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Abstract

PIWI proteins, a subfamily of PAZ/PIWI Domain family RNA-binding proteins, are best

known for their function in silencing transposons and germline development by

partnering with small noncoding RNAs called PIWI-interacting RNAs (piRNAs).

However, recent studies have revealed multifaceted roles of the PIWI-piRNA pathway

in regulating the expression of other major classes of RNAs in germ cells. In this

review, we summarize how PIWI proteins and piRNAs regulate the expression of

many disparate RNAs, describing a highly complex global genomic regulatory

relationship at the RNA level through which piRNAs functionally connect all major

constituents of the genome in the germline.

Introduction

PIWI proteins represent one of the two subfamilies of the PAZ/PIWI Domain (PPD)

protein family, with the other subfamily termed Ago proteins. All PPD family proteins

contain a variable N-terminal domain followed by a highly conserved PAZ domain,

which together with the MID domain binds a small RNA [1, 2] (Fig. 1a, b). The C-ter-

minal PIWI domain resembles RNase H and in some PPD family proteins are capable of

cleaving target RNAs [26–28]. Ago subfamily proteins are present in most types of cells.

They bind to microRNAs (miRNAs) and small interfering RNAs (siRNAs), both of which

are 21-nucleotide in length and are produced from double-stranded precursors via a

Dicer-dependent process [29]. In contrast, PIWI subfamily proteins are mostly expressed

in the germline, even though in most arthropod species, PIWI proteins are expressed in

the soma as well [30–32]. PIWI proteins bind to piRNAs that are generally 24–32 nucleo-

tides in length and are also enriched in the germline [33–36].

PiRNAs in most organisms are processed from long single-stranded precursors in a

Dicer-independent manner (Fig. 1c), except for C. elegans, in which piRNAs (21 U-

RNAs) are produced from short, single-stranded precursors (~ 26 nt capped tran-

scripts) in a Dicer-independent manner [15, 37] (Fig. 1d). The long single-stranded

precursors RNAs were transcribed from loci termed piRNA clusters in the genome
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and processed through ping-pong cycles that post-transcriptionally amplifies piRNAs

with overlapping complementarity by accelerating their production from precursors by

the alternative action of their associated PIWI proteins as follows [13, 26, 33–36]

Fig. 1 Overview of the PIWI-piRNA pathway. a Structures of the fruitfly Piwi and silkworm Siwi [2, 3]. Piwi

and Siwi are highly conserved and shared eight regions that form four common domains. The N-terminal

domain, PAZ domain, MID domain, and PIWI domain and interspersed by L0, L1, and L2 sequences. The

nuclear localization signal (NLS) in the N domain of Piwi enables the nuclear localization. Siwi does not

contain an NLS and is a cytoplasmic protein. b The first 3D structure of a Piwi protein-Siwi by Matsumoto

et al. [2]. Siwi is divided into two lobes. L0, N, L1, PAZ, and L2 domains form the N-PAZ lobe, whereas L0,

L2, MID, and PIWI domains form the MID-PIWI lobe. These two lobes give rise to a nucleic acid-binding

channel. c Biogenesis of piRNAs in Drosophila. piRNA precursor is transcribed from piRNA clusters and

exported from nucleus. 5′ end monophosphorylated piRNA precursors are bond by Piwi protein loaded

with initiator piRNAs and processed into pre-piRNA and pre-pre-piRNA. Pre-pre-piRNAs are phased by

Zucchini endonuclease (Zuc) [4–6] while pre-piRNAs are trimmed by Nibbler to produce mature piRNAs [7,

8]. Finally, the 3′ end of piRNAs are 2′O-methylated by the Hen1 methylase [9–12]. After 2-O-methylation,

the mature piRNA-Piwi complex further initiates ping-pong piRNA biogenesis facilitated by the other two

Piwi proteins Ago3 and Aub [13, 14]. d Biogenesis of piRNAs in C. elegans [15]. piRNA precursors in C.

