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Biological invasions are global threats to biodiversity

and parasites might play a role in determining invasion

outcomes. Transmission of parasites from invading to

native species can occur, aiding the invasion process,

whilst the ‘release’ of invaders from parasites can also

facilitate invasions. Parasites might also have indirect

effects on the outcomes of invasions by mediating a

range of competitive and predatory interactions among

native and invading species. Although pathogen out-

breaks can cause catastrophic species loss with knock-

on effects for community structure, it is less clear what

impact persistent, sub-lethal parasitism has on native-

invader interactions and community structure. Here, we

show that the influence of parasitism on the outcomes

of animal invasions is more subtle and wide ranging

than has been previously realized.

Biological invasions are global phenomena that threaten
terrestrial, marine and freshwater biodiversity [1–4]. In
particular, invasions are leading to BIOTIC HOMOGENIZ-

ATION (see Glossary), with widespread ecological and
evolutionary implications [4,5]. In spite of such realiz-
ation, the rate of invasions resulting from anthropogenic
activities is increasing [6,7]. Indeed, we are now facing
INVASIONAL MELTDOWN [7–9]. Therefore, we must identify
mechanisms underpinning the invasion process if we are
to understand the determinants of invasion success, and
be able to predict the outcomes of ongoing and potential
invasions. PARASITES are pervasive in biological communi-
ties and are implicated as being key in an increasing
number of biological invasions [10–13]. A review of the
roles of parasites in invasions is therefore timely, and here
we focus on their influence on the success or failure of
invasive species when encountering native species and
associated communities. However, there are still gaps in
our understanding of the linkage between parasites and
invasions, particularly of the impacts of parasites at
broader community scales.

Parasitism of natives and invaders

There are several causes and consequences of differences in
parasitism between invaders and natives, including factors
associated with the transmission of parasites between hosts
and with the translocation of parasites with invaders.

Parasite transmission from invaders to natives

Parasites have detrimental effects on the survival and

Glossary

Allee effects: low density populations, and those with skewed sex ratios,

might decline because individuals have lower reproductive rates (e.g. because

mating encounters are rare) [34].

Apparent competition: indirect interaction leading to negative effects of one

species on another, mediated through a shared natural enemy, such as

predators and parasites. For example, parasite-mediated apparent compe-

tition might occur when (i) the parasite differentially affects one competitor,

reducing its population growth rate and abundance and hence competitive

impact on another species or (ii) one host species acts as a reservoir for

the parasite, increasing the impact of the parasite on the second host

species [35,36].

Biotic homogenization: increasing replacement of native species by generalist

invaders, altering global biodiversity [5].

Cryptic virulence: the parasite does not affect host fitness in single-species

populations, but virulence becomes apparent when the host interacts with

another species.

Density dependence: mortality rates in a population might increase, and/or

birth or growth rates decrease, as the density of the population increases.

Enemy release hypothesis: invading organisms might lose parasites (and

other enemies) during invasion [24]. The ‘release’ from the constraints of

natural enemies might enable populations of invading organisms to increase

at a higher rate than in the presence of these natural enemies. This, in turn, can

lead to a competitive advantage for the invaders over the natives.

Horizontal transmission: occurs between hosts of the same or different

generations, commonly through ingestion of the parasite, venereal trans-

mission or direct invasion through an outer layer of covering tissue.

Intraguild predation (IGP): predation between species using the same

resources in a similar way [52]. Such mutual predators are not necessarily

taxonomically related, but often are. Thus, a propensity for cannibalism is

often associated with species engaging in IGP.

Invasional meltdown: the invasional meltdown model [8] suggests that

frequent species introductions generate an increasing threat to biological

communities. It proposes that ecosystems become more easily invaded as the

cumulative number of species introductions increases, and that facilitative

(rather than antagonistic) interspecific interactions can exacerbate the success

and impact of invaders.

Parasites: organisms living on or in another organism, deriving substances

from the host organism, without benefit to the host. Here, we use a broad

definition of parasite [64] including parasitoids and other pathogens (disease-

causing organisms) producing damage.

