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Epilepsy is one of the most common neurological disorders characterized by recurrent
seizures. The mechanism of epilepsy remains unclear and previous studies suggest
that N-methyl-D-aspartate receptors (NMDARs) play an important role in abnormal
discharges, nerve conduction, neuron injury and inflammation, thereby they may
participate in epileptogenesis. NMDARs belong to a family of ionotropic glutamate
receptors that play essential roles in excitatory neurotransmission and synaptic plasticity
in the mammalian CNS. Despite numerous studies focusing on the role of NMDAR
in epilepsy, the relationship appeared to be elusive. In this article, we reviewed the
regulation of NMDAR and possible mechanisms of NMDAR in epilepsy and in respect of
onset, development, and treatment, trying to provide more evidence for future studies.

Keywords: N-methyl-D-aspartate receptor, epilepsy, anti-NMDAR encephalitis, D-serine, glutamate, excitotoxicity,
CREB, epigenomics

INTRODUCTION

Epilepsy is one of the most common neurological disorders characterized by recurrent seizures.
Long-term recurrent seizures could lead to cognitive impairment and mental disorders, which
severely affect the social interaction level and employment ability of epileptic patients, and result
in a decline in the quality of life (Chen et al., 2020a). At present, antiepileptic drugs (AEDs)
remain the main therapy of epilepsy, despite no response in about 1/3 patients with epilepsy
(Moshé et al., 2015). The mechanism of epilepsy remains unclear but it is generally regarded as a
self-facilitated pathological process triggered by brain injury, ultimately resulting in nerve damage,
mossin fibrosis, synaptic plasticity, inflammatory response, and ionic pathway dysfunction (Gan
et al., 2015). It is widely acknowledged that abnormal excessive synchronous discharge, i.e., the
imbalance between excitation and inhibition of neurons, plays an essential role in epileptogenesis.
However, the factors affecting this imbalance were sophisticated, and excitatory amino acids were
supposed to participate in this imbalance (Bonansco and Fuenzalida, 2016).

In the central nervous system (CNS), N-methyl-D-aspartate receptor (NMDAR) is one of
the main excitatory receptors on the synapses of neurons including glutamatergic neurons
and GABAergic interneurons, which regulate the balance between neuronal excitation
and inhibition (Hendry et al., 1987; Hanada, 2020). Meanwhile, NMDARs, the ionotropic
glutamate receptors in the brain, are involved in neuroplasticity, excitatory neurotransmission,
and neurotoxicity (Fricker et al., 2018; Horak et al., 2021). Related studies have shown
that overexcitation of NMDAR leads to neuronal death in neurological diseases such as
epilepsy, stroke, Alzheimer’s disease (AD), and Parkinson’s disease (PD; Essiz et al., 2021).
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In the brain, NMDARs are hetero-tetramers generally composed
of two GluN1 subunits and four distinct GluN2 (GluN2A-D) or
a mixture of GluN2 with two different GluN3 (GluN3A and 3B)
subunits. The GluN1 subunit is required for NMDAR activation
and binds to the necessary co-agonists through the amino-
terminal domain of the extracellular region. GluN2 subunits
are able to bind glutamate specifically and these subunits are
different from each other by providing different functional
properties of NMDAR. In the NMDAR, GRIN1 codes for
GluN1 subunit, GRIN2 codes for GluN2 subunit, and GRIN3
codes for GluN3 subunit (Beesley et al., 2020). Meanwhile, the
triheteromer (GluN1/GluN2A/GluN2B) is the main subtype of
NMDAR and is widely expressed in the cortex and hippocampus
(Luo et al., 1997; Tovar et al., 2013).

Previous studies have shown that glutamate levels increase
in the extracellular fluid during seizures in temporal lobe
epilepsy (TLE) and glutamate can directly activate NMDAR
and induce neuroexcitatory toxicity (Albrecht and Zielińska,
2017). Meanwhile, it has been reported that NMDA, AMPA,
and kainite (KA) can induce seizures in animal models, and
glutamate receptor antagonists inhibit seizures in animals (Celli
and Fornai, 2020). In the PTZ-induced status epilepticus
(SE), GluN1, GluN2A, and GluN2B subunits are increased
and synaptic plasticity impairs in the hippocampus of rats.
Meanwhile, the increase in the GluN2B subunit may result
in the decrease of long-term potentiation (LTP; Postnikova
et al., 2017). Related studies have shown that GRIN1, GRIN2A,
and GRIN2B mutations can lead to epilepsy. In all mutations,
GRIN2A variants are associated with neurological diseases
including developmental and epileptic encephalopathy, which
may be manifested as seizures, mild speech and language
delay, and cognitive impairment (Lemke et al., 2013, 2014;
Fry et al., 2018). In addition, anti-NMDAR encephalitis,
a major type of autoimmune encephalitis (AE), has been
reported to be an entity of epilepsy (Leypoldt et al., 2015).
In addition to neurotoxicity, NMDARs can also participate
in neuroprotection by activating cAMP response element-
binding protein (CREB) signals in epilepsy (Wang et al.,
2020b).

Owing to its role in brain functional plasticity and
neuroexcitatory, the regulation of NMDAR in epilepsy has
attracted extensive attention. As noted above, NMDARs have
been shown to involve in seizures, but functions andmechanisms
of NMDARs in epilepsy appear to be elusive. In clinical study,
understanding the function of NMDAR is of great significance
for the treatment of epilepsy and AEDs selection. This article
reviews the regulatory mechanism of NMDAR and the progress
of NMDAR in the occurrence, development, and treatment of
epilepsy from various points of view (Figure 1).

NMDAR AND EPILEPSY

Anti-NMDAR Encephalitis
Anti-NMDAR encephalitis is a major type of AE in which the
over-production of NMDAR autoantibodies results in profound
neurotransmitter dysregulation, causing seizures and other

symptoms such as dysautonomia, orofacial dyskinesia, psychosis,
mental status changes, hallucinations, and headaches (Tong et al.,
2020). Related studies have shown that approximately 75% of
patients with anti-NMDAR encephalitis develop seizures, and
refractory status epilepticus (RSE) can lead to neuronal death
(Geis et al., 2019). However, the mechanism of anti-NMDAR
encephalitis leading to seizures is not fully understood.

NMDARs have been reported to play a role in synaptic
homeostasis. Related studies have found that NMDAR
autoantibodies could increase extracellular glutamate levels
in the brain (Manto et al., 2010). Some findings also have
confirmed that NMDAR autoantibodies can result in the
internalization of surface NMDARs and the decreasing of
receptor density in the patients with anti-NMDAR encephalitis
(Hughes et al., 2010; Takahashi et al., 2020). In the patients,
NMDAR autoantibodies bind and cross-link to a specific region
of NMDARs GluN1, then internalize NMDARs (Gleichman
et al., 2012). NMDAR-EphB2 interaction plays a key role in
the NMDAR autoantibody-mediated NMDAR internalization.
When autoantibodies bind to endogenous NMDARs, the
interaction between NMDAR and EphB2 is disrupted, thereby
leading to NMDAR internalization and dysfunction, and the
reduction of NMDAR-mediated synaptic currents (Hughes
et al., 2010; Mikasova et al., 2012). After activation of EphB2,
the extracellular domain of EphB2 interacts directly with the
GluN1 subunit, thereby stabilizing NMDARs in the synapse
(Dalva et al., 2000; Washburn et al., 2020). Meanwhile, a related
report has indicated that NMDAR autoantibody interferes
with the interaction between NMDARs and EphB2 in cultured
hippocampal neurons (Mikasova et al., 2012). In addition,
cerebrospinal fluid (CSF) of the patient with anti-NMDAR
encephalitis can also result in the reduction of both GluN2A
and GluN2B on the synaptic surface and prevent a chemically
induced LTP of glutamate synapses (Mikasova et al., 2012).
Similar to the anti-NMDAR antibodies-mediated effect, the
amino terminal domain (ATD) peptide of GluN1 subunit
can also actively immunize against NMDARs and induce
anti-NMDAR encephalitis in a mouse model (Ding et al.,
2021). A study shows that a single injection of anti-NMDAR
antibodies from the patient with anti-NMDAR encephalitis
into mice does not induce seizures (Wright et al., 2015).
However, injection of anti-NMDAR antibodies in vivo can
increase the number of seizures in the PTZ induced-mice model.
Moreover, about 75–93% of mice developed epilepsy after
long-term infusion of CSF or purified anti-NMDAR antibodies
from patients with anti-NMDAR encephalitis (Wright et al.,
2015). It is puzzling that the function reduction of NMDAR
is more likely to activate the persistent abnormal discharge
of neurons, but a specific inhibition of the NMDARs in the
GABAergic interneurons can also explain this phenomenon
(Manto et al., 2010). NMDAR autoantibodies reduce the
excitability of GABAergic interneurons through the interaction
with NMDAR, thereby weakening the inhibitory effect on
excitatory transduction of glutamatergic neurons (Geis et al.,
2019). The disinhibition of excitatory glutamatergic neurons
may also account for seizures in anti-NMDAR encephalitis.
In addition, it has been found that ketamine, an NMDAR
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FIGURE 1 | Regulation of neuroexcitatory receptor N-Methyl-D-Aspartate Receptor (NMDAR) in epilepsy.

antagonist, may be useful in super-refractory status epilepticus
(SRSE) developed in patients with anti-NMDAR encephalitis
(Santoro et al., 2019). Despite the profound effect on NMDARs,
there is no evidence that NMDAR autoantibodies can alter
the localization and expression of other glutamate receptors
such as AMPARs, the synaptic protein PSD-95, as well as
the number of synapses, or affect the survival of nerve cells
in vitro or in vivo models (Huang and Xiong, 2021). In a word,
both the activation of NMDARs in glutamatergic neurons and
the inhibition of NMDARs in GABAergic interneurons may
participate in epileptogenesis and more researches are urgently
needed.

NMDAR in Epilepsy
In recent years, NMDAR subunit-encoding genes have been
confirmed to be involved in epilepsy and the genetic mutations
in NMDARs may cause epilepsy in humans, suggesting that
NMDAR is closely related to epilepsy (Xu and Luo, 2018).
Besides, impairment of NMDAR signals as a result of genetic or
environmental insults leads to a variety of neurodevelopmental
disorders, including epilepsy, schizophrenia, intellectual
disability, or autism (Mielnik et al., 2021). Meanwhile, NMDAR-
mediated excitotoxicity was supposed to participate in neuronal
death induced by high levels of glutamate and aspartate
in neurological diseases such as epilepsy, stroke, AD, and
PD (Fricker et al., 2018; Essiz et al., 2021). This article will
review genetic mutations of NMDAR, signaling pathways of

NMDAR-mediated excitotoxicity, and NMDAR-dependent
neuroprotection in epilepsy.

