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Roles of pectin in biomass yield and processing for biofuels
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Pectin is a component of the cell walls of plants that is composed of acidic sugar-containing

backbones with neutral sugar-containing side chains. It functions in cell adhesion and

wall hydration, and pectin crosslinking influences wall porosity and plant morphogenesis.

Despite its low abundance in the secondary cell walls that make up the majority of

lignocellulosic biomass, recent results have indicated that pectin influences secondary

wall formation in addition to its roles in primary wall biosynthesis and modification. This

mini-review will examine these and other recent results in the context of biomass yield and

digestibility and discuss how these traits might be enhanced by the genetic and molecular

modification of pectin. The utility of pectin as a high-value, renewable biomass co-product

will also be highlighted.
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INTRODUCTION

In a society with an increasing demand for renewable energy,

plant species as diverse as switchgrass, sugarcane, Miscanthus,

Jatropha, poplar, willow, and Agave have been put forward as can-

didates for lignocellulosic feedstocks to produce liquid biofuels

with low net greenhouse gas emissions (Carroll and Somerville,

2009; Somerville et al., 2010). However, many challenges and lim-

itations remain for the economical and efficient conversion of

biomass to biofuel (Somerville et al., 2010). Two central challenges

are the recalcitrance of biomass to degradation by enzymes into

its component sugars, and the fact that plant biomass contains

many different hexose and pentose monosaccharides, all of which

must be converted into useful products in order to capture the full

energy content and value of lignocellulosic feedstocks.

Pectin is a major component of the primary cell walls of

dicotyledonous plants and is also present in smaller amounts in

the secondary walls of dicots and both types of cell walls in mono-

cots (Vogel, 2008). Pectins are highly complex polysaccharides

and are composed of at least four subclasses: homogalacturonan

(HG), rhamnogalacturonan (RG-I), RG-II, and xylogalacturo-

nan (XGA; Mohnen, 2008). The backbones of HG, RG-II, and

XGA consist of α-1,4-linked galacturonic acid (GalA) residues

that can be methyl-esterified at the C6 carboxyl group and/or

acetylated at O2 or O3, whereas the backbone of RG-I is com-

posed of alternating rhamnose and GalA residues. RG-II possesses

complex side chains with at least 12 different types of sugars,

RG-I contains structurally diverse side chains consisting mainly of

arabinose and galactose along with other sugars, and XGA is essen-

tially HG with added β-1,3-xylosyl side groups (Mohnen, 2008).

The synthesis of pectic polysaccharides is estimated to involve

at least 67 different enzyme activities, including glycosyltrans-

ferases, methyltransferases, and acetyltransferases (Mohnen, 2008;

Harholt et al., 2010). Several excellent reviews discuss the details

of pectin structure and biosynthesis (Ridley et al., 2001; Willats

et al., 2001; Mohnen, 2008; Harholt et al., 2010), which will not be

further elaborated upon here.

ROLES OF PECTIN IN PLANT DEVELOPMENT AND BIOMASS

YIELD

Pectin biosynthesis, function, modification, and degradation

are involved in several key processes during plant development,

including cell wall expansion, cell adhesion, organ formation, cell

separation, and phyllotactic patterning (Wolf et al., 2009). Pectin is

synthesized in the Golgi apparatus (Moore and Raine, 1988; Moore

et al., 1991), which in plants is also the assembly site for glycopro-

teins, proteoglycans, and other complex polysaccharides (Parsons

et al., 2012). Pectin is secreted into the apoplast (the extracellular

space that contains the cell wall) in a highly methyl-esterified form

(Driouich et al., 2012). One unanswered question is the extent to

which pectin and other wall components are sorted during synthe-

sis and trafficking, and whether they first interact with one another

before or after secretion.