Parasitoid: an animal parasitic for only one stage of its life history and free-

living at other stages.

Resource competition: competition between species for the use of shared

resources such as food and space, where superior competitors utilize or

consume resources making them unavailable to inferior competitors.

Sex-ratio-distorting parasites: vertically transmitted parasites are usually only

transmitted to offspring by the mother (transovarial transmission), because

small sperm size precludes parasite transmission. Several strategies of

reproductive manipulation have evolved that enhance the relative frequency

of the transmitting sex [65]. For example, feminizing parasites convert genetic

males to phenotypic females, thus increasing their opportunities for

transmission to new hosts.

Transmission routes: how a parasite is passed between hosts.

Vertical transmission: when parasites are passed from generation to

generation of hosts via the host ova (transovarial transmission). Because

vertically transmitted parasites rely on host reproduction for their own

transmission to new hosts, they are frequently associated with low virulence.

Some parasites have a direct life cycle involving only one host species. Others

have indirect life cycles involving horizontal transmission between two or

more host species, the final host species (where sexual reproduction of the

parasite occurs) and one or more intermediate host species.
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fecundity of individuals and can regulate host population
dynamics [14–17]. Classically, parasites have been recog-
nized as being important in invasions when naı̈ve host
populations are infected by a new parasite transported
with introduced hosts. For example, the Aral Sea sturgeon
Acipenser nudiventris was decimated by a monogenean
gill fluke Nitzschia sturionis carried by the introduced
Caspian Sea sturgeonHuso huso [18]; the native European
crayfishAustropotamobius pallipeshas been driven locally
extinct as a result of transmission of crayfish plague
Aphanomyces astaci from the introduced North American
crayfish Pascifastacus leniusculus [19]; and there are
many other examples of introduced pathogens decimating
naı̈ve host populations [20–23].

Parasite loss during translocation

The ENEMY RELEASE HYPOTHESIS proposes that invaders
lose their (co-evolved) parasites in the process of invasion,
leading to higher demographic success of invaders [24,25],
which might give them a competitive advantage over
natives [26]. Empirical support for this hypothesis comes
from observations across a range of taxa, which confirm
that invader populations harbour significantly fewer
parasites than do native populations [12,24,25]. Although
potential mechanisms leading to such patterns are
regularly proposed, such as the low probability of para-
sitized hosts being translocated and the potential for loss of
parasites during such movements [24], there is still little
empirical discrimination among mechanisms of parasite
loss. This is important because, for example, if an invader
lacks parasites as a result of low population density, and its
parasites can arrive and establish in subsequent invasion
waves, the invader will eventually suffer reduced demo-
graphic success. However, if the lack of parasites is due to
the consistent mortality of parasitized hosts and/or their
parasites during translocation, the parasite cannot arrive
and have such an effect. Experimental tests of parasite and
host tolerances of environmental features of the transloca-
tion route, such as ballast water, would begin to address
this issue.

Furthermore, depending on the mechanism of parasite
loss in the invading species, there are different conse-
quences for the invasion process. The demographic release
from parasites might be manifest at any one of the three
different phases of invasion: introduction, establishment
and demographic spread [2,27]. Each of these phases
would require separate theoretical and empirical examin-
ation because, in one published model, parasite release
appears unlikely to affect the chance of an invader
becoming established but might affect the spread of an
invader [27]. Also, accumulation of parasites over time in
invader populations will influence invasion success [25].
Studies of invasive plants have demonstrated this effect
[25], however, the impact of parasite accumulation on
invasive animals requires further investigation.

Parasite transmission from natives to invaders

Protection from the effects of parasites might occur in
invaders as a result of a lack of TRANSMISSION ROUTES

[12,24]. In addition, parasites of native counterparts are
often host specific and unable to spread to invaders [10,28].