Genetic Mutations of NMDAR in Epilepsy
GluN1 subunit, the essential subunit of functional NMDAR is
encoded by GRIN1, and GRIN1 mutations have a significant
effect on neuronal activity, causing various types of epilepsy,
including SE, focal dyscognitive seizures, myoclonic seizures,
febrile seizures, spasms, hypermotor seizures, tonic and atonic
seizures, generalized seizures, etc (Wyllie et al., 2013; Fry et al.,
2018). Besides, the epileptic phenotype may contribute to the p.
Met641Leu de novo variant in GRIN1 gene, and de novo GRIN1
mutations were gradually recognized to be in association with
severe early infantile encephalopathy (Pironti et al., 2018). The
common characteristics are extensive bilateral polymicrogyria
with intractable epilepsy, cortical visual impairment, postnatal
microcephaly, and severe developmental delay in patients with
de novo GRIN1 mutations (Fry et al., 2018). Extensive bilateral
polymicrogyria is associated with severe developmental delay
and intractable epilepsy. At present, a variety of polymicrogyria-
associated mutations have been found, including p.Asn674Ile,
p.Arg794Gln, p.Arg659Trp, p.Asp789Asn, p.Tyr647Cys,
p.Asn650Ile, p.Ala653Gly, p.Leu551Pro, p.Ser553Leu, etc (Fry
et al., 2018). In GRIN1 mutations, the mechanisms remained
unclear but disrupted gating of the ion channel by p.Gly827Arg
mutation and disruption of NMDAR ligand binding by
p.Ser688Tyr mutation may be concerned (Zehavi et al., 2017).
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Current studies have found that GluN2 subunits may
control epileptiform events in the hippocampus (Punnakkal
and Dominic, 2018). GRIN2A, which encodes the GluN2A
subunits, is widely considered to be epileptogenic. The most
common types of seizure caused by GRIN2A mutations include
atypical benign partial epilepsy, Landau–Kleffner syndrome
(LKS), and benign epilepsy with centro-temporal spikes (BECT;
Hanada, 2020). GluN2 subunits mainly regulate the open/close
of the NMDARs. GluN2A-containing receptors have a reversible
calcium-dependent inactivation, whereas GluN2B does not
(Franchini et al., 2020). Meanwhile, GluN2A subunits can
regulate neuronal NMDAR-induced microglia-neuron physical
interactions (Eyo et al., 2018). Related studies have shown that
voltage-independent GluN2A-related NMDAR-Ca2+ signaling is
related to audiogenic seizures, attentional and cognitive deficits
in mice (Bertocchi et al., 2021). A rare variant of GRIN2A
associated with epilepsy disrupts CaMKIIα phosphorylation of
GluN2A and NMDAR trafficking, which demonstrates a role
of GluN2A for CaMKIIα phosphorylation in receptor targeting
and suggests that the defects of NMDAR trafficking are related
to epilepsy (Mota Vieira et al., 2020). There were defects
of GRIN2A related to epileptiform discharges and transient
microstructural brain abnormalities in mice with epilepsy (Salmi
et al., 2018). The mutant GluN2A (p.Met817Val)-containing
receptors decreased sensitivity to endogenous negative inhibitors
(Mg, zinc), prolonged the time of synaptic response, increased
the time of single-channel mean open, and the probability
of channel open. These acquired GRIN2A mutations lead to
overactivation of NMDAR and increase neuronal excitability,
which may be related to epileptogenesis observed in patients
(Chen et al., 2017). A de novo GRIN2A missense mutation
(p.Asp731Asn) in a child with focal epilepsy and acquired
epileptic aphasia was reported. However, this mutant reduced
NMDAR activation, suggesting that NMDAR hypofunction
may also be related to epilepsy pathogenesis (Gao et al.,
2017).

GRIN2B mutation is a rare cause of severe epileptic
encephalopathy (Sharawat et al., 2019). A related study
demonstrated that GRIN2B, BDNF, and IL-1β gene significantly
were upregulated and GRIN2B was positively correlated with the
expressions of BDNF and IL-1β gene in people with epilepsy
(Zhand et al., 2018). Some GRIN2Bmutations (p.Val618Gly and
p.Asn615Ile) were found in patients with early-onset epilepsy
and epileptic encephalopathy (Lemke et al., 2014; Smigiel et al.,
2016). Those GluN2B heteromers showed a significant loss
of ion-channel block by extracellular Mg2+ and a significant
increase of Ca2+ permeability (Lemke et al., 2014). Meanwhile,
blocking GluN2B-containing NMDARs can reduce short-term
brain injury caused by early-life SE (Loss et al., 2019).

In addition, GRIN2C expression is limited to astrocytes
whereas GRIN2D are expressed at high levels in GABAergic
interneurons in the hippocampus (Shelkar et al., 2019;
Dubois and Liu, 2021). These specific distributions are
likely to be highly relevant to mechanisms of epilepsy and
dysregulation of glutamatergic signaling. Some GRIN2D variants
(p. Thr674Lys, p.Met681Ile, p.Ser694Arg, p, Asp449Asn,
p.Val667Ile, p.Ser573Phe, p.Leu670Phe, p.Ala675Thr,

p.Ala678Asp, p.Ser1271Leu, and p.Arg1313Trp) have been
found in developmental and epileptic encephalopathy (Tsuchida
et al., 2018; Jiao et al., 2021). In a novel GRIN2D variant with
epileptic encephalopathy, GRIN2D mutation-related epilepsy
is found to be refractory to conventional AEDs (Camp and
Yuan, 2020; Jiao et al., 2021). However, GRIN2D dominant
mutations can cause severe epileptic encephalopathy, which
can be treated with NMDAR channel blockers (Li et al.,
2016). In epilepsy, we need to further understand the unique
characteristics of GRIN2D mutations in neurological function
and pathology, which is conducive to the treatment of refractory
epilepsy.

NMDAR Mediates Excitotoxicity in Epilepsy
In the CNS, high levels of glutamate induce neuronal death by
NMDAR-mediated excitotoxicity (Olney, 1971). Glutamate-
induced excitotoxicity is mainly attributed to apoptosis,
autophagy, parthanatos, phagocytosis, ferroptosis, apoptosis-
inducing factor (AIF), calpain I, mitochondrial permeability
transformation (MPT), lysosomal membrane permeability
(LMP), and RNS and ROS production (Figure 2; Fricker et al.,
2018). Activated NMDARs lead to neuronal depolarization and
calcium (Ca2+) loading. The increasing of cytoplasmic Ca2+

can cause the activation of nNOS, calpain I, and MPT pore,
eventually leading to neuronal death (Figure 2; Fricker et al.,
2018). Overexcitation of NMDAR leads to neuronal death in
neurological diseases such as epilepsy, stroke, AD, and PD, and
blockade of NMDARs can reduce neuronal death in the brain
(Essiz et al., 2021).

Calpain and Lysosomal Membrane Permeabilization (LMP)
Activated NMDAR leads to Ca2+ influx, which activates calpain.
Calpain I is involved in the late phase of neuronal death caused
by mitochondrial dysfunction. Calpain I, a cysteine protease
highly expressed in neurons, is activated by high levels of
Ca2+ in the cytoplasm and can cleave Bid and Bax, leading to
the release of AIF and cytochrome C from the mitochondria
(Wang, 2000; D’Orsi et al., 2012). Meanwhile, the release of
cytochromeC can induce the activation of caspases, and activated
calpain I can also directly cleave and activate caspases, thus
resulting in apoptosis (Wang, 2000). However, AIF is cleaved
by calpain I to a truncated AIF (tAIF), which translocates to
the nucleus and induces DNA cleavage, thereby leading to
apoptosis and parthanatos (Fricker et al., 2018). In addition,
GluN2A subunit-containing synaptic NMDARs preferentially
activates calpain I, which is conducive to neuronal survival
by selectively degrading the protein phosphatase PHLPP1α
and PHLPP1β (Wang Y. et al., 2013). On the contrary,
calpain II is selectively activated by GluN2B subunit-containing
extrasynaptic NMDARs and calpain II participates in neuronal
death by degrading the protein tyrosine phosphatase STEP
(Hoque et al., 2016). Further studies are needed to clarify the
role of these two isoforms of calpains in excitotoxic neuronal
death.

Activated calpain can also cause LMP, thereby releasing the
toxic cathepsin into the cytoplasm and leading to lysosomal
cell death (LCD), also known as autolysis in neurodegenerative
diseases (Fricker et al., 2018). It has been found that ischemia
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FIGURE 2 | NMDAR-mediated excitotoxicity in epilepsy. In neurons, the NMDAR channel is blocked by Mg2+ at neuronal resting membrane potential, and Mg2+ is
removed when the membrane is depolarized. Activated NMDAR leads to calcium loading which will cause the activation of nNOS, calpain I, and mitochondrial
permeability transformation (MPT) pore and eventually lead to neuronal death. Calpain I can cleave Bid and Bax, leading to the release of apoptosis-inducing factor
(AIF) and cytochrome C from the mitochondria. Meanwhile, cytochrome C can induce the activation of caspase, and calpain I can also directly cleave and activate
caspases, thus resulting in apoptosis. In addition, AIF is cleaved by calpain I to a tAIF, which translocates to the nucleus and induces DNA cleavage, thereby leading
to apoptosis and parthanatos. Activation of calpain can cause lysosomal membrane permeability (LMP), which releases the toxic cathepsin, DNase II, and ROS,
thereby resulting in LCD. Meanwhile, HSP70 and calpastatin can resist LMP. Increased Ca2+, ROS, RNS, and low ATP in mitochondrial matrix results in MPT which
depends on the opening of mPTP. Cyclosporine A and 3-MA can block MPT. Ca2+ directly activates nNOS, which can catalyze NO and O2

− to form ONOO−.
ONOO− damages DNA, thereby activating PARP1, resulting in parthanatos. PARP1 is involved in chromosomal stability, DNA repair, and inflammatory responses.
PAR, the product of PARP1 activity, induces nuclear translocation of AIF and inhibits HK. Nuclear translocation of AIF requires the involvement of CypA, which binds
to AIF and forms CypA-AIF complex after the release from mitochondria, thereby participating in DNA degradation and leading to parthanatos. ARH3 reduces PAR
levels in the nucleus and cytoplasm and IDUNA reduces the release of AIF by binding to the PAR polymers and prevents PARP1-induced cell death. LCD, lysosomal
cell death; HSP70, heat shock protein 70; HK, hexokinase.

can induce calpain I to be localized in lysosomes and cause
neuronal LMP (Yamashima et al., 1998; Windelborn and Lipton,
2008). Meanwhile, multiple stimuli can also induce LMP, release
cathepsin, and induce cell death through a variety of pathways.
However, activated NMDAR may also lead to LMP, which
is dependent on the activation of calpain (Yan et al., 2016).
Activated calpain I can also cleave and inactivate Na+/Ca2+

exchangers in the plasma membrane of the nerve cells during

neuroexcitatory toxicity, thereby leading to calcium overload
and necrosis (Bano et al., 2005). Thus, calcium overload and
neuronal death can be effectively inhibited by inhibiting calpain.
In addition, the absence of calpastatin, a natural calpain inhibitor
expressed in neurons, makes neurons more susceptible to
excitotoxicity, and its overexpression inhibits neuronal death
attributed to excitotoxicity (Descloux et al., 2015). Meanwhile,
heat shock protein 70 (HSP70) also stabilizes lysosomes to
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resist LMP (Aits and Jäättelä, 2013). In conclusion, NMDAR
can promote activation of calpain and LMP, while inhibition
of calpain and LMP may be an effective method to reduce
neuronal death caused by NMDAR-mediated excitotoxicity in
epilepsy.