elegans are short RNAs with a length of 25–27 nt. The processed piRNA precursors were also trimmed and

2′O-methylated by respective nucleases to generate mature piRNAs. e Prevalent models for Piwi-mediated

transcriptional silencing of transposons. In the nucleus of fruitfly (upper panel), the Piwi-piRNA complex

binds to a nascent transposon transcript and recruits Panoramix (Panx) and Asterix (Arx) mediator complex

to the vicinity of the target chromatin region. Panoramix further interacts with Nxf2 and Nxt1 and which

recruits histone methytransferase, dSetDB1(dSET) to methylate the Lysine residue at the 9th position of

histone 3, which establishes a repressive chromatin state to suppress transposon expression [16–22]. In

mice (lower panel), piRNA-loaded MIWI2 associates with TDRD9, DNMT3L, DNMT3a, and DNMT3a2 in

transfected 293 T cells. The complex is guided by piRNA and deposits DNA methylation via DNMT3a2 [23].

However, the latest reports indicated that SPOCD1 links MIWI2 to Dnmt3a and Dnmat3L and the complex

also contain TEX15 [24, 25]. Therefore, how exactly these proteins interact with each other remain unknown
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(Fig. 1c). The transcribed long precursors are initially processed into 5′ end monopho-

sphorylated RNAs by PIWI protein loaded with initiator piRNAs. The processed pre-

cursors (pre-pre-piRNAs) are further cleaved by PIWI proteins to generate responder

pre-piRNAs from the 5′ ends of pre-pre-piRNAs. These pre-piRNAs are trimmed by

exonucleases to generate functional piRNAs [38–41] and give rises to mature responder

piRNAs that recognize the complementary strands of long precursors and initiated the

ping-pong cycles. Meanwhile, 5′ end monophosphorylated precursor RNAs are frag-

mented into a string of phased trailing pre-RNAs by PIWI and PIWI-coupled-proteins

on the mitochondrial outer membrane [4–6]. Importantly, piRNAs are symbolically 2′-

O-methytlated at the 3′ end by S-adenosylmethionine-dependent methyltransferases

[9–12]. Perhaps the two best-known functions of PIWI proteins and piRNAs are trans-

poson silencing and fertility [42]. However, many recent studies have started to reveal a

much broader role of the PIWI-piRNA pathway in meditating the regulation of major

constituents of the genome, which is the focus of this review.

The function of PIWI proteins and piRNAs in transposon silencing and

fertility: an update

Before reviewing the new functions of the PIWI-piRNA pathway, here we provide an

update on its function in transposon silencing and fertility, which also serves as needed

background information of the rest of the review. Transposon silencing has been widely

regarded as a requirement for fertility. However, this relationship has not been sup-

ported by definitive evidence. In contrast, these two functions are separable at least in

Drosophila [43] and mice [44].

Transposon silencing is achieved by repression the expression of retrotransposon

RNAs at both transcriptional and posttranscriptional levels [45]. Transcriptional silen-

cing is mediated by nuclear PIWI proteins such as PIWI in Drosophila and MIWI2

(a.k.a. PIWIL4) in mice, whereas posttranscriptional silencing is mediated by cytoplas-

mic PIWI proteins such as Aubergine (Aub) and Ago3 in Drosophila or MIWI (a.k.a.

PIWIL1) and MILI (a.k.a. PIWIL2) in mice. A prevalent model of transcriptional silen-

cing in Drosophila is that the PIWI-piRNA complex binds to a nascent transposon

transcript (Fig. 1e upper panel). The complex interacts with mediator proteins Asterix

and Panoramix (a.k.a. Silencio). Furthermore, Panoramix interacts with Nxf2 (Nuclear