However, new host–parasite associations can occur, as
illustrated by infection of the invading snailPotamopyrgus
antipodarum by the native trematode Sanguinicola sp.
[29]. Therefore, investigation of the likelihood of trans-
mission between natives and invaders is crucial to our
understanding of invasion success. For example, a recent
study showed that, whereas the microsporidian parasite
Pleistophora mulleri is transmitted via cannibalism
between conspecifics of the native amphipod Gammarus
duebeni celticus, ingestion of parasitized tissue by three
invading amphipod species did not lead to their becoming
infected [13,30]. However, these native and invading
amphipods share acanthocephalan (spiny-headed worm)
parasites Echinorhynchus truttae and Polymorphus
minutus, which are transmitted to common final hosts
[31]. Because parasitism altered interspecies interactions
in this multi-species invasion scenario, determination of
transmission routes helped to clarify the success and
failure of invaders. However, there remains a paucity of
information about behavioural, ecological, immunological
and physical barriers that might cause parasite trans-
mission to fail among natives and invaders.

Impacts of host and parasite characteristics on invasion

success

Whether parasites survive the translocation process
might depend on their mode of transmission. VERTICALLY

TRANSMITTED parasites are more likely to be successfully
introduced with their invading hosts than are parasites
that rely on HORIZONTAL TRANSMISSION. Vertical trans-
mission is often associated with low parasite virulence,
thus increasing the likelihood of both the parasite and the
host surviving the invasion process. In addition, vertical
transmission to new hosts is not dependent on host
density. A recent study found that the vertically trans-
mitted microsporidian Fibrillanosema crangonictidae had
been introduced to Europe along with its North American
amphipod host Crangonyx pseudogracilis [32]. This is
significant, because host SEX-RATIO DISTORTION by this
parasite might also facilitate host (and parasite) invasion
and establishment [32]: female-biased sex ratios might
lead to higher rates of host population increase [33].
Although DENSITY-DEPENDENT and ALLEE EFFECTS [34]
might be expected to limit such population growth
(because males are relatively rare), males of this species
are precocious, promiscuous and not limited in mate
search time as occurs in mate-guarding species [32].
However, further testing is required of the demographic
effects of sex-ratio distortion during the different stages of
invasion.

In addition, there are other traits of both parasite and
host that might determine whether invader host and
parasite linkages are established. For instance, in para-
sites with complex life cycles, such as acanthocephalans,
all the intermediate hosts must co-occur with the final host
[24,31]. Types of host species that feature in recurrent
invasion waves as opposed to single events might be more
prone to parasitism, because, once an invader population
density has increased, more individuals arriving infected
with parasites might result in increased transmission
efficiency [24]. The black rat Rattus rattus has featured in
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repeated introductions worldwide and 38% of its native
parasites have been recovered from introduced popu-
lations [24]. However, we lack comparable data for other
invaders that would enable the elucidation of broad
patterns of host and parasite traits that are associated
with repeated invasions and accumulation of parasites.

Parasite-mediated competition

Parasites and predators have also been implicated
historically in the more indirect mediation of interspecies
interactions, primarily through shared natural enemies
resulting in APPARENT COMPETITION ([35–37], Table 1).
Clearly, therefore, where invader and native hosts differ in
prevalence and types of parasitism, there is a role for
parasites in determining invader success or failure.
Indeed, we must realize that interspecific interactions
other than competition, such as predation, might also be
mediated by parasites.

In a classic laboratory experiment, the sporozoan
parasite Adelina tribolii was shown to reverse the out-
come of competition between two species of flour beetles
Tribolium confusum and T. castaneum [20,38]. Further-
more, a field study [39] suggested a role for the malaria
parasite Plasmodium azurophilum in reducing the com-
petitive superiority of the Anolis lizard A. gingivinus over
the smaller A. wattsi. Such parasite-mediated competition
is increasingly recognized as a contributing factor in
determining invasion success. For example, in the inva-
sion by the variegated leafhopper Erythoneura variabilis
(a hemipteran) of vineyards in the USA and the replace-
ment of the native grape leafhopper E. elegantula [10],
direct interspecific competition was not crucial. However,
the decline in the native leafhopper was attributed to the
differential effects of the shared hymenopteran PARASITOID

Anagrus epos. Establishment of the invader contributed to
an increased parasitoid population and led to high rates of
infection in the native leafhopper.