Mitochondrial Permeability Transition (MPT)
Activated NMDARs can also result in MPT by Ca2+ influx,
involved in neuronal death. MPT is characterized by a significant
increase in the permeability of the inner mitochondrial
membrane with increased Ca2+ concentration, which eventually
leads to oxidative phosphorylation decoupling, depletion of
cell energy, and necrotic cell death. MPT largely depends
on the opening of mitochondrial permeability transition
pore (mPTP; Fricker et al., 2018). However, increased Ca2+

concentration in the mitochondrial matrix is an important
factor leading to the opening of mPTP. In addition, it is
also closely associated with ROS and RNS, the decreasing of
ATP, the decreasing of mitochondrial membrane potential,
and intracellular acidification (Fricker et al., 2018). The
opening of mPTP leads to the depolarization of the inner
mitochondrial membrane, the reduction of ATP production
and the increasing of ATP consumption, the rupture of the
mitochondrial membrane and the release of cytochrome C
and cytochrome G, eventually causing irreversible cellular
respiratory arrest and cell death (El-Mir et al., 2008; Fricker
et al., 2018). Activated NMDARs can induce MPT by increasing
Ca2+, ROS, and RNS in neurons, while cyclosporine A can
reduce neuronal death by blocking MPT (Schinder et al., 1996).
Meanwhile, MPT is also inhibited by 3-methyladenine (3-MA),
an inhibitor of autophagosome formation, which can inhibit
kinases to regulate neuronal survival and death (Xue et al.,
2002). Correlative experimental data showed that cyclosporine
A had different protective effects on excitotoxicity induced
hippocampal nerve cell death (Santos and Schauwecker, 2003).
Thus, blocking the opening of mPTP by cyclosporine A or the
gene knockout of cyclophilin D can partially prevent neuronal
death caused by excitotoxicity. In addition, studies have shown
that high levels of Ca2+, ROS, and low levels of ATP in
the cytoplasm can promote MPT in the brain of epilepsy,
and ketone bodies also mediate antiepileptic effects through
MPT (Kim et al., 2015). These studies suggest that MPT may
play an important role in the occurrence and treatment of
epilepsy.

Parthanatos
Ca2+ enters the cytoplasm by activating NMDARs and directly
activates nNOS which is significantly expressed in the cytoplasm
of some GABAergic neurons of the hippocampus and cortex.
Activated nNOS can catalyze the reaction of NO with O−

2 ,
thereby producing peroxynitrite (ONOO−), which interacts
with DNA, lipids, and proteins through a direct oxidative
stress response, leading to parthanatos or apoptosis (Figure 2;
Conrad et al., 2016; Ivanova V. et al., 2020). Parthanatos is
an important form of cell death, characterized by dependence
on the overactivation of the nuclear protein PARP1 after DNA
damage and ROS production (Virág et al., 2013). Related studies
have shown that glutamate is involved in inducing neuronal

injury through the activation of PARP-1 and generation of poly-
ADP-ribose (PAR) polymer, thereby participating in parthanatos
(Andrabi et al., 2011). In brief, activated NMDARs can promote
ONOO− production by activating nNOS, which damages DNA
and activates PARP, eventually resulting in parthanatos.

As is well-known, PARP1 and PARP2 are involved in
chromosomal stability, DNA repair, and inflammatory responses
(Curtin and Szabo, 2013). In PARP-dependent death, activated
PARP1 results in production and NAD+ depletion. The direct
interaction between AIF and PAR promotes the nuclear
translocation of AIF, which leads to chromatin degradation
(Andrabi et al., 2008; Wang et al., 2011). Meanwhile, PAR
is the product of PARP1 activity and also induces nuclear
translocation of AIF by inhibiting hexokinase (HK; Wang
et al., 2009). Overactivated PARP1 leads to NAD+ depletion
that further disrupts cellular metabolic processes and promotes
cell death (Alano et al., 2010). Nuclear translocation of AIF
also requires the involvement of cyclophilin A (CypA), which
binds to AIF after the release from mitochondria and forms
CypA-AIF complex, thereby participating in DNA degradation
under various cellular stress conditions, such as cerebral hypoxia-
ischemia and traumatic brain injury (TBI; Zhu et al., 2007;
Farina et al., 2017). Related studies have shown that inhibiting
the formation of the CypA-AIF complex can reduce glutamate-
induced HT22 hippocampal cell death (Doti et al., 2014). The
release of AIF in mitochondria may also be associated with
calpain, BH3-only protein Bid, and BNIP3 (Fricker et al., 2018).
In addition, PAR levels are also regulated by the ADP-ribosyl-
acceptor hydrolase 3 (ARH3), which reduces PAR levels in
the nucleus and cytoplasm (Mashimo et al., 2013). Meanwhile,
the protein IDUNA, also known as E3 ubiquitin protein ligase
RNF146, binds to the PAR polymers, thereby reducing the release
of AIF and preventing PARP1-induced cell death (Andrabi et al.,
2011).

Glutamate acting on NMDAR induces neuronal injury
through activation of PARP-1 and generation of PAR polymer
(Andrabi et al., 2011). There is currently considerable evidence
supporting the role of parthanatos in a variety of neurological
disorders including epilepsy, stroke, PD, and TBI, and the
inhibition of PARP-1 and PARP-2 can reduce nuclear
translocation of AIF and increase neuroprotection (D’Orsi
et al., 2016; Xu H. et al., 2019; Dionísio et al., 2021; Koehler
et al., 2021). Related studies have found that the formation
of the neuronal AIF-CypA complex is considered to be the
main target for the recovery of ischemia-stroke injury (Farina
et al., 2018). However, in the hippocampal neuronal culture
(HNC) model of acute acquired epilepsy, activation of PARP-1
is thought to be a major cause of caspase-independent cell
death (Wang S. et al., 2013). Meanwhile, PARP-1-mediated
mitochondrial dysfunction promotes neuronal damage in the
hippocampus after SE (Lai et al., 2017). In addition, inhibition
of PARP-dependent cell death pathways has been shown to
prevent seizure-induced neuronal damage (D’Orsi et al., 2016).
In epilepsy, activated NMDAR may damage DNA and activate
PARP. Thus, blocking PARP-dependent cell death pathways
may be a way to mitigate NMDAR-mediated excitotoxicity in
epilepsy.
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Other Signaling Pathways in NMDAR-Mediated
Excitotoxicity
In addition to the signaling pathways described above,
NMDAR regulates nerve cell death through other pathways.
Activated NMDAR can promote the NADPH oxidase (NOX)
to produce O2

− in neurons, leading to neuronal death. A
related study has shown that seizures are induced by NMDAR-
mediated activation of NOX-induced oxidative stress and
can be arrested by NOX inhibition (Malkov et al., 2019).
Meanwhile, activated NMDAR increases c-Jun abundance in
several neurodegenerative disorders and following ischemia
and SE. Phosphorylated c-Jun is transcriptionally active and
can induce apoptosis by upregulation of cell death-inducing
genes or by downregulating anti-apoptotic genes (Kravchick
et al., 2016). In addition, NMDAR overactivation activates NF-
κB signaling to promote IL-1β and IL-6 macrophage marker
expression. NMDAR silencing and calpain inhibition reduce
inflammatory responses (Cheng et al., 2020). It has been
reported that glutamate can reduce the insulin-like growth
factor-1 (IGF-1) signal through GluN2B-containing NMDAR
in cultured cortical neurons, which is considered to be a
new mechanism of glutamate-induced neurotoxicity (Zhao
et al., 2020). In epilepsy, increased IGF-1 levels after recurrent
hippocampal neuronal dischargesmight promote seizure by IGF-
1R-dependent signaling pathways (Jiang et al., 2015). However,
the previous role of the NMDAR-IGF-1 signal is unappreciated
in the development of seizure activity.

NMDAR-Dependent Neuroprotection in Epilepsy
Ca2+ influx could stimulate and induce cell death, but it is
also in association with NMDAR-dependent neuroprotection
(Wang et al., 2020b). Ca2+ entering the cytoplasm via synaptic
NMDAR causes an increase of nuclear Ca2+ (Wang et al.,
2020b). Nuclear Ca2+ is one of the most effective activators
of neuronal gene expression, and nuclear Ca2+ can regulate
about 200 neuronal genes in hippocampal neurons (Zhang
et al., 2007, 2009). The CREB is a signal-regulating transcription
factor that plays a critical role in neuronal survival, synaptic
plasticity, neurogenesis, learning, and memory. Activated
NMDAR results in translocation of CREB regulators from
synapse to nucleus (Hardingham and Bading, 2010). In
hippocampal neurons, CREB-dependent gene expression was
associated with neuroprotection against apoptosis and excitatory
damage, which depends on the nuclear Ca2+ signaling (Papadia
et al., 2005). However, some studies have also shown that
activated extrasynaptic NMDARs can promote the shutdown
of CREB, thereby causing mitochondrial membrane potential
loss and cell death. Meanwhile, activated synaptic NMDARs
activate only the CREB pathway and do not activate apoptosis
(Hardingham and Bading, 2010; Franchini et al., 2020).