In the apoplast, pectin can be de-methyl-esterified by the activ-

ity of pectin methylesterases (PMEs; Micheli, 2001), and the

carboxyl groups of GalA residues can then form intermolecu-

lar Ca2+-mediated crosslinks (Vincken et al., 2003). Additionally,

borate diesters can form between the apiose groups of differ-

ent RG-II molecules, causing them to dimerize (Kobayashi et al.,

1996). These crosslinks are generally thought to increase cell

wall stiffness: for example, premature de-methyl-esterification

restricts hypocotyl elongation in dark-grown Arabidopsis thaliana

(Arabidopsis) seedlings (Derbyshire et al., 2007), and digestion

by fungal pectinases or chelation of Ca2+ by ethylene glycol

tetraacetic acid (EGTA) restores the susceptibility of cucumber

hypocotyls to the activity of wall-loosening expansins in vitro

(Zhao et al., 2008). However, recent research has suggested that

pectin de-methyl-esterification might also increase its suscepti-

bility to enzymatic degradation, loosening the wall: for instance,

pectin de-methyl-esterification facilitates organ primordium ini-

tiation in Arabidopsis shoot apical meristems (Peaucelle et al.,

2011), and overexpression of PMEI4 delays the growth accel-

eration of dark-grown Arabidopsis hypocotyls (Pelletier et al.,

2010). Depending on its consequences, the methyl-esterification
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status of pectin can thus have complex effects on plant

growth (Peaucelle et al., 2012).

Intriguingly, overexpression of a PME inhibitor (PMEI) has

resulted in increased biomass in transgenic Arabidopsis, as well

as slightly increased biomass in transgenic wheat, although the

latter difference was not significant (Lionetti et al., 2010). Taken

together, the above results suggest that the timing and extent of

pectin crosslinking likely influence the growth rate, persistence of

expansion, final size, and/or growth robustness of plant tissues,

which could in turn influence overall crop yields. Further analysis

and manipulation of the links between pectin modification and

biomass yield will be an important future research avenue.

PECTIN AND SECONDARY WALL FORMATION

In addition to its well-established role in primary wall biosyn-

thesis and expansion, some studies have provided evidence for

the importance of pectin in secondary cell wall biosynthesis

and modification. PME genes are expressed in the expanding

wood cells of poplar (Siedlecka et al., 2008) and in the stem,

phloem, and xylem of southern blue gum (Eucalyptus globulus;

Goulao et al., 2011). In E. pilularis, single-nucleotide polymor-

phism (SNP) alleles of PME6 associate with cellulose, lignin,

and pulp yield, whereas alleles of PME7 associate with cellulose,

pulp yield, and wood shrinkage (Sexton et al., 2012). Pectin-

associated β-1,4-galactans have also been detected in the secondary

walls of tension and compression wood (Mellerowicz and Gor-

shkova, 2012), and upregulation of both pectin-modifying and

secondary wall biosynthetic genes has been detected in Ara-

bidopsis plants placed under mechanical load (Koizumi et al.,

2009). However, these analyses only provide correlative evi-

dence, and genetic, biochemical, and mechanical experiments

are required to establish a clearer link between pectin modifica-

tion and secondary wall formation. In a pioneering study along

these lines, Arabidopsis mutants lacking PME35 gene function dis-

played reduced mechanical integrity in their stem interfascicular

fibers (Hongo et al., 2012). Interestingly, all of the above studies

highlight pectin-modifying or -degrading genes rather than pectin

biosynthetic genes, implying that pectin modification, instead of

its synthesis, is an important aspect of secondary wall

development.

Among plant lineages, the presence of RG-II correlates with

upright growth, and an increased amount of borate crosslinked

RG-II in the cell walls has been postulated to have facilitated the

evolution of lignified secondary walls in vascular plants (Mat-

sunaga et al., 2004), implying that pectin might continue to play

a role in the early stages of secondary wall deposition. Finally,

lignin polymerization, which is an important phase of secondary

wall formation in many cell types, has been postulated to initi-

ate in the pectin-rich middle lamella that lies between the walls

of adjacent cells (Figure 1A), suggesting that there may be a

functional connection between these polymers (Westermark et al.,

1986). Support for this hypothesis is provided by the finding that

addition of pectin affects the in vitro dispersion and polymeriza-

tion of lignin in cellulose networks produced by Gluconacetobacter

xylinus (Touzel et al., 2003). However, additional evidence will be

required to establish a clear and direct connection between pectin

biosynthesis and/or modification and secondary wall formation.

PECTIN AND CELL ADHESION

Intercellular adhesion is a basic feature of plant development and

contributes to plant morphogenesis (Knox, 1992). Cell adhesion

occurs primarily at the middle lamella, which contains abundant

pectins, especially in the reinforcing zones (Jarvis et al., 2003).