More recently, there is support [40,41] for the sugges-
tion that invasion by the grey squirrelSciurus carolinensis
and the concomitant decline of the native redS. vulgaris in
the UK is the result of apparent competition mediated
through a parapox virus, for which the asymptomatic
invader acts as a reservoir for the disease that is usually
fatal in the native. Similarly, transmission of the caecal
nematode Heterakis gallinarum from introduced phea-
sants Phasianus colchicus to wild grey partridge Perdix
perdix has been implicated in the decline in partridge
populations also in the UK [42,43]. Introduced pheasants
are largely unaffected by the infection but, as in the
previous example, act as a reservoir for the parasite and,
without the presence of the invading host, the parasite
cannot be maintained in the wild partridge population.
This has important implications for future risk assess-
ments of accidental and deliberate wildlife introductions,
and the management and conservation of native species.

However, such a complex and intangible force as
apparent competition might be attractive as an expla-
nation but difficult to demonstrate conclusively (see also
[36]). For example, the cestode parasite Cylindrotaenia sp.
was implicated in the competitive replacement of the
native gecko Lepidodactylus lugubris by the invader gecko

Hemidactylus frenatus on Pacific islands. Infestation
levels were higher in natives on islands where they were
found in sympatry with invaders [44]. However, sub-
sequent experimental studies found no evidence that this
parasite played a role in the replacement of L. lugubris,
leaving RESOURCE COMPETITION as the most likely expla-
nation [45]. However, controlled laboratory experiments
with the ichneumonid parasitic wasp Venturia canescens
and two of its moth hosts Plodia interpunctella and
Ephestia kuehniella successfully separated the effects of
resource competition from apparent competition [46]. This
demonstrates the need for detailed empirical examination
of each putative case of apparent competition.

Parasite mediation of predation: natives and invaders

sharing predators

Where invasive and native hosts differ in susceptibility to
parasitism and/or in their responses to particular para-
sites, this might render them differentially vulnerable to
shared predators ([11,47], Table 1). Of particular interest
are indirectly transmitted parasites that manipulate the
behaviour of their intermediate hosts to facilitate trans-
mission to their final host [48]. For example, many species
of acanthocephalan induce enhanced activity levels and
photophilic (‘light loving’) behaviour in their intermediate
arthropod hosts (e.g. amphipods), rendering them more
vulnerable to predation by the final vertebrate fish and
bird hosts [48]. Recent studies suggest that such parasites
skew the vulnerability of native and invading amphipods
to fish predation, thereby influencing the invasion process
[47,49]. However, this proposed parasite-mediated preda-
tion requires further critical evaluation. Explicit tests are
required to examine whether fish prey differentially on
native versus invading amphipod species and how para-
sites influence such predation. Furthermore, because the
acanthocephalan Pomphorhynchus laevis exists in geneti-
cally and morphologically distinct forms, which differ in
their manipulative capacities towards host behaviour [50],
future work should test for variation in the manipulative
effects of different strains of the same parasite on native
versus invader.

Parasite mediation of predation: natives and invaders at

the same trophic level

It has been argued that potential of transmission of
debilitating parasites by ingestion of infected material
should select against cannibalism [51] and might also
select against INTRAGUILD PREDATION (IGP), where the
species are often closely related [30,52]. However, both
cannibalism and IGP are common in nature [52]. A recent
study showed that a native amphipod G. d. celticus varies
widely in the prevalence and burden of the microsporidian
parasite Pleistophora mulleri, whereas none of three
invasive amphipod species were infected [13]. The parasite
had no detectable direct effect on host fitness, but
parasitized hosts were more vulnerable to predation by a
larger invading species and showed a reduced capacity to
prey on a smaller invading species. Thus, P. mulleri
exhibited CRYPTIC VIRULENCE, altering mutual predation
patterns among native and invaders. The challenge is to
understand how the parasite alters the physiology and
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Table 1. Mediation of competition and predation by parasites in animal invasions

Parasite/ Host; nature of parasitism Effect Outcome Interaction/ Refs

Parasitoid Comment

Ascogregarina

taiwaiwanensis

(Sporozoa)