Synaptic NMDAR activity can activate CREB-dependent gene
expression by a variety of signal pathways (Figure 3). CREB
phosphorylates at serine-133 in order to recruit its co-activator
CREB binding protein (CBP). Phosphorylation of CREB is
mediated by the fast-acting nuclear Ca2+/CaMK pathway and the
slower acting, longer lasting Ras-ERK1/2 pathway, both of them
are promoted by activation of synaptic NMDARs (Hardingham

and Bading, 2010). Nuclear Ca2+-dependent CaMKIV/CaMKII
phosphorylates CBP at serine-301. Meanwhile, CBP is also
phosphorylated by the Ras-MEK-ERK1/2 pathway or the
CaMKII/PKC/PKA-ERK1/2 pathway (Cortés-Mendoza et al.,
2013; Lyu et al., 2020). Nuclear translocation of the transducer
of regulated CREB (TORC) activity is a key step in CREB
activation. Synaptic NMDAR-induced Ca2+ signals promote
TORC import into the nucleus by calcineurin (CaN)-dependent
dephosphorylation (Screaton et al., 2004; Kovács et al., 2007).
TORC also acts at least in part by assisting in the recruitment
of CBP to CREB. Meanwhile, CREB-regulated transcription
coactivator 1(CRTC1) can also dephosphorylate at Ser-151 and
is recruited from cytoplasm to the nucleus, where it competes
with FXR (fed-state sensing nuclear receptor) for binding to
CREB and drives autophagy gene expression (Pan et al., 2021).
Some studies have shown that Ca2+ influx activates CREB
through TRPC6, which is an important transcription factor
linked to neuronal survival. Activated TRPC6 may inhibit
neuronal NMDAR activity through the post-translational means
to combat glutamate-induced excitotoxic damage (Shekhar
et al., 2021). Finally, CREB can also be activated through the
PI3K-AKT-GSK3β pathway and play a neuroprotective role in
the hippocampus. GSK-3β deletion also inhibits the activity-
dependent neural activation and Ca2+/CaMKIV/CaMKII-CREB
signaling (Liu et al., 2017; Srivastava et al., 2018). Related
studies have shown that the epileptogenesis of pilocarpine-
inducedmedial temporal lobe epilepsy (MTLE) is associated with
abnormal regulation of NMDAR-mediated excitatory neuronal
mechanisms and neuronal activity regulated by Ca2+/CaMK
signaling (Canto et al., 2021).

The gene of neurotrophin BDNF is regulated by nuclear Ca2+-
CREB signaling (Favaron et al., 1993; Hardingham and Bading,
2010). NMDAR activation increases the release of BDNF, which
protects neurons from damage caused by NMDAR blockade
(Fabbrin et al., 2020; Lian et al., 2021). Some studies have shown
that improving mitochondrial dynamics and increasing the
activity of the NMDAR-CREB-BDNF pathway could ameliorate
synaptic function and neuronal survival in SAMP8 mice
(Lian et al., 2021). Synaptic NMDARs and extrasynaptic
NMDARs have different physiological functions. Activated
synaptic NMDARs lead to phosphorylation and activation of
CREB, while activated extrasynaptic NMDARs inhibit CREB
pathway (Hardingham and Bading, 2010). ERK1/2 pathway
also promotes CREB activation and inactivates the pre-death
protein BAD, which is associated with NMDAR-dependent
neuroprotection (Hetman and Kharebava, 2006). In addition,
nuclear factor I subtype A (NFIA), an NMDAR-dependent
activation of other neuroprotective factors, may not be associated
with the increase of nuclear Ca2+, but its activation depends on
the ERK1/2 pathway and nNOS (Zheng et al., 2010).

The NMDAR-CREB-BDNF pathway plays an important
role in inhibiting epileptic seizures (Yu et al., 2019; Sharma
et al., 2021). Recent studies have indicated that CREB is
involved in the etiology of epilepsy (Wang G. et al., 2020).
In the KA-induced epilepsy model, CREB is considered to
be one of the main upstream transcription factors regulating
gene expression and is closely related to the severity of
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FIGURE 3 | NMDAR -Ca2+-CREB signaling pathways in neuroprotection. NMDAR activity can activate CREB-dependent gene expression. CREB must be
phosphorylated at serine-133 in order to recruit its co-activator CREB binding protein (CBP). Phosphorylation of CREB is mediated by the fast-acting nuclear
Ca2+/CaMK pathway and the slower acting, longer lasting Ras-ERK1/2 pathway, both of which are promoted by activation of synaptic NMDARs. (1) Nuclear
Ca2+-CaM-CaMKIV/CaMKII-CREB: nuclear Ca2+-dependent CaMKIV/CaMKII phosphorylates CBP at serine-301. (2) ERK1/2-CREB: CBP is also phosphorylated by
Ras-MEK-ERK1/2 pathway or CaMKII/PKC/PKA-ERK1/2 pathway. CREB phosphorylated at serine-133 recruits its CBP. In addition, nuclear translocation of TORC
activity is a key step in CREB activation. (3) Ca2+-TORC-CREB: synaptic NMDAR-induced Ca2+ signals promote TORC import into the nucleus by CaN-dependent
dephosphorylation. TORC acts at least in part by assisting in the recruitment of CBP to CREB. (4) Ca2+-CRTC1-CREB: CRTC1 dephosphorylates at Ser-151 and is
recruited from cytoplasm to the nucleus, where it competes with FXR for binding to CREB and drives autophagy gene expression. (5) Ca2+-TRPC6-CREB: Ca2+

influx through TRPC6 activates CREB, an important transcription factor linked to neuronal survival. (6) PI3K-AKT-GSK3β-CREB.

epilepsy (Conte et al., 2020). Meanwhile, recent studies have
shown that CREB reduces oxidative neuronal damage in TLE
associated with cognitive impairment (Xing et al., 2019).

In addition, microRNA-204 also inhibits the epileptiform
discharge of hippocampal neurons in vitro by regulating TrkB-
ERK1/2-CREB signaling (Xiang et al., 2016). NMDAR mediates
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CREB-dependent gene expression, which is closely associated
with neuroprotection against apoptosis and excitatory damage,
so the study of the regulatory mechanism of the NMDAR-CREB
pathway in epilepsy is conducive to the neuroprotection of
the epileptic brain. However, the regulatory mechanism of the
NMDAR-CREB pathway in epilepsy is not entirely clear and
needs further exploration.

THE REGULATION OF NMDAR IN
EPILEPSY

Although NMDAR affects the occurrence of epilepsy through
a variety of mechanisms, it is also regulated by a variety of
factors. Activation of theNMDAR is a cooperative process, which
depends on: (1) the relief of Mg2+ block of the ion channel
pore; (2) depolarization of the postsynaptic membrane; and
(3) the agonist glutamate, and co-agonists (glycine, D-serine;
Jorratt et al., 2021). In addition, the expression and function of
NMDAR are also affected by the expression and transcription
process of related NMDAR genes, microRNAs, related proteins,
and signaling pathways. On this basis, we will discuss a variety
of factors for the regulation of NMDARs in the occurrence,
development, and treatment of epilepsy (Tables 1, 2).

NMDAR Antagonists
NMDAR antagonists play an important role in the treatment
of epilepsy. NMDAR antagonists enhance the anticonvulsant
effect of lithium chloride on PTZ-induced clonic seizures in
mouse (Ghasemi et al., 2010). Animal studies have suggested
NMDAR antagonists may become more effective with seizures
lasting longer after the failure of the first line therapies (Sánchez
Fernández et al., 2019). In addition, the latter epilepsy patients
might respond to positive allosteric modulators of the NMDARs
(Zhu and Paoletti, 2015).

Ketamine
Ketamine is a noncompetitive NMDAR antagonist and blocks
Ca2+ influx by binding to phencyclidine-binding sites of
NMDAR.Meanwhile, it is used for evidence of clinically RSE and
SRSE (Borsato et al., 2020). Ketamine induces developmental
neurotoxicity by inhibiting the expression of NMDAR and
increasing the sensitivity of neurons to glutamate excitotoxicity,
thereby leading to deregulation of Ca2+ signaling and triggering
oxidative stress and even mitochondrial apoptosis pathways in
neurons. Ketamine significantly upregulates the GluN1 subunit
of NMDAR in the frontal cortex, thereby triggering neuronal
apoptosis (Liu et al., 2011). Meanwhile, mitochondrial
dysfunction and oxidative stress in the hippocampus of rats
exposed to ketamine are associated with down-regulation
of the ERK signaling cascade (Huang et al., 2012; Li et al.,
2017). In addition, ketamine induces apoptosis through the
mechanism associated with caspase-1-dependent pyroptosis in
the hippocampus (Ye et al., 2018). Ketamine also aggravated
cognitive impairment and hippocampal neurodegeneration
through the ROS/HIF-1α pathway (Yan et al., 2014). However,
ketamine inhibits lipopolysaccharide-mediated BV2 microglia
inflammation by blocking NMDARs (Lu et al., 2020). It has

been shown that ketamine inhibits the NOX2 activation to
produce ROS of the mice brain in pilocarpine-induced epilepsy
(Tannich et al., 2021). Ketamine-midazolam therapy can reduce
the severity of seizures and improve brain pathology in plasma
carboxylesterase knockout mice (Marrero-Rosado et al., 2020).
A low dose of ketamine can reduce the behavioral changes in
pilocarpine-induced epilepsy mice (Tannich et al., 2020).

In clinical studies, ketamine was used in the treatment
of RSE and SRSE (Samanta, 2020). Ketamine treatment is
associated with a decrease in seizure burden in patients with
SRSE (Alkhachroum et al., 2020). Midazolam-ketamine-
valproate therapy is significantly more effective than midazolam-
fosphenytoin-valproate therapy in seizure reduction (Niquet
et al., 2017). Meanwhile, the combination of ketamine-
midazolam can reduce the severity of epilepsy, epileptogenesis,
and neuropathology in cholinergic-induced SE (Lumley
et al., 2021). And ketamine is also used in anti-NMDAR
encephalitis-associated RSE (Santoro et al., 2019). Severe
epileptic encephalopathy caused by GRIN2D mutations can be
treated with NMDAR channel blockers (ketamine, magnesium;
Li et al., 2016).

Memantine
Different NMDAR subunit gene mutations also have different
responses to NMDAR antagonists. it was reported that a 9-year-
old boy with severe early-onset epileptic encephalopathy caused
by a GRIN2A missense mutation was trialed on memantine
and a significant reduction in seizure frequency was revealed
(Pierson et al., 2014). Whereas, another study showed that no
seizure reduction was found in patients with GRIN2B mutation-
related encephalopathy treated by memantine despite improved
consciousness, behavior, and sleep (Platzer et al., 2017). In
addition, a combination of memantine and cathodal direct
current stimulation (cDCS) suppressed KA-induced seizures
(Sun et al., 2020). Thus, early identifying the location and type
of NMDAR subunit gene mutation in epilepsy has guiding
significance for the selection of AEDs.