Export Factor 2) and Nxt1 (Nuclear Transport Factor 2 Like Export Factor 1) which re-

cruit a histone methytransferase, dSetDB1 (a.k.a. Eggless), to methylate Lysine 9 residue

in histone 3 (H3K9). This promotes the repressive chromatin state [16–22, 46–48]. Al-

ternative models such as the Drosophila Piwi protein directly recruiting Heterochroma-

tin Protein 1a to initiate heterochromatinization or recruiting the linker histone H1 to

induce repressed chromatin state have also been proposed [49–51]. The above three

models do not mutually exclude each other and might indeed co-exist in the cell. They

share two common features: (1) transcriptional repression requires the specific binding

of a PIWI-piRNA complex to a nascent RNA at the target site to recruit epigenetic/

chromatin factors but does not require the PIWI slicer activity [52, 53]; (2) transcrip-

tional repression occurs by modifying chromatin structure.

In mice, piRNA-dependent transcriptional silencing in the germline is also achieved

by methylation of DNA through a recruitment scheme that is less known but similar to

that in Drosophila [23, 54–60] (Fig. 1e, lower panel). For example, Tudor Domain-
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Containing 9 (TDRD9) complexes with MIWI2 and suppresses transposons in a

piRNA-dependent manner [61]. MIWI2 is guided by piRNA to the nascent transcript

of specific genomic region to mediate the methylation of the target DNA [60]. MIWI2

in turn appears to directly recruit with DNMT3A, DNMT3A2, AND DNMT3L, and

TDRD9 to achieve methylation, since MIWI2 seems to directly interact with these pro-

teins in co-expression and immunoprecipitation assay in a 293 T cell [23]. However, a

most recent report indicates that a nuclear protein, SPOCD1, interacts with MIWI2 as

well as with DMNT3A, DNMT3L, and components of NURD and BAF chromatin re-

modeling complexes during de novo DNA methylation [24]. Among the DNA methyl-

ases, DNMT3C functions as one of the key methyltransferases that protects male germ

cells from transposon activity [62]. Another nuclear protein, TEX15, also interacts with

MIWI2 in the process [25]. A separate report indicates that TEX15 interacts with MILI,

and the genome of Tex15 mutant is hypomethylated similar to Mili and Dnmt3c but

not Miwi2 mutants [63]. Therefore, the above have revealed some of the key players in

the PIWI-piRNA-mediated mechanism in the de novo DNA methylation, but substan-

tial work is still needed to delineate their exact interactions and relative contributions

to DNA methylation.

In addition, a recent study showed that the Ubiquitin-like, Containing PHD and

RING finger Domains 1 (UHRF1) protein may interact with MIWI and MILI to

deposit DNA methylation or to further recruit PRMT5 to methylate arginine of

histones [64]. This study demonstrated the requirement of UHRF1 in histone and

DNA methylation. However, the co-immunoprecipitation data did not convincingly

show the UHRF1-MIWI/MILI interaction. In addition, MIWI and MILI are in the

cytoplasm yet UHRF1 is in the nucleus. Thus, the nature of MIWI/MILI inter-

action with UHRF1 remains to be further explored. Finally, the zinc finger protein

MORC1 promotes DNA methylation of transposons but not protein-coding genes

in male germ cells during the period of global de novo methylation [65].Whether/

how these proteins work together to methylate the genome of male germ cells

awaits further investigation.

Post-transcriptional silencing occurs in the cytoplasm, where a PIWI-piRNA complex

binds to a piRNA-complementary transposon RNAs and cleaves the RNA by the slicer

activity of the PIWI protein (Fig. 1c). This silencing meanwhile fulfills piRNA biogen-

esis. Both transcriptional and post-transcriptional silencing of transposons by the

piRNA pathway has been well-reviewed (e.g., [66]); thus, this topic will not be further

covered in our review.

In contrast to transposon silencing, little is known about whether/how PIWI proteins

and piRNAs regulate gene expression and other major types of RNAs in the germline.