Mosquito; gut parasite Survival of native mosquito

Ocherltatus triseriatus reduced

when reared with unparasitized

larvae of invader, Aedes

albopictus, but survival increased

when invader larvae are

parasitized

Escape from

parasites favours

range expansion

in invader

Mediation of

competition –

enemy release

[26]

Pleistophora

mulleri

(Microspora)

Gammarus duebeni celticus;

parasite necrotizes abdominal

musculature of native but does not

infect three species of invading

amphipods (G. pulex, G. tigrinus

and Crangonyx pseudogracilis)

Cryptic virulence, effect on

survivorship only apparent when

native and invaders interact;

parasitized natives showed

reduced ability to prey upon

smaller invaders and suffered

increased predation by large

invaders

Two invaders

favoured

(G. tigrinus and

G. pulex); one

neutral

(C. pseudogracilis)

Mediation of

intraguild predation

[13]

Cylindrotaenia sp.

(Cestoda) Gecko (Lepidodactylus lugubris,

Hemidactylus frenatus); gut

tapeworm

Cestode levels higher in native

L. lugubris on Pacific islands when

in sympatry with invading

H. frenatus

Neutral (although

implicated in

competitive

replacement of

natives by

invaders, no effect

evident)

Apparent

competition – but

rejected

[44,45]

Heterakis

gallinarum

(Nematoda)

Wild grey partridge Perdix perdix

and pheasant Phasianus colchicus;

caecal damage in host birds,

infective egg stage might also act as

carrier of the pathogenic protozoan

Histomonas meleagridis

Spread of parasites from released

pheasant P. colchicus results in

decline of wild grey partridge

P. perdix populations

Invader favoured Apparent

competition –

parasite-mediated

competition

[42,43]

Echinorhynchus

truttae

(Acanthocephala)

Gammarus duebeni celticus;

increases activity level and alters

microdistribution

Makes parasitized natives more

vulnerable to shared fish

predators than are unparasitized

natives and invaders

Invader might be

favoured;

empirical test

required

Mediation of shared

predation

[66]

Pomphorhynchus

laevis

(Acanthocephala)

Gammarus pulex; behavioural

manipulation (photophilic) of native

but not invading G. roseli (remains

photophobic), also O2 consumption

lowered, haemocyanin

concentrations increased

Increases the exposure to

predation in the native species

Invader might be

favoured;

empirical test

required

Mediation of shared

predation

[47]

Anagrus epos

(Hymenoptera:

Mymaridae)

Native grape leafhopper

Erythoneura elegantula; egg

parasite – also invading variegated

leafhopper Erythoneura variabilis in

Californian vineyards

Reduced susceptibility of invader

to egg parasitism, owing to

differences in egg-laying

behaviour; produces rapid decline

in native populations

Invader favoured Apparent

competition

[10]

Dinocampus

coccinellae

(Hymenoptera:

Braconidae)

Ladybird beetle (Coccinellidae);

endoparasitoid; lays eggs and

larvae exits host to pupate

Invader is reservoir (egg source),

adult natives are more susceptible

to parasitism than are invaders

Invader favoured Apparent

competition

[11]

Pseudacteon

solenopsidis

(Diptera: Phoridae)

Insect parasitoid of ants; flies lay

eggs in head case of larvae

Lack of specific pathogens and

parasites (e.g. phorid flies) for

invasive Selenopsis fire ants

might remove controls on activity

and population density, and shift

competitive balance between ant

species at food sites

Invader favoured Apparent

competition –

enemy release

[67,68]

Parapoxvirus Squirrel; parapoxvirus carried by

invading grey squirrels Sciurus

carolinensis infects native reds

S. vulgaris

Invader is reservoir host

(unaffected); native suffers high

and rapid mortality when exposed

Invader favoured Apparent

competition

[40,41]
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behaviour of hosts to manifest such drastic alterations in
both susceptibility and ability to engage in IGP. Parasites
can alter host physiology, for example, redistributing lipid
and glycogen stores [53] and this might manifest as
behavioural changes during invader–native interactions.
Indeed, intraspecific aggressive behaviour in animals is
constrained by physiological factors, such as anaerobic
capacity and metabolic reserves [54,55]. Thus, studies of
interspecies differences in physiological responses to
parasitism, coupled with correlating such responses with
behaviouralactivity, shouldproveafruitfulareaforresearch
into parasite mediation of interspecific interactions and the
determination of invasion success or failure.