Magnesium (Mg)
The NMDAR ion channel pores are permeable to Ca2+ but can
be blocked by Magnesium ion (Mg2+) in a strongly voltage-
dependent manner, which makes them largely inactive at resting
voltages, even in the presence of agonists (Mayer et al., 1984;
Nikolaev et al., 2021). Activation of the NMDAR is a cooperative
process, which depends on the relief of the Mg2+ block of
the ion channel pore (Mg2+ is removed into the extracellular
compartment from the channel pore; Hou et al., 2020; Jorratt
et al., 2021). The NMDAR channel is blocked by Mg2+ at
neuronal resting membrane potential, and Mg2+ is removed
when the membrane is depolarized (Jorratt et al., 2021; Li
et al., 2021). In addition, non-competitive NMDAR ion channel
blockers such as MK-801 mainly bind to ion channels of
TMD. Since Mg2+ normally blocks this channel, the binding
of MK-801 requires NMDAR activation and depolarization to
release Mg2+ (Wong et al., 2021). A relevant study has shown
that Mg2+ influx, dependent on NMDAR opening, can transduce
a signaling pathway to activate CREB in neurons (Hou et al.,
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TABLE 1 | The regulation of NMDAR in epilepsy.

Factors Mechanisms References

NMDAR
antagonists

Ketamine Ketamine inhibited the expression of NMDAR and increased
the sensitivity of neurons to excitotoxicity. Ketamine use in
the treatment of RSE and SRSE.

Liu et al. (2011), Huang et al.
(2012), Yan et al. (2014), Li
et al. (2016, 2017), Niquet et al.
(2017), Ye et al. (2018), Santoro
et al. (2019), Alkhachroum et al.
(2020), Borsato et al. (2020), Lu
et al. (2020), Marrero-Rosado
et al. (2020), Samanta (2020),
Tannich et al. (2020, 2021), and
Lumley et al. (2021)

Memantine GRIN2A missense mutation retained sensitivity to
memantine, and memantine test results showed a
significant reduction in seizure frequency. The patients with
GRIN2B mutation-related encephalopathy treated with
memantine had improved consciousness, behavior and
sleep, but none showed a reduction in seizure frequency.

Pierson et al. (2014), Platzer
et al. (2017), and Sun et al.
(2020)

Allosteric
modulators

The latter epilepsy patients might respond to positive
allosteric modulators of the NMDARs

Zhu and Paoletti (2015)

Amino acids Glutamate NMDAR is one of the excitatory receptors that glutamate
acts on directly and may lead to diseases such as epilepsy,
stroke, AD, and PD.

Alcoreza et al. (2021) and Essiz
et al. (2021)

Glycine Glycine binds to glycine binding sites on NMDAR to
regulate the function of NMDAR.

Mothet et al. (2015)

D-serine D-serine regulates NMDAR by binding to the receptor’s
glycine binding site. The expression of D-serine and
NMDAR was significantly increased in patients with
intractable epilepsy. The expression of D-serine depends on
the regulation of SR and DAAO.

Mothet et al. (2015), Zhu and
Paoletti (2015), Ploux et al.
(2020), Beesley et al. (2021),
Takagi et al. (2021) and Zhang
et al. (2021)

Cysteine/Homocysteine
(HCY)

Redox modulation of cysteine residues is one of the
post-translational modifications of NMDAR. HCY activates
GluN2 subunit-dependent redox regulation of NMDAR by
the reduction of NMDAR disulfide.

Kim et al. (2017), Ivanova
M. et al. (2020), and Sibarov
et al. (2020)

Magnesium (Mg) NMDAR channel is blocked by Mg2+ at neuronal resting
membrane potential, and Mg2+ is removed when the
membrane is depolarized. Magnesium sulfate can inhibit
glutamatergic signaling, thereby altering Ca2+ influx, leading
to reduced excitotoxicity. TLE cell model is often established
by magnesium-free extracellular fluid. Transient culture of
hippocampal neurons in magnesium-free induces rhythmic
and synchronous epileptiform-like activity.

Mayer et al. (1984), Wang et al.
(2020b), Elsayed et al. (2021),
Jorratt et al. (2021), Li et al.
(2021), Mele et al. (2021),
Nikolaev et al. (2021), and Zhou
et al. (2021)

The EphB-NMDAR
interaction

In epilepsy, the interaction of NMDAR-EphB2 was found in
anti-NMDAR encephalitis.

Dalva et al. (2000), Henderson
et al. (2001), Hughes et al.
(2010), Nolt et al. (2011),
Gleichman et al. (2012),
Mikasova et al. (2012), Geng
et al. (2013), Planagumà et al.
(2016), Hu et al. (2017), Ernst
et al. (2019), Wang et al.
(2020a), Washburn et al.
(2020), and Ma et al. (2021)

Epigenomics DNMT3A1 is controlled by activated NMDAR and the
expression of NMDAR is also mediated by epigenomics. In
epilepsy, GRIN2B DNA methylation levels were increased
and BDNF DNA methylation levels were decreased, which
leading to decreased mRNA and protein expression of
GluN2B and increased mRNA and protein expression of
BDNF. Suppressive DNMT can increase excitatory
postsynaptic potential in hippocampal slices of epileptic
rats. Increased TBR1 expression in AF9 mutants is
associated with increased expression of GluN1 subunit
which is regulated by TBR1.

Büttner et al. (2010), Jiang et al.
(2010), D’Aiuto et al. (2011),
Ryley Parrish et al. (2013),
Kiese et al. (2017), Fachim et al.
(2019), Li et al. (2019),
Bayraktar et al. (2020), and de
Sousa Maciel et al. (2020)

(Continued)
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TABLE 1 | Continued

Factors Mechanisms References

Proteins and
signaling pathways

SPARCL-1 SPARCL-1 localizes to excitatory synapses after SE;
SPARCL-1 is involved in synaptic modifications underlying
epileptogenesis and remodeling events associated with
neuronal degeneration following neural injury.

Chen et al. (2020b) and Gan
and Südhof (2020)

SPDI SPDI knockdown inhibit seizure activity by
nitrososylation-independent thiolation on NMDAR in acute
and chronic epileptic model.

Jeon and Kim (2018)

POSH POSH is involved in epilepsy by increasing surface NMDAR
expression.

Wang X. et al. (2017)

Nwd1 Inhibition of Nwd1 activity can reduce the hyperexcitability
and GluN2B phosphorylation of hippocampal neurons.

Yang et al. (2019)

TMEM25 TMEM25 modulates the degradation of GluN2B subunits
and neuronal excitability.

Zhang et al. (2019)

DAPK1 DAPK1 interacts with NMDAR and involves in
glutamate-induced neurological events, such as stroke.
Inhibiting DAPK1 can lead to phosphorylation and surface
normalization of GluN2B expression outside the synapse.

DeGregorio-Rocasolano et al.
(2020), Schmidt et al. (2020),
and Liu et al. (2021)

PDI PDI binds to NMDAR in chronic epileptic rats and increases
the mercaptan content on recombinant GluN1. PDI can
catalyze disulfide bond formation, reduction, and
isomerization.

Kim et al. (2017)

CyclinB/CDK1 CyclinB/CDK1 mediates NMDAR phosphorylation and
regulates calcium kinetics and mitosis.

Rosendo-Pineda et al. (2020)

NSPA NSPA regulates the postsynaptic stability of NMDAR by
ubiquitination of tyrosine phosphatase PTPMEG.

Espinoza et al. (2020)

SULT4A1 SULT4A1 promotes the formation of PSD-95/NMDAR
complex to modulate synaptic development and function.

Culotta et al. (2020)

PCDH7 PCDH7 interacts with GluN1 subunit to regulate the
dendritic spine morphology and synaptic function.

Wang Y. et al. (2020)

Leptin Leptin resists to glutamate-induced excitotoxicity in
HT22 hippocampal neurons and leptin also increases
postsynaptic NMDAR currents to sensitize NTS neurons to
vagal input

Jin et al. (2018) and Neyens
et al. (2020)

P2X2 and P2X4 Both P2X2 and P2X4 interact with NMDAR in an inhibitory
manner.

Rodriguez et al. (2020)

NRG1-ErbB4
signaling

NRG1-ErbB4 signaling inhibits phosphorylation of GluN2B
at position 1472 by Src kinase. NRG1-ErbB4 signaling may
act as a homeostasis regulator, which can protect the brain
from the seizure-like activity aggravation.

Zhu et al. (2017)

ERK1/2 signals CCL2 rapidly enhances NMDA-induced neuronal electrical
currents through the ERK-Glun2B pathway.
CXCR7 regulates GluN2A expression by activating ERK1/2,
thereby modulating NMDAR-mediated synaptic
neurotransmission in hippocampal granulosa cells. Icaritin
(ICT) has a neuroprotective effect on glutamate-induced
neuronal damage and its mechanism may be associated
with inactivating GluN2B-containing NMDAR by
ERK/DAPK1 pathway.

Xu T. et al. (2019), Zhang
H. et al. (2020), and Liu et al.
(2021)

Cholinergic signals ACh potentiates NMDARs through muscarinic receptors in
CA1 neurons of the hippocampus. Nicotinic α7-nAChR is
enriched in the glutamate network synapses in the
dorsolateral PFC (dlPFC) and is required for NMDAR action.

Markram and Segal (1990),
Flores-Hernandez et al. (2009),
and Yang et al. (2013).

Redox modulation Cysteine, HCY and PDI are involved in redox modulation of
NMDAR. H2S blocks the enhancement of neuronal
excitability in the early hippocampal network by inhibiting
voltage-gated sodium channels and NMDARs.

Kim et al. (2017), Yakovlev et al.
(2017), Ivanova M. et al. (2020),
and Sibarov et al. (2020)

β-hydroxybutyrate
and acetone

The inhibitory effect of β-hydroxybutyrate and acetone in
NMDARs may be the basis for the therapeutic benefits of
ketogenic diet in epilepsy.

Pflanz et al. (2019)
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TABLE 2 | Regulation of microRNAs on NMDARs in nervous system.

MicroRNAs Mechanisms References

MicroRNA-219,
MicroRNA-219a-2

MicroRNA-219 has a regulatory effect on NMDAR in the amygdala and
hippocampus of patients with mesial TLE microRNA-219 protects against
seizure in the KA-induced epilepsy model. MicroRNA-219a-2 can reduce
calcium overload and apoptosis by HIF1α/NMDAR pathway.

Zheng et al. (2016), Hamamoto et al. (2020), and Hu
et al. (2020)

microRNA-139-5P MicroRNA-139-5P has a negative regulatory effect on GluN2A-NMDAR in
pilocarpine-induced epilepsy model and TLE patients.

Alsharafi et al. (2016)

MicroRNA-34c MicroRNA-34c plays a negative role in epileptic seizure cognitive function, by
regulating NMDARs and AMPARs associated with LTP.