In this review, we summarize recent research on this less-investigated topic. Recent

progress has led to surprising discoveries that transposons actively regulate the expres-

sion of mRNAs and long noncoding RNAs (lncRNAs), mediated by the PIWI-piRNA

pathway. Moreover, pseudogenes also regulate the expression of their cognate mRNAs,

also mediated by the PIWI-piRNA pathway. Finally, the PIWI-piRNA pathway even

regulates the expression of (sub-) telomeric and (peri-) centromeric transcripts. These

surprising findings have begun to reveal genome-wide functions of the PIWI-piRNA

pathway in functionally links the major classes of genomic sequences and protein-

coding genes at the RNA level.
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Regulation of mRNAs by transposons

A recently discovered function of the piRNA pathway in the cytoplasm is to mediate

the regulation of mRNAs by transposons (Fig. 2). This discovery came as a surprise at

multiple levels—from realizing that many mRNAs contain transposon sequences to

learning that transposons can use these sequences as Trojan’s horses to regulate target

mRNAs, and to revealing the essential role of PIWI proteins and piRNAs in this

regulation.

Many mRNAs in mammals contain transposon sequences in the 3′ untranslated region

The first hint of transposons regulation towards mRNAs came from observations

that some expressed retrotransposon sequences, especially short interspersed nu-

clear element (SINE) and long interspersed nuclear element (LINE) families,

mapped to the 3′ untranslated regions (UTRs) of mRNAs in the mammalian gen-

ome [67, 68] (Fig. 2). For example, 27.7% of mouse and 28.5% of human mRNAs

contain at least one retrotransposon fragment, often a SINE, that is predominantly

in the 3′ UTR of mRNAs (Table 1), while a few others are in 5’UTR and even

fewer are in protein-coding sequences (CDS) [68]. In Drosophila, densities of puta-

tive piRNA target sites in both the 5′ UTR and especially the 3′ UTR regions are

also higher than that in coding sequences [69], even though this bias is not as pro-

nounced as in mammalian genomes. The paucity of the transposon insertions in

CDS likely results from evolutionary selection, because an insertion in CDS dis-

rupts a protein’s sequence and often its function, and thus, it is eliminated from

the gene pool. However, there are frequent instances in which retrotransposon in-

sertions reduce host mRNA expression [67, 68], indicating a potential role of the

inserted transposon sequence in regulating mRNA expression.

Transposon sequences in mRNAs are Trojan’s horses that lead to mRNA degradation

Recent studies indicate that transposon sequences in mRNAs are the targeting sites

of transposon-derived piRNAs that degrade these mRNAs [68] (Fig. 2a). MIWI pro-

motes the degradation of the mRNA from a mCherry reporter containing a B1 or

B2 SINE sequence at its 3′ UTR [68]. This RNA-degradation function depends on

its slicer function. RNA immunoprecipitation (RIP) against MIWI and MILI

followed by RT-PCR, as well as high-throughput sequencing of RNA isolated by

crosslinking immunoprecipitation (HITS-CLIP) in the adult mouse testis showed

that MIWI and MILI directly bind to mRNAs [76, 77]. Additionally, MIWI binds

to mRNAs as a mRNA ribonucleoprotein complex in the testis [77, 78]. MIWI

CLIP-seq indicates that piRNAs preferably bind to the 3′ UTR of mRNAs in

mouse elongating spermatids [72, 76]. Moreover, a group of meiotic mRNAs were

significantly upregulated in Miwi−/− mice round spermatids, and the degradation of

meiotic mRNA exhibited piRNA generation signatures [68, 79]. All these findings

indicate that PIWI proteins and their associated piRNAs might be directly involved

in regulating the stability of target mRNAs.