However, the exact makeup of pectin in the middle lamella is

unclear, with some evidence indicating that pectin in this region

is mainly composed of RG-I (Moore and Raine, 1988) and other

work describing a preponderance of HG (Knox et al., 1990; Willats

et al., 1999; Bush et al., 2001). HG chains might also contribute to

cell adhesion by crosslinking to other wall components via uronyl

esters (Sobry et al., 2005). Antibody labeling of pectin epitopes has

provided circumstantial evidence for the function of pectin in cell

adhesion (Parker et al., 2001; Sobry et al., 2005), but additional

evidence that directly extrapolates the adhesive forces between

individual pectin molecules to those between adjacent cells would

be informative.

Defective cell adhesion in several mutants has been attributed

to insufficient HG–Ca2+ complexes, branched RG-I polysaccha-

rides, and/or RG-II dimerization (Rhee and Somerville, 1998;

Thompson et al., 1999; Shevell et al., 2000; Neumetzler et al., 2012).

Arabidopsis mutants lacking functional copies of the QUASI-

MODO1 (QUA1) gene, which encodes the putative GalA trans-

ferase GALACTURONOSYLTRANSFERASE 8 (GAUT8), display

reduced stature, pectin content, and cell adhesion (Bouton et al.,

2002; Leboeuf et al., 2005). Mutants lacking another Arabidopsis

putative glycosyltransferase, ECTOPICALLY PARTING CELLS 1

(EPC1), also display defective cell adhesion (Singh et al., 2005).

However, direct evidence of the role of EPC1 in pectin biosyn-

thesis and cell adhesion is lacking. Mutation in a putative pectin

methyltransferase gene, QUA2/TUMOROUS SHOOT DEVELOP-

MENT2 (TSD2), causes reduced cell adhesion and inhibition of

shoot development (Krupkova et al., 2007; Mouille et al., 2007). In

addition, it has also been shown that polygalacturonases (PGs),

which cleave de-methyl-esterified HG, can affect cell adhesion:

overexpression of a PG gene in apple trees led to altered cell

wall adhesion, resulting in abnormal cell separation and plant

morphology (Atkinson et al., 2002).

The opposite of cell adhesion, controlled cell separation, occurs

in specific tissues and developmental stages in plants and involves

the selective degradation of pectin in the middle lamella (Lewis

et al., 2006). Artificially controlling cell separation processes might

enhance the degradability of engineered biomass feedstocks by

increasing the ease with which their cells can be separated by

mechanical and/or enzymatic treatments, exposing more sur-

face area to wall-degrading enzymes. However, plants displaying

increased cell separability must also maintain growth robustness

and disease resistance; thus, inducibly controlled cell separation

might be preferable to constitutive activation of this process in

future biomass feedstocks (Figure 1B).

PECTIN AND BIOMASS PROCESSING

To efficiently produce biofuels from raw biomass feedstocks, the

optimization of methods for pectin extraction and degradation

is necessary (Fissore et al., 2011; Min et al., 2011). This is true

for two reasons: first, pectin can affect the accessibility of other

cell wall components to enzymatic degradation, and second, the
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FIGURE 1 | Location and roles of pectins in biomass. (A) Schematic of

plant cell showing arrangement of cell walls; pectin is abundant in the primary

walls synthesized by growing cells (brown) and the middle lamella that

adheres adjacent cells (blue), but is also present in lower amounts in

secondary walls produced after the cessation of growth (gray). Inset at lower

right is a simplified model of the primary cell wall showing one possible

arrangement of cellulose microfibrils (green), hemicellulose (red), and pectin

(blue). (B) Pectin-rich biomass can be derived from lignocellulosic feedstocks

or naturally pectin-rich plant material, after which it can be processed into

pectin-derived high-value bioproducts and/or saccharified and fermented into

biofuel. (C) Potential positive impacts of pectin modification in bioenergy crop

plants on biomass processing. In some cases, pectin modification might

allow for the elimination of processing steps, such as pectin extraction

(curved arrow in B).