Huang et al. (2018)

microRNA-15a-5p Both in hippocampal tissues of SE rats and low Mg-induced hippocampal
neurons, propofol can inhibit apoptosis of hippocampal neurons by
microRNA-15a-5p/GluN2B/ERK1/2 pathway

Liu et al. (2020)

MicroRNA-124 MicroRNA-124 suppresses seizure and regulates CREB1 activity. Inhibition of
neuronal firing by microRNA-124 is associated with the suppression of AMPAR-
and NMDAR-mediated currents, accompanied by decreased expression of
NMDAR

Wang et al. (2016)

MicroRNA-211,
microRNA-128

microRNA-211 or microRNA-128 transgenic mice displayed seizures. Feng et al. (2020)

MicroRNA-223 MicroRNA-223 regulates the expression of GluN2B subunit, plays a therapeutic
role in stroke and other excitotoxic neuronal disorders.

Harraz et al. (2012)

MicroRNA-132,
microRNA-107

MicroRNA-132 and microRNA-107 could involve in NMDAR signaling by
influencing the expression of pathway genes or the signaling transmission.

Zhang et al. (2015)

MicroRNA-19a,
microRNA-539

MicroRNA-19a and microRNA-539 can influence the levels of NMDARs subunits
by targeting the mRNAs encoding GluN2A and GluN2B subunits respectively.

Corbel et al. (2015)

MicroRNA-125,
microRNA-132

FMRP is an RNA-binding protein responsible for interacting with microRNA-125
and microRNA-132 to regulate NMDAR, and consequently affecting synaptic
plasticity

Lin (2015)

MicroRNA-204 EphB2 is a direct target of microRNA-204 and microRNA-204 downregulates
EphB2 in hippocampal neurons. EphB2 regulates the surface expression of the
NMDAR GluN1 subunit.

Mohammed et al. (2016)

MicroRNA-182-5p MicroRNA-182-5p regulates nerve injury-induced nociceptive hypersensitivity by
targeting EphB1 which interacts with the NMDAR

Zhou et al. (2017)

2020). Magnesium sulfate is a neuroprotective agent in clinical
practice. By noncompetitively blocking NMDARs, magnesium
sulfate can inhibit glutamatergic signaling, thereby altering Ca2+

influx, leading to reduced excitotoxicity (Elsayed et al., 2021).
In vitro, TLE cell model is often established by treating primary
hippocampal cells with magnesium-free extracellular fluid.
Transient culture of hippocampal neurons in magnesium-free
induces rhythmic and synchronous epileptiform-like activity
(Mele et al., 2021).

The low-affinity binding site of Mg2+ is located deep in
the ion channel and is modulated by the NMDAR subunit.
Related studies have shown that NMDAR complexes formed
by GluN2A or GluN2B subunits have a higher affinity for
Mg2+ than those containing GluN2C or GluN2D (Monyer
et al., 1994). Due to different GluN2 subunits, NMDAR has
different sensitivity to Mg2+ (Valdivielso et al., 2020). An
important feature of the GluN2 subunits is that GluN2A and
GluN2B subunits are more sensitive to voltage-dependent Mg2+

blocking than GluN2C and GluN2D subunits (Qian et al.,
2005). Meanwhile, the GluN2C subunit contributes to a lower
threshold for Mg2+ block and influences NMDAR agonist
activity (Intson et al., 2020). Compared to GluN1/GluN2D
receptors or other NMDAR subtypes, GluN1/GluN2C receptors
exhibit higher blockade with ketamine in the presence of
Mg2+(Shelkar et al., 2019). The human NMDAR GluN2A
variant influences channel blocker potency. A novel genetic

variant of GRIN2A has been identified in patients with epileptic
encephalopathy altering residues located in the NMDAR ion
channel pore and significantly reducing Mg2+ blockade and
channel conductance (Marwick et al., 2019). In functional
studies, the GRIN2A mutation decreased the potency of
endogenous negative modulators, including magnesium and
zinc (Fernández-Marmiesse et al., 2018). In addition, missense
mutations of GRIN2B also alter NMDAR ligand binding and
ion channel properties. GRIN2B mutants showed decreased
glutamate potency, increased NMDAR desensitization, and
disappearance of voltage-dependent Mg2+ block (Fedele et al.,
2018). Meanwhile, Mg2+ deficiency down-regulated GluN2B
subunits expression in cultured hippocampal slices (Zhou
et al., 2021). In addition, presynaptic release and postsynaptic
transporter transport zinc (Zn) to different microdomains to
regulate NMDAR neurotransmission. Meanwhile, zinc inhibits
synaptic NMDARs, which depend on the binding of GluN2A to
zinc transporter ZnT1(Krall et al., 2020). In conclusion, Mg2+

plays an important role in the pathogenesis of epilepsy. The most
prominent of these is voltage-dependent block of the NMDAR
channel by Mg2+.

Amino Acids
Glutamate
It is widely believed that the imbalance between excitatory
and inhibitory neurotransmission leads to hyperexcitability
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of neuronal circuits, which is the basis of the process of
epileptogenesis (Alcoreza et al., 2021). Glutamate is an excitatory
neurotransmitter in the brain involved in various neural
functions and metabolic processes of the CNS (Wang et al.,
2020b). NMDAR is one of the excitatory receptors that
glutamate acts on directly and may lead to diseases such as
epilepsy, stroke, AD, and PD (Essiz et al., 2021). On the
one hand, glutamate can be directly synthesized de novo by
astrocytes in the brain. On the other hand, glutamate can
also be produced indirectly with glucose molecules through
the action of pyruvate dehydrogenase and pyruvate carboxylase
in astrocytes (Schousboe et al., 2014). Meanwhile, extracellular
glutamate can be transferred to astrocytes by excitatory amino
acid transporter 2 (EAAT2) and then converted to glutamine
by glutamine synthetase (GS). Glutamine is transported by
astrocytic glutamine transporter-5 (SNAT-5) to the extracellular
environment, where it can then be transferred to neurons by
astrocytic glutamine transporter-1 (SNAT-1; Danbolt, 2001).
In the pre-synaptic neurons, phosphate-activated glutaminase
(PAG/GLS-1) converts inactive glutamine to glutamate, which is
repackaged into synaptic vesicles and released into the synaptic
cleft and directly acts on the NMDAR in the post-synaptic
neurons, thus activating NMDAR (Limón et al., 2021). In a word,
the glutamate and glutamine cycle in astrocytes and neurons is
called the glutamate-glutamine cycle (Figure 4).

Astrocyte dysfunction can alter glutamate homeostasis,
leading to neuroexcitatory toxicity (Niciu et al., 2012). Excessive
glutamate can cause neuroexcitatory toxicity after being released
into the synaptic cleft, and excess glutamate needs to be cleared
quickly in the brain (Schousboe et al., 2014). However, due to
the absence of extracellular enzymes, the uptake of extracellular
glutamate mainly relies on EAATs which are located in the
plasma membranes of neurons and glia (Zhang et al., 2016).
Meanwhile, astrocytes can also completely enclose the glutamate
synapse to quickly clear glutamate from the synaptic cleft
(Alcoreza et al., 2021). Once glutamate enters the astrocyte, it
is converted to glutamine and returned to the neuron by the
glutamate-glutamine cycle (Alcoreza et al., 2021). In addition,
over-activated astrocytic NMDARs could lead to the release of
many other molecules that are likely to be relevant. Astrocyte
GluN2A regulates nerve growth factor β (β-NGF) synthesis,
maturation, and secretion by regulating pNF-κB, Furin, and
VAMP3. It is found that the neuroprotective role of astrocytic
GluN2A in the promotion of synapse survival is by regulating
these molecules (Du et al., 2021). Both glutamate and quinolinic
acid (QUIN) could activate astrocytic NMDARs, which stimulate
Ca2+ influx into the cell and can result in dysfunction and death
of astrocytes (Lee et al., 2010).

D-Serine
In addition to glutamate, the activation of NMDAR also requires
the binding of a co-agonist at the glycine binding site. Originally
similar to glycine, D-serine can also control the activation of
NMDAR by binding to the receptor’s glycine binding site in
the brain (Figure 4; Mothet et al., 2015). Recent studies have
indicated that the expression of D-serine and NMDAR is closely
related to intractable epilepsy (Zhu and Paoletti, 2015). The

review investigated the regulation of NMDAR by D-serine in
CNS diseases, including epilepsy.

D-serine is the main endogenous co-agonist of NMDARs,
which is significantly dependent on the activity of the metabolic
enzyme d-amino acid oxidase (DAAO) and serine racemase (SR).
In the brain, DAAO catalyzes the decomposition of D-serine,
while the cytoplasmic enzyme SR converts L-serine to D-serine
(Takagi et al., 2021). SR is mainly found in neurons, that catalyzes
the reversible racemization of L-serine and D-serine (Raboni
et al., 2019). On the one hand, D-serine is released from the
neuron via a plasma membrane transporter (ASC-1/SLC7A10),
which mediates D-serine efflux. On the other hand, astrocytes
synthesize SR substrate L-serine, which is transferred to neurons
through a mechanism of serine shuttle to participate in
neuronal D-serine synthesis. L-serine synthesized by astrocytes is
dependent on the activity of 3-phosphoglycerate dehydrogenase
(PHGDH), which is the key to de novo synthesis of L-serine and
activation of NMDAR (Neame et al., 2019). Clinically, serine
deficiency patients present with severe neurological symptoms,
including intractable epilepsy, which suggests the relevance of
serine to brain development and morphogenesis (Murtas et al.,
2020). Although the activity of SR and DAAO is important for
the regulation of D-serine levels, the regulatory mechanisms of
SR and DAAO are not fully understood in epilepsy.

DAAO selectively catalyzes the oxidative deamination of
natural D-serine to produce imino acid, which is naturally
hydrolyzed to the corresponding α-keto acids and ammonia
(Pollegioni et al., 2018). Related research has confirmed that
inhibition of DAAO can lead to increased D-serine in the brain,
thereby regulating a variety of neurophysiological functions
including cognitive behavior (Nagy et al., 2020). Meanwhile,
it was also found that NMDAR antagonists (MK801 and
cocaine) could increase the release of glutamate and decrease
the expression of SR and DAAO. However, D-serine and
antipsychotics did not modulate the levels of SR and DAAO
(Takagi et al., 2021). In addition, the neuroprotective effect of
DAAO is also mediated by the ERK1/2 signal pathway (Zhang
X. et al., 2020).