The involvement of transposon-derived piRNAs in regulating their target mRNAs is

further supported by experiments that investigate the effect of deleting piRNAs or their

target sequences on mRNA stability. In mouse late spermatocytes deficient in Miwi or
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Fig. 2 piRNA mediates mRNA regulation by transposons. a piRNA precursors are transcribed from piRNA

clusters that include retrotransposon sequences (the green box). Mature piRNAs (short green lines)

associated with Piwi proteins guide the Piwi-piRNA complex to complementary transposon sequences

predominately in 3′ UTR and occasionally to 5′ UTR or CDS of specific mRNAs [67–69]. The targeted mRNAs

are degraded through Piwi-slicing and other mechanisms (see Fig. 3). Alternatively, piRNAs are generated

from mRNA that contains transposon sequences (the orange box) in the 3′ UTR. These piRNAs (orange

short lines) in turn target corresponding mRNAs and mediate their degradation [73–75]. b The piRNA-target

RNA pairing rule as exemplified by C. elegans studies. Other organisms appear to follow a similar rule

Table 1 Classification of retrotransposon sequence in mRNA 3′ UTR

Retrotransposon [67] Human 3’ UTR Mouse 3’ UTR

DNA 6.6% 2.9%

LINE.L1 4.7% 2.8%

LINE.L2 4.2% 2.5%

LTR.ERV1 6.4% 2.9%

LTR.ERVK 0.7% 2.6%

LTR.ERVL 4.5% 4.3%

LTR.MALR 5.2% 3.8%

SINE.Alu 5.7% 4.7%

SINE.B2 N.A. 5.0%

SINE.B4 N.A. 4.8%

SINE.MIR 2.7% 6.3%
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Mov10l1, another gene involved in piRNA biogenesis, piRNA biogenesis is deficient,

and the expression levels of a large number of protein-coding genes are altered [68]. In

addition, depletion of the retrotransposon sequences in either the 3′ UTR of prelid1 or

the piRNA cluster that produces the targeting piRNAs results in a six-fold up-

regulation of the prelid1 mRNA level in late spermatocytes. Furthermore, this MIWI-

and MOV10L1-mediated regulation of mRNAs requires the slicer activity of MIWI [68,

80]. Most recently, it was reported that deleting a specific piRNA cluster, pi6, led to up-

regulating of mRNAs related to sperm function, in addition to affecting piRNA-piRNA

precursor interactions [81]. This provides an additional example for piRNA function in

regulating mRNAs and in spermatogenesis.

The suppression of retrotransposon-containing mRNAs in mouse primordial ovarian

follicles also requires MILI and other piRNA pathway components such as mouse Vasa

homolog (MVH) and TDRD9 [82]. In Drosophila, piRNAs suppress the Stellate repeat

mRNA to ensure spermatogenesis, even though this regulation was initially reported as

a siRNA-mediated mechanism [83]. These piRNAs, however, cannot repress the

Stellate mRNA from closely related Drosophila species, thus introducing reproductive

isolation [84]. All these observations demonstrate a direct role of PIWI proteins and

their partner piRNAs in regulating mRNAs.

PIWI-piRNAs targeting rules

The slicing of piRNA-targeted mRNA mostly occurs at the 10th position from the 5′ end

of the targeting piRNAs [13, 68]. In-depth analysis of the cleavage site in the 3′ UTR of

Tdrd1 mRNA with respect to its targeting piRNAs reveal that most piRNAs are aligned

antisense to the mRNA sequence with their 5′ nucleotide being 10 nucleotides away from

the cleavage site, but several percent of piRNAs are aligned with their 5′ nucleotide 11–

20 nucleotides away [68]. This could indicate that the cleavage site for these piRNA-

complementary mRNAs is downstream of the 10th position of piRNAs.

