dendrites. The biocytin

fills were also used to identify those MLIs making basket-type

somatic connection. For comparing the time course of the

responses evoked by air-puff stimulation in molecular layer

interneurons and PCs, a molecular layer interneuron and a PC
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were recorded in the same cerebellar cortex Crus II with a distance

of 100–500 mm. After electrophysiological recording, the whole

brain was removed and fixed in 4% paraformaldehyde in 0.1

phosphate buffer (PB). Cerebellar slices were cut in the sagittal

plane at 200 mm using a vibratome (XY-86, ZheJiang, China).

Biocytin was detected using 3,39-diaminobenzidine tetrahy-

drochloride histochemistry.

Statistical Analysis
Input resistance (Rin) was calculated from steady-state voltage

deflections during 500 ms step hyperpolarizing current injection

(50 pA). The electrophysiological data were analyzed using

Clampfit 8.1 software. Values are expressed as the mean 6

SEM. Differences between the mean values recorded under

control and test conditions were evaluated with the Student’s

paired t-test, ANOVA and linear regression analysis using SPSS

(Chicago, IL) software.
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