In the brain, SR is mainly in excitatory neurons and
GABAergic inhibitory interneurons, and is only weakly
expressed in astrocytes (Billard, 2018). Through the coordinated
activities of ASC-1 and ASCT1 subtypes, D-serine is released and
binds with NMDAR to perform neurophysiological functions
(Sason et al., 2017; Billard, 2018; Kaplan et al., 2018). The
deletion of SR affects the balance of excitatory and inhibitory in
the hippocampal CA1 network (Ploux et al., 2020). In addition,
related research has found that PKC phosphorylates SR on
serine residues and reduces the activity of SR in vitro. Similarly,
activated PKC also increases SR phosphorylation and decreases
the levels of D-serine in the rat frontal cortex (Vargas-Lopes
et al., 2011). Therefore, PKC-mediated SR phosphorylation may
be important for the activation of NMDARs.

In fact, the specific degradation of D-serine by the enzyme
DAAO and the genetic deletion of SR significantly altered
the activation of NMDAR. D-serine plays a key role in
regulating the functional plasticity of many synapses in the
brain (Billard, 2018). Related studies have found that the
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FIGURE 4 | Regulation of NMDARs by D-serine and glutamate. (1) Glutamate can directly act on NMDAR, and the glutamate-glutamine cycle is involved in the
regulation of NMDAR. Glutamate-glutamine cycle: glutamate can be directly synthesized de novo by astrocytes or indirectly produced from glucose molecules
through the actions of pyruvate dehydrogenase and astrocyte-specific enzyme pyruvate carboxylase in the brain. Meanwhile, extracellular glutamate can be
transferred to astrocytes by ETTA2 (GLT-1) and then converted to glutamine by glutamine synthetase (GS). Glutamine is transported by SNAT-5 to the extracellular
environment, where it can then be transferred to neurons by SNAT-1. In the neuron, glutamine is degraded by PAG into glutamate and ammonia. Glutamate enters
the synaptic vesicles in the pre-synaptic neurons and then is released from the pre-synaptic membrane into the synaptic cleave. It directly acts on the NMDAR in the
post-synaptic neurons, thus activating NMDAR. (2) In addition to glutamate, activation of NMDAR also requires the binding of D-serine at the glycine binding site. SR
converts L-serine to D-serine in the neuron, while DAAO catalyzes the breakdown of d-serine in the astrocyte. D-serine is released from neurons by Asc-1, which
mediates D-serine efflux in exchange for external amino acid substrates. L-serine can be directly synthesized de novo in astrocytes. Through orchestrated Asc-1 and
ASCT1 subtypes, L-serine from astrocytes enters the neuron and is catalyzed by SR to produce D-serine.

beneficial effects of D-serine supplementation may reflect that
D-serine levels decreased significantly with age, as supported
in the hippocampal trial. Interestingly, this decline of D-serine
is also found in human plasma levels (Potier et al., 2010).
In addition, in addition to affecting synaptic plasticity and
synaptogenesis, dysregulation of D-serine metabolism may
also enhance NMDAR-dependent excitotoxicity and promote
cognitive impairment and neurodegeneration (Beltrán-Castillo
et al., 2018). Therefore, the synaptic availability of D-serine and
the preservation of SR activity are critical for maintaining strong
cognitive abilities in the brain.

D-serine and NMDAR were found to be significantly
upregulated in patients with intractable epilepsy (Zhang et al.,
2021). Therefore, the D-serine signal pathway may be a potential
target for epilepsy therapy. Endogenous D-serine deficiency may
lead to decreased inhibition of the hippocampal CA1 network

and altered excitatory/inhibitory balance. besides, D-serine
contributes to maintaining cognitive abilities and functional
plasticity of synapses (Ploux et al., 2020). Related studies have
shown that intracranial injection of D-serine into the medial
entorhinal area (MEA) in the TLE is beneficial to prevent
neuronal loss and epileptogenesis by rescuing hippocampal
CA1 neurons in the epileptic brain and reducing the number
of astrocytes and microglia, thus alleviating the effect of
neuroinflammation (Beesley et al., 2021). Therefore, D-serine
might be a potential therapy target via regulating NMDAR in
epilepsy, and more studies are needed in the future.

Epigenomics
DNA methylation is a crucial epigenetic mark for activity-
dependent gene expression in neurons. It has been shown
that the levels of DNA methyltransferase 3A1 (DNMT3A1)
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in neurons are closely controlled by the activation of
NMDAR-containing GluN2A subunits (Bayraktar et al.,
2020). Interestingly, synaptic NMDARs drive methyltransferase
degradation in a ubiquitin-like dependent manner. The binding
of NEDD8 ubiquitin-like protein to lysine residues inhibits
ubiquitination, thereby blocking DNMT3A1 degradation
(Bayraktar et al., 2020). Defects in promoter methylation of
these activity-dependent genes may be related to synaptic
plasticity and memory formation (Bayraktar et al., 2020).
Overall, the activity-dependent DNA methylation is regulated
by GluN2A-containing NMDAR signals to participate in
memory formation. Meanwhile, NO produced by NMDAR
activation can also up-regulated DNA methyltransferase 3B
(DNMT3B) in the hippocampus (de Sousa Maciel et al., 2020).
A related analysis showed that both GluN2B expression levels
and histone H3K9 acetylation of GRIN2B gene promoter were
positively correlated with ethanol withdrawal syndrome (EWS;
Li et al., 2019). In addition, the changes of GRIN2B promoter
methylation may be associated with cognition reduction and
glutamatergic dysfunction in schizophrenia (Fachim et al.,
2019). Meanwhile, this epigenetic change leads to upregulation
of functional NMDAR and abnormal neuronal differentiation
(D’Aiuto et al., 2011). In addition, NMDAR expression is
also regulated by histone methylation in the brain. Histone
methyltransferases targeting histone H3-lysine 9 residues,
including Setdb1 (Set domain, bifurcated1)/Eset/Kmt1e, are
closely related to inhibition of chromatin remodeling in the adult
brain. Meanwhile, the inhibition of Setdb1-mediated histone
methylation at GRIN2B is associated with decreased expression
of GluN2B (Jiang et al., 2010).

In epilepsy, control of epigenetic of epilepsy target genes
contributes to cellular memory of epileptogenesis in cultured rat
hippocampal neurons (Kiese et al., 2017). In cultured neurons,
the altered gene expression and epigenetic modifications can be
rescued by blocking action potential propagation or inhibiting
glutamatergic activation (Kiese et al., 2017). The epigenetic
modification of epileptic target genes and cellular memory
of epileptogenesis, which can transform normal neurons and
circuits into pro-epileptic neurons and neural circuits (Kiese
et al., 2017). SE can also lead to abnormal expression of
GRIN2B and BDNF genes in the hippocampus in TLE (Ryley
Parrish et al., 2013). In the epileptic hippocampus, GRIN2B
DNA methylation levels were increased and BDNF DNA
methylation levels were decreased, which led to decreasedmRNA
and protein expression of GluN2B and increased mRNA and
protein expression of BDNF. Meanwhile, suppressive DNMT
can increase excitatory postsynaptic potential in hippocampal
slices of epileptic rats (Ryley Parrish et al., 2013). Therefore,
GluN2B DNA methylation may be an early SE-induced event
that persists into late epilepsy in the hippocampus and promotes
changes of gene expression in TLE. In addition, leukemia-related
AF9/MLLT3 mutations are involved in neurodevelopmental
disorders such as epilepsy and ataxia (Büttner et al., 2010).
Meanwhile, AF9 is found to be an active epigenetic modifier
by increasing the expression of GluN1 subunits during the
generation of cortical projection neurons (Büttner et al.,
2010).

In conclusion, the epigenetic regulation of NMDAR and
epilepsy target genes by NMDAR play an important role in the
onset and development of seizures. Whereas, the mechanism
remains unclear and more studies are urgently needed.

MicroRNA and NMDAR
In recent years, researchers have found a link between
microRNAs and NMDARs-mediated neurological diseases
(Table 2; Alsharafi et al., 2017). A growing body of evidence
indicates that microRNAs regulate synaptic homeostasis and
plasticity processes, suggesting that they may be involved in
synaptic dysfunction during epilepsy, stroke, and AD (Alsharafi
et al., 2017). MicroRNA-34a deficiency promotes cognitive
function by regulating AMPARs and NMDARs to increase
synaptic plasticity (Xu et al., 2018). MicroRNA-219-5p alleviates
morphine tolerance by inhibiting the CaMKII/NMDAR pathway
(Wang J. et al., 2017). Meanwhile, microRNA-219a-2 has
been reported to reduce calcium overload and apoptosis
through HIF1α/NMDAR pathway, thus alleviating myocardial
ischemia-reperfusion injury (Hu et al., 2020). MicroRNA-182-5p
regulates nerve injury-induced nociceptive hypersensitivity by
targeting Ephrin type-b receptor 1 (EphB1) which interacts
with the NMDAR (Zhou et al., 2017). EphB2 is a direct
target of microRNA-204 and microRNA-204 downregulates
EphB2 in hippocampal neurons. EphB2 is a known regulator
of synaptic plasticity and regulates the surface expression of
the NMDAR GluN1 subunit (Mohammed et al., 2016). Thus,
microRNA-204 may play an important role in anti-NMDAR
encephalitis by regulating EphB2-NMDAR, which remains
to be explored. In normal neuronal development, FMRP is
an RNA-binding protein responsible for interacting with
microRNA-125 and microRNA-132 to regulate NMDAR
and consequently affecting synaptic plasticity (Lin, 2015).
MicroRNA-19a and microRNA-539 can influence the levels
of NMDARs subunits by targeting the mRNAs encoding
GluN2A and GluN2B subunits respectively (Corbel et al., 2015).
MicroRNA-219, microRNA-132, and microRNA-107 could be
involved in NMDAR signaling by influencing the expression
of pathway genes or the signaling transmission (Zhang et al.,
2015). MicroRNA-223 as a major regulator of the expression
of the GluN2B subunit, plays a therapeutic role in stroke and
other excitotoxic neuronal disorders (Harraz et al., 2012). These
microRNAs provide an entry point for affecting neural plasticity
and abnormal nerve firing and provide a new approach for the
treatment of NMDAR-related neurological diseases.