Despite the relatively clear information on the cleavage site as supported by in vitro,

in vivo, and structural analyses, the piRNA targeting rule is still elusive and increasing

effort has been put into revealing this puzzle. In C. elegans and mice, piRNA binding to

target RNA is sequence-dependent but not completely sequence-specific, with position

2–8 as the seed sequence and 14–22 nucleotides are also important for piRNA target-

ing [69, 72, 85, 86], reminiscent of the microRNA seed sequence for target recognition

(Fig. 2b). Further attempts in ectopic expression of human piRNAs in mouse testes

show that perfect matching in nucleotides 2–11 of piRNA is required for mRNA target-

ing [79]. In a different study with deep RNA sequencing that allowed up to four mis-

matches at random positions in a piRNA, all of the 172 mRNAs that were significantly

upregulated in Piwil1−/− testes contain transposon piRNA target sites in their 3′ UTR,

with such a transposon sequence experimentally demonstrated to be responsible for

MIWI-piRNA-mediated degradation [68]. Notably, these 172 mRNAs are quite differ-

ent from the MIWI-target RNAs identified by Vourekas et al. (2016) using iCLIP. This

likely reflects that iCLIP approach revealed stable binding of PIWI to target mRNAs

that do not lead to mRNA degradation but possibly other regulatory effects, in contrast

to RNA sequencing that revealed the degraded products of MIWI binding and cleavage

of another set of target mRNAs (i.e., the mRNA degradome).
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In Drosophila, mutating 1, 2, 3 nucleotides of a given piRNA in different positions

did not abolish the binding ability of Piwi to its target nascent RNA at the genomic site,

but reduce its binding affinity proportional to the number of mutations [50]. These ob-

servations also support the notion that piRNA targeting is sequence-dependent but not

completely sequence-specific.

mRNAs also produce piRNAs

The source of piRNAs is sometimes mRNAs. In Drosophila ovaries, transposons

that are integrated in the 3′ UTR of actively transcribed genes induce piRNA pro-

duction, which in-turn suppresses corresponding gene expression [73, 74] (Fig. 2a,

right part). For example, in the Drosophila ovarian germline, proto-oncogene c-Fos

is repressed post-transcriptionally in germline stem cells (GSCs) by Piwi protein.

As a by-product of this repression, piRNAs are produced from the transposon ele-

ments in the 3′ UTR of c-Fos mRNA [74]. This repression is critical for GSC self-

renewal and differentiation. In the Drosophila ovarian somatic cell (OSC) line, the

3′ UTR of c-Fos mRNA alone is sufficient to introduce gene suppression in a

Piwi-dependent manner [74]. Similarly, in this OSC line, the 3′ UTR of a protein-

coding gene traffic jam produces piRNAs to repress the expression of another

protein-coding gene, fasciclin III [75]. However, in this case, the traffic jam piRNAs

are not transposon-originated piRNAs.

piRNAs can target the protein-coding sequence of mRNA for its degradation

A few publications have reported that piRNAs can also target the protein-coding

sequence (CDS) of a mRNA to degrade the mRNA. For instance, in the Drosophila

embryo, Aub directly binds to the CDS and the 3′ UTR of maternal mRNAs in a

piRNA-dependent manner to facilitate the decay of these maternal mRNAs [87]. The

Aub-piRNA complex is also associated with CCR4 in Drosophila GSCs and represses

the expression of Casitas B-cell lymphoma (Cbl) mRNA [88]. This mRNA contains tar-

get sites for transposon-derived piRNA in both 5′ UTR and 3′ UTR, and these target

sites overlap with Aub CLIP hits. In Caenorhabditis, a sex-chromosome-derived piRNA

suppresses the expression of xol-1 (XO Lethal), the master sex determination gene, via

targeting the CDS region of the xol-1 mRNA [89]. In the silkworm, a Feminizer-derived

piRNA targets the CDS of the Masculinizer mRNA and determines the sex of the silk-

worm [90]. In human breast cancer cell lines, a piRNA called piR-FTH1 shows an in-

verse correlation with the expression of Fth1 (ferritin heavy chain 1) [91]. MILI and

MIWI2 bind to piR-FTH1 to repress the Fth1 mRNA via targeting the CDS region of

Fth1 [91]. These observations from diverse and independent processes, each of which

with biological significance, indicate that transposon sequences in CDS are equally ef-

fective in regulating mRNA stability. Thus, the paucity of piRNA target sites in the

CDS is likely only due to their disruptive effect on protein-coding capacity but not a

lower efficiency for piRNA-targeted degradation.