sugars contained in pectin itself represent captured photosyn-

thetic energy. In most biomass processing schemes, biomass is first

pretreated to disrupt cell wall structure, then saccharified by enzy-

matic, chemical, or thermal treatment. However, the architectural

properties of cell walls, which have been modeled as a cellulose–

hemicellulose network embedded in a pectin matrix (Figure 1A;

Cosgrove, 2000; Dick-Perez et al., 2011), suggest that pectins

might mask cellulose and/or hemicellulose (Marcus et al., 2008,

2010), blocking their exposure to degradative enzymes. In fiber

hemp processing, pectinase treatment has recently been shown

to increase yields of GalA and neutral monosaccharides, and

removal of pectin led to increased cell wall surface, improving the

accessibility of cellulose to degradative enzymes (Pakarinen et al.,

2012). Moreover, modification of pectin by expressing a PG or a

PMEI to reduce the total amount of de-methyl-esterified HG in

Arabidopsis, tobacco, or wheat significantly increased the efficiency

of enzymatic saccharification (Lionetti et al., 2010), although PG

expression, but not PMEI expression, also led to reduced biomass

accumulation in transgenic plants.

The acetyl groups contained in pectin are generally thought

to increase biomass recalcitrance by reducing the susceptibility of

pectin to enzymatic degradation (Gille and Pauly, 2012). How-

ever, surprising results in a recent study (Gou et al., 2012) showed

that reduction of pectin acetylation in tobacco by overexpres-

sion of a poplar (Populus trichocarpa) pectin acetylesterase (Pt

PAE1) in fact led to lower susceptibility of pectin to degradation,

throwing the conventional view into question. Interestingly, the

floral styles and filaments of transgenic plants displayed reductions

in monosaccharides associated with pectins and increases in

monosaccharides associated with cellulose and hemicelluloses
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(Gou et al., 2012), suggesting that compensatory changes in cell

wall composition took place in these tissues. In another study, het-

erologous expression of a mung bean PAE in potato tubers resulted

in stiffer tuber tissue, implying that the cell walls of transgenic

tubers were mechanically stronger (Orfila et al., 2012). The gen-

eration and analysis of biomass crop plants overexpressing PAEs

should indicate whether manipulating pectin acetylation levels will

in fact enhance biomass for biofuel production. The accumula-

tion of acetate in saccharified biomass, which is derived mainly

from de-acetylation of xylans but also arises partly from pectin

de-acetylation, can act as a potent inhibitor of biofuel conversion

(Gille and Pauly, 2012), and the partial reduction of cell wall acety-

lation by modulating pectin acetyltransferase and/or acetylesterase

activities might therefore improve microbial viability during fer-

mentation and enhance the conversion efficiency of biomass to

biofuel (Figure 1B).

Because of its crosslinking and water complexation properties,

pectin is also a determinant of cell wall porosity (Willats et al.,

2001). In one study, treatment with pectin-degrading enzymes

such as endo-PGs increased wall pore size and the ability of larger

molecules to pass through the wall (Baron-Epel et al., 1988); how-

ever, treatment with cellulysin or protease did not affect porosity,

implying that pectin rather than cellulose is a major mediator of

wall porosity. Wall porosity is also regulated by borate diester-

coupled RG-II linkages (O’Neill et al., 1996; Fleischer et al., 1999).

In the walls of pollen tubes, which have unique composition and

mechanical properties, pectin influences both cell wall porosity

and mechanical strength (Derksen et al., 2011). Because the aver-

age pore size in cell walls is similar to that of many globular proteins

(Carpita et al., 1979), increased wall porosity should correlate

with higher diffusion rates and accessibility to wall components

for degradative enzymes during biomass processing. A relatively

unexplored idea is the extent to which the aforementioned effects

of pectin on wall rigidity might influence the physical properties

of biomass during pretreatment. Conceivably, stiffening cell walls

by the manipulation of Ca2+-mediated pectin crosslinks might

enhance the fracturability of biomass, but experimental support

for this idea is currently lacking.