In epilepsy, some microRNAs (microRNA-34, microRNA-
124, microRNA-146a, microRNA-135a, microRNA-23a,
microRNA-132, microRNA-234-5p, microRNA-203,
microRNA-181b, microRNA-155 microRNA-219, microRNA-
211, microRNA-128, microRNA-23) have been reported
and each microRNA has limitations as a potential epilepsy
target (Feng et al., 2020). Importantly, microRNA-211 or
microRNA-128 transgenic mice displayed seizures (Feng
et al., 2020). However, some microRNAs play an important
role in epilepsy by regulating NMDARs. MicroRNA-219
had a regulatory effect on NMDAR in the amygdala and
hippocampus of patients with mesial TLE and microRNA-219
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protects against seizure in the KA-induced epilepsy model
(Zheng et al., 2016; Hamamoto et al., 2020). Meanwhile,
microRNA-139-5P has a negative regulatory effect on GluN2A-
NMDAR in pilocarpine-induced epileptic rat models and
TLE patients (Alsharafi et al., 2016). MicroRNA-34c has also
been found to play a negative role in seizure and cognitive
function, possibly by regulating NMDARs and AMPARs
associated with LTP (Huang et al., 2018). Both in hippocampal
tissues of SE rats and low Mg-induced hippocampal neurons,
propofol can inhibit apoptosis of hippocampal neurons by
microRNA-15a-5p/GluN2B/ERK1/2 pathway, which provides
theoretical support for propofol treatment of SE (Liu et al., 2020).
MicroRNA-124 suppresses seizure and regulates CREB1 activity.
Inhibition of neuronal firing by microRNA-124 is associated
with the suppression of mEPSC, AMPAR- and NMDAR-
mediated currents, which are accompanied by decreased surface
expression of NMDAR (Wang et al., 2016). However, many
microRNAs have not been confirmed to function in epilepsy
by regulating NMDAR. The discovery of various microRNA is
also beneficial for the treatment of epilepsy and reducing the
occurrence of epilepsy.

The EphB2-NMDAR Interaction
The interaction between NMDAR and EphB2 was found in
anti-NMDAR encephalitis (Hughes et al., 2010; Mikasova et al.,
2012). It is reported that transcranial direct current stimulation
promotes hippocampal neurogenesis in mice with cerebral
ischemia by activation of Ephrinb1/EphB2/MAP-2/NMDAR
pathway (Ma et al., 2021). Meanwhile, activated EphB receptors
promote the excitability of primary sensory neurons either
directly through Ca2+ influx or by phosphorylation of Src
kinase-mediated NMDAR (Washburn et al., 2020). In the acute
phase of ischemic stroke, EphB2-dependent signal pathways are
found to promote neuronal NMDAR-induced excitotoxicity and
inflammation (Ernst et al., 2019). In AD models, overexpression
of EphB2 in hippocampal neurons improved impaired NMDAR
and cognitive dysfunction (Hu et al., 2017). In addition,
EphB2 has a positive protective effect on Aβ1-42 oligomer-
induced neurotoxicity by synaptic NMDAR signal pathway in
hippocampal neurons (Geng et al., 2013). EphB2 can also prevent
the effects of NMDAR antibodies onmemory and neuroplasticity
(Planagumà et al., 2016). EphB2 regulates NMDAR function
and synaptic targeting. In mature neurons, EphB2 regulates the
number of synaptic NMDAR, while activated EphB2 reduces
desensitization of Ca2+-dependent NMDAR and is required for
enhanced synaptic localization of GluN2B-containing NMDAR.
EphB knockout mice showed the homeostatic upregulation of
NMDAR expression (Nolt et al., 2011). Synaptic plasticity is
regulated by the EphB2-GluN2A-AKT cascade, which might be
a potential pathogenesis of depression and potential therapeutic
target of glutamatergic transmission dysfunction (Wu et al.,
2019). Meanwhile, EphrinB/EphB signaling is conducive to
synaptic plasticity by GluN2B phosphorylation in chronic
migraine (Wang et al., 2020a). In dentate granular neurons of
EphB2-deficientmouse, synaptic NMDAR-mediated current was
reduced (Henderson et al., 2001). These findings suggest that
EphB is a key regulator of NMDAR synaptic localization and

NMDAR-dependent synaptic function in the CNS. Together, the
regulation of synaptic function may be closely related to EphB2-
NMDAR interaction in epilepsy.

Influence of Related Proteins and
Signaling Pathways on NMDAR
In addition to the above regulation mechanisms, NMDAR
is also modulated by other pathways. Related studies have
demonstrated that both purinergic P2X receptors (P2X2)
and P2X4 interact with NMDAR in an inhibitory manner
(Rodriguez et al., 2020). Meanwhile, SULT4A1 promotes the
formation of the PSD-95/NMDAR complex tomodulate synaptic
development and function (Culotta et al., 2020). It is also
found that S-PrP interacts with LRP1/NMDAR system to
activate ERK1/2, thereby promoting cell migration in Schwann
cells (Mantuano et al., 2020). Neuronal surface P antigen
(NSPA) regulates the postsynaptic stability of NMDAR by
ubiquitination of tyrosine phosphatase PTPMEG (Espinoza
et al., 2020). In addition, Cyclin B/CDK1 mediates NMDAR
phosphorylation and regulates calcium kinetics and mitosis
(Rosendo-Pineda et al., 2020). Neuroinflammation modulation
is known to be controlled by cholinergic signals (Mizrachi et al.,
2021). However, ACh potentiates NMDARs through muscarinic
receptors in CA1 neurons of the hippocampus (Markram and
Segal, 1990). Nicotinic α7-nAChR is enriched in the glutamate
network synapses in the dorsolateral PFC (dlPFC) and is required
for NMDAR action (Yang et al., 2013). LTP can be induced by
exposure to the cholinergic receptor agonist carbachol in the
hippocampus, which depends on NMDAR activation (Flores-
Hernandez et al., 2009).

In addition, NMDAR is also regulated by ERK signaling
pathway. In the spinal cord, CCL2 rapidly enhances NMDAR-
induced neuronal electrical currents through the ERK-Glun2B
pathway, thereby promoting pain sensitivity (Zhang H. et al.,
2020). Related studies have found that CXCR7 can control
the synaptic activity of hippocampal granular cells to regulate
seizures. CXCR7 regulates GluN2A expression on the cell
membrane by activating ERK1/2, thereby selectively modulating
NMDAR-mediated synaptic neurotransmission in hippocampal
granular cells (Xu T. et al., 2019). Therefore, CXCR7may regulate
seizures and become a new target for antiepileptic therapy by
regulating the cell membrane expression of NMDAR. Some
studies find that icaritin (ICT) has a neuroprotective effect on
glutamate-induced neuronal damage and its mechanism may
be associated with inactivating GluN2B-containing NMDAR
by ERK/DAPK1 pathway (Liu et al., 2021). Meanwhile,
DAPK1 interacts with NMDAR involved in glutamate-induced
neurological events during sudden physiopathologic conditions
in the brain (DeGregorio-Rocasolano et al., 2020). Inhibition of
DAPK1 results in the phosphorylation and surface normalization
of GluN2B expression outside the synapse (Schmidt et al., 2020).

Redox modulation of cysteine residues is one of the
post-translational modifications of NMDAR. HCY accumulation
in the human plasma, known as hyperhomocysteinemia, can
exacerbate neurodegenerative diseases and act as a persistent
NMDAR agonist (Ivanova M. et al., 2020). Meanwhile, HCY
activates GluN2 subunit-dependent redox regulation of NMDAR
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by the reduction of NMDAR disulfide (Sibarov et al., 2020).
The protein disulfide isomerase (PDI) binds to NMDAR in
chronic epileptic rats and increases the mercaptan content on
recombinant GluN1 protein (Kim et al., 2017). In fact, PDI plays
a crucial role in catalyzing disulfide bond formation, reduction,
and isomerization (Kim et al., 2017). Besides, H2S blocks the
enhancement of neuronal excitability in the early hippocampal
network by inhibiting voltage-gated sodium channels and
NMDARs (Yakovlev et al., 2017). Thus, redox regulation of
NMDAR may affect the occurrence and development of epilepsy
and provide a new way for reducing the occurrence of epilepsy.

In epilepsy, some proteins and organisms can also affect
NMDAR activity. As shown in the treatment of epilepsy,
the inhibitory effect of β-hydroxybutyrate and acetone on
NMDARs may underlie the therapeutic effects of the ketogenic
diet in epilepsy (Pflanz et al., 2019). The interaction between
the PCDH7 and the GluN1 subunit regulates the dendritic
spine morphology and synaptic function, and it is associated
with several CNS diseases including epilepsy (Wang Y.
et al., 2020). In acute and chronic epileptic models, SPDI
knockdown can inhibit seizure activity by nitrosylation-
independent thiolation on NMDAR (Jeon and Kim, 2018).
Inhibition of Nwd1 activity can reduce the hyperexcitability
and phosphorylation of GluN2B in hippocampal neurons (Yang
et al., 2019). Meanwhile, TMEM25 can also modulate the
degradation of the GluN2B subunit and neuronal excitability
(Zhang et al., 2019). Inhibition of acid-sensing ion channel
3 can regulate NMDAR function, thereby aggravating seizure
severity (Cao et al., 2018). POSH could be a potential therapeutic
target for epilepsy via increasing surface expression of NMDAR
(Wang X. et al., 2017). Previous studies have shown that
neuregulin1(NRG1)-ErbB4 signaling pathway may regulate the
excitability of neurons and participate in primary epilepsy.
NRG1-ErbB4 signaling can inhibit the phosphorylation of
GluN2B, which has been detected in symptomatic human
epileptic tissue (Zhu et al., 2017). In addition, the extracellular
matrix protein SPARCL-1 also directly promotes synapse
formation and NMDAR recruitment. In addition, SPARCL-1
might directly increase branches of dendrites, augment the
numbers of synapse, and induce the formation of NMDARs,
thereby increasing synaptic connectivity and reducing the risk
for neurodegenerative disease (Chen et al., 2020b; Gan and
Südhof, 2020). Leptin resists glutamate-induced excitotoxicity
in HT22 hippocampal neurons and leptin also increases

postsynaptic NMDAR currents to sensitize the nucleus of the
solitary tract (NTS) neurons to vagal input (Jin et al., 2018;
Neyens et al., 2020).

CONCLUSION

In this review, we reviewed and elucidated the regulatory
mechanisms of NMDAR and its role in the onset, development,
and treatment of epilepsy. Increasing evidence suggests that
NMDAR is closely related to epilepsy and the autoimmune
encephalopathy. Synaptic NMDARsmainlymediate pro-survival
and synaptic plasticity pathways, whereas extrasynaptic
NMDARs are mostly responsible for glutamate-induced
excitotoxicity. Meanwhile, different NMDAR subunit also has
different physiological functions in epilepsy. Studying the role
of various NMDAR subunits in epilepsy may be beneficial to
understand epileptogenesis. At present, there are many ways to
regulate NMDAR, but the regulatory mechanism of NMDAR in
the onset and development of epilepsy is not fully understood.
Therefore, targeting upstream and downstream signal pathways
of NMDAR may be a new approach to inhibit seizures and slow
the progression of epilepsy. This type of treatment is yet to be
discovered and explored.
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