Finally, the insertion of transposon sequences into mRNAs as piRNA target se-

quences appears to be a dynamic process at least for certain cell types. The transposon

landscape in cultured Drosophila ovarian somatic sheet (OSS) cells differs from that of

cultured Drosophila OSCs [92], indicating that factors even as culture conditions may

Wang and Lin Genome Biology           (2021) 22:27 Page 8 of 21



select for transposon insertions that are in favor of the regulation of mRNA expression

that meets the needs of the given condition.

Protein machinery involved in mRNA degradation by transposon-derived piRNAs

A few studies have further suggested that the PIWI-piRNA regulation of mRNAs

involves canonical mRNA decay machineries. In the Drosophila germline, Aub and

Ago3 colocalize with the mRNA degradation proteins Decapping Protein 1/2

(DCP1/2), Maternal expression at 31B (Me31B), and Pacman (PCM) in the nuage,

a perinuclear riboprotein assembly, forming a complex (the pi-body) in a piRNA-

dependent manner that facilitates mRNA degradation [70] (Fig. 3a). In early Dros-

ophila embryos, the key piRNA pathway components Piwi, Aub, Ago3, Armitage

(Armi), Spindle-E (Spn-E), and Squash (Squ) are all involved in the deadenylation

and decay of maternal Nanos (Nos) mRNA through a piRNA targeting region in

the nos 3′ UTR [71]. Aub is known to achieve so by forming a complex with

RNA-binding protein Smaug (Smg) and the deadenylase CCR4 at the sites of

piRNA–mRNA interaction (Fig. 3b). The deadenylation machinery further recog-

nizes the retrotransposon sequences in the nos 3′ UTR and executes deadenylation

within 4 h [71]. In mouse spermatogenic cells, the piRNA-induced silencing com-

plex (pi-RISC) contains MIWI and CAF1 (Chromatin Assembly Factor 1), a key

catalytic subunit of the CCR4-NOT deadenylase complex [72] (Fig. 3c). Thus, the

piRNA mediated mRNA degradation is not only achieved by MIWI slicing of the

target mRNAs but also by concurrent deadenylation, and possibly decapping, of

mRNAs.

piRNAs activate the translation of mRNAs

The homology between PIWI proteins and eIF2C implies the possibility that they might

promote translation, as first proposed for Aub in promoting translation of nanos

mRNA in Drosophila embryos [93]. This function of Aub has been clearly demon-

strated by a most recent study [94]. In the Drosophila early embryo, Aub physically in-

teracts with eIF3d and the poly(A)-binding protein (PABP) to activate translation of

nanos mRNA in the germ plasm (Fig. 4a).

PIWI proteins and piRNAs have also been implicated in promoting translation in

mammalian systems. MILI is required for germline stem cell self-renewal in the mouse

testis [96]. It forms a stable RNA-independent complex with eIF3a and associates with

the m7G cap-binding complex that contains eIF4E and eIF4G in spermatogonia and

spermatocytes [96]. In 7 dpp spermatogonia (most of which are germline stem cells),

the Mili mutation has no significant effect on the cellular mRNA level but significantly

reduces the rate of protein synthesis. Thus, MILI appears to positively regulate transla-

tion for germline stem cell self-renewal.