Wider implications of parasitism for community

structure

There is increasing consensus, therefore, that parasites
can mediate the outcome of interspecific interactions, such
as competition and predation, and that this might
determine the outcome of invader–native interactions.
Thus, many examples of two-host, one-parasite scenarios
are now explicable in terms of which host ‘wins’. In
invasion scenarios, the facilitation of the invasion process
through parasites might lead to a species replacement,
with the new resident having profoundly different impacts
on the wider community compared with the native. For
example, freshwater community structure is radically
altered when the invasive amphipod G. pulex replaces
the native G. d. celticus [56]. Many studies, however, have
used two-host, one-parasite systems to suggest, by extra-
polation, that parasites structure biological communities
or assemblages [46,57]. However, very few studies have
examined the role of parasites at the community level [58]
and still fewer involve invasions. Of the ten examples
claiming parasite-mediated apparent competition (Table 1),
plus 20 additional examples of enemy-(predator)mediated
apparent competition available from [57], only two [13,21]
involved the examination of more than a species pair and a
single parasite. MacNeil et al. [13] examined interactions
in multiple species pairs of amphipods parasitized by the
microsporidian P. mulleri, whilst Kohler and Wiley [21]
describe the community implications of the complete loss
of a key species, the caddisfly Glossosoma nigrior, through
a catastrophic outbreak of the microsporidian parasite
Cougourdella sp. There are many other examples of
pathogens that produce outbreaks and total loss of species
with profound knock-on effects for larger communities,
such as mass mortalities of marine taxa caused by
emerging diseases [23], cascading effects of disease [59]
and species introductions having dramatic unforeseen
effects at higher tropic levels [60,61].

The predominant pressure exerted by parasites on
communities, however, might not be as a result of cata-
strophic outbreaks, but of less virulent, persistent and sub-
lethal infections. Hosts might, as a result, harbour a variety
of parasites. It would seem timely, therefore, to investigate
the role of less virulent parasites in determining community
metrics, such as species diversity and richness. Community-
level effects are expected because parasites affect the
predatory and competitive capabilities of invaders and
natives (as seen in amphipod assemblages [13]). Parasites

also have more subtle and complex effects. For example,
acanthocephalan infection of G. pulex causes reduced
predatory activity and also switching in size classes of prey
taken [62]. Such sub-lethal effects might have knock-on
community-wide effects [62]. Parasites might, therefore,
not only drive community differences by facilitating
invasions and species replacements, but also mediate
diverse interspecific interactions at the broader commun-
ity level. However, a significant lag is expected in the
effects of invasive species on higher trophic levels
becoming evident compared with their effect at lower
trophic levels [21]. It is thus essential that studies of the
community- and ecosystem-level consequences of para-
sites in invasions are conducted on spatially and tem-
porally large scales (smaller scale experiments tend to
underestimate the impact of parasite-induced reductions
[21]), such that more covert influences of parasites can be
determined [63] and a clearer understanding of the mech-
anisms structuring these invaded communities can be
developed. This will need to involve experimental manipu-
lations of parasites in the field (see also [58]). This is a
difficult and perhaps ethically sensitive undertaking, but
with potentially high rewards for our understanding of the
links among parasites, invaders and community structure.

Concluding remarks

Parasites have wider ranging impacts on community
interactions during animal invasions than was previously
acknowledged. Future research should thus focus on the
impacts of parasitism on broadercommunity scales than has
been previously attempted. The global scale of animal
invasions necessitates the identification of general patterns
of host and parasite characteristics associated with invasion
success. Empirical testing of fundamental processes linked
to parasitism, thought to facilitate invasion, is also neces-
sary. Only with these results can we fully appreciate the
multitude roles of parasites in animal invasions.
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