BIOFUELS FROM PECTIN-RICH FEEDSTOCKS

Although lignocellulosic biofuels are a promising renewable

energy resource, the recalcitrance of biomass to degradation

presents a major roadblock to their production. To increase bio-

fuel yields, one strategy is to improve the conversion efficiency of

plant cell walls to bioethanol (Jordan et al., 2012). The conversion

process can be simplified by altering lignocellulose composition

in bioenergy crop plants through genetic and molecular engineer-

ing (Demura and Ye, 2010; Pauly and Keegstra, 2010). Another

strategy is to exploit existing plants with large amounts of easily

digestible biomass (Somerville et al., 2010). At present, bioethanol

is mainly produced from corn in the United States (Jordan et al.,

2012), where the government has set a goal to produce 30% of

liquid transportation fuels from biomass by 2030 (Demura and

Ye, 2010). Like starch, pectins are largely water-soluble and rela-

tively easy to degrade in comparison to other wall components.

Pectins are abundant in waste residues of fruits and vegetables,

which could be used as feedstocks for ethanol production. These

pectin-rich residues have in many cases already been pretreated

or processed and contain low lignin levels, which should facili-

tate the deconstruction of their cell walls and reduce the usage

of degradative enzymes (Edwards and Doran-Peterson, 2012). So

far, several pectin-rich materials, including sugar beet pulp (Ror-

ick et al., 2011), citrus waste (Lopez et al., 2010; Pourbafrani et al.,

2010), and apple pomace (Canteri-Schemin et al., 2005) have been

analyzed as bioenergy feedstocks. Recent research has also indi-

cated that potato pulp is an attractive raw material for bioethanol

production since it contains abundant polysaccharides (Lesiecki

et al., 2012). The use of pectin-rich resources as bioenergy feed-

stocks will require saccharification and fermentation methods that

are optimized for the suite of sugars they contain, and efforts

are already underway to generate microbial bioprocessing strains

tailored to these materials (Edwards et al., 2011).

PECTIN AS A HIGH-VALUE BIOMASS CO-PRODUCT

As a natural complex polysaccharide, pectin plays important

industrial roles in several fields. Its physical and chemical prop-

erties make it a valuable material in the food and pharmaceutical

industries (May, 1990). As a food additive, pectin is mainly used

as a gelling agent in jams, a thickening and stabilizing agent in

drinks, and as a gelatin substitute in baked foods (Srivastava

and Malviya, 2011). Recent work has shown that the field appli-

cation of pectin-derived oligosaccharides (PDOs) improves the

coloration and anthocyanin content of seedless grapes (Ochoa-

Villarreal et al., 2011), and recombinant PME has been used to

increase the hardness of fruit products and reduce the turbidity of

fruit juices (Jiang et al., 2012b).

Pectin is part of the soluble dietary fiber that exists in all fruits

and vegetables and is thus beneficial for human health. Pectin

consumption has been demonstrated to reduce blood cholesterol

levels in humans, although the pectins used in these studies were

administered at high doses and were not precisely characterized

(Brouns et al., 2012). Modified citrus pectin (MCP) has been

shown to enhance the immune system’s ability to prevent metas-

tasis (Hurd, 1999) and inhibit cancer cell growth (Nangia-Makker

et al., 2002; Jackson et al., 2007; Yan and Katz, 2010; Maxwell et al.,

2012). The MCP functions synergistically with other compounds

in inhibiting cancer cell growth (Jiang et al., 2012a), which is a

promising result for the development of anti-metastatic drugs

(Glinsky and Raz, 2009). Specifically, the RG-I component of

pectin might contribute to its anticancer activity (Cheng et al.,

2012). Because of its structural malleability, biodegradability, and

tunable porosity, pectin is also used as a surface modifier for

medical devices (Morra et al., 2004) and a material for biomed-

ical applications including drug delivery, gene delivery, and tissue

engineering (Munarin et al., 2011, 2012). These applications make

pectin, either in its unmodified or derivatized forms, a potentially

high-value component of biomass (Figure 1C).

CONCLUSION

Pectins are one of the most structurally complex classes of

molecules in nature, and it is perhaps due to this complexity

that they serve a multitude of functions during plant growth and

development. Depending on the feedstock, processing regime, and

desired end products, pectin can be viewed either as a hindrance
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to biomass degradability, a source of fermentable sugars in

its own right, or a potentially valuable co-product of biofuel

production. A more comprehensive understanding of pectin

structure and the mechanisms of its synthesis, modification,

and degradation will allow for the enhancement of efforts to

grow and utilize plants as renewable sources of food, materials,

and energy.
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