The MIWI-piRNA complex also associates with the capping complex, including

cap-binding protein eIF4E, and regulates translation in the mouse spermatocytes

and spermatids [97]. Recently, it has been further reported that, in mouse sperma-

tids, a fraction of piRNAs associate with MIWI and recognize ARE (AU-rich elem-

ent)-containing target mRNAs through imperfect base pairing in the 3′ UTR of

target mRNAs [95]. ARE-binding protein HuR loaded with target mRNA and the
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translation initiation factor eIF3f form a complex with piRNA and MIWI to further

activate the translation of mRNAs required for acrosome formation during sperm-

atid development (Fig. 4b). These lines of evidence illustrate a sophisticated regula-

tory nexus of PIWI-piRNA complex in modulating the transcriptome at

posttranscriptional level. Despite the above findings, the function of PIWI proteins

in translational regulation has not been extensively studied and deserves more

attention.

piRNAs regulate the localization of mRNAs

In addition to working with the mRNA decay machinery, the PIWI-piRNA complex

has also been reported to be involved in the subcellular localization of mRNAs. For ex-

ample, in Drosophila, the Aub-piRNA complex facilitates the localization of critical

germ cell mRNAs to the germ plasm [98]. This function is achieved by working with

Wispy, a germline-specific non-canonical poly(A) polymerase. During Drosophila oo-

genesis, Aub participates in the formation of the polar granule that localizes germline-

specific mRNAs.

Fig. 3 The piRNA-Piwi complex recruits canonical mRNA processing and localization machineries to

regulate mRNAs. a In the Drosophila germline, the mRNA de-capping complex, which includes PCM, Me31B,

DCP1, and DCP2 proteins, is recruited by the piRNA-Piwi complex to HeT-A mRNA to promote the decay of

HeT-A mRNA [70]. b In Drosophila embryos, the piRNA-Piwi complex recruits the Smg protein and CCR4

complex to the 3′ UTR of nos mRNA to facilitate the degradation of nos mRNA [71]. c In the mouse testis,

the piRNA-Piwi complex interacts with Caf1 bound to the 3′ UTRs of target mRNAs to execute mRNA

degradation through the slicer activity of Piwi [72]
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Regulation of lncRNAs by transposons

Recent studies also indicate that transposon sequences in lncRNAs are the target-

ing sites of transposon-derived piRNAs that identify these lncRNAs for degrad-

ation. Global characterization of transposon distribution in the human genome

revealed that the vast majority of lncRNAs (83.4%) overlap with at least one trans-

poson, in contrast to protein-coding sequences—only 6.2% of which overlap with

transposons [99]. In the human genome, 75% of lncRNA transcripts contain an

exon that originates at least partially from a transposon. Different types of transpo-

sons are differentially represented in lncRNA loci, and transposon landscapes differ

among various tissue types [99]. LncRNAs that overlap with transposons are less

expressed as compared to those that do not overlap with a transposon, indicating a

suppressive role of transposon insertion [99].

Fig. 4 The piRNA-Piwi complex mediates transcriptional activation of target mRNAs. a In Drosophila germ

plasm, Aub interacts with PABP and eIF3 subunits to allow unconventional translation and recruits Wispy

poly(A) polymerase to facilitates polyadenylation which also promotes translation [94]. This process is

dependent on Cup binding to eIF4E. b In mouse spermatids, the piRNA-PIWIL1 complex binds to eIF3f and

the 3′ UTRs of ARE-containing target mRNAs, which triggers mRNA looping [95]. HuR binds to the ARE

sequences and mediates the association of other translation initiation factors, including eIF4G and PABPC1,

to activate translation
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Transposons repress lncRNA expression via the PIWI-piRNA pathway

The involvement of piRNAs in transposon regulation of lncRNAs has been demon-

strated in multiple organisms. In mouse spermatocytes, retrotransposon sequences,

mostly SINE, are distributed across the entire length of approximately 1500 lncRNAs

that are upregulated in Miwi−/− testis, which represents ~ 25% of the expressed

lncRNAs in these cells [68]. This distribution is in contrast to their predominant

localization to the 3′ UTR of mRNAs. The transposon-containing lncRNAs become

overexpressed in Miwi and Mov10l1 mutants, implying that the transposon regulation

of lncRNA expression is via the piRNA pathway [68] similar to its role in mediating

transposon regulation of mRNAs (Fig. 5a). Presumably, the PIWI-piRNA complex slices

the target lncRNAs in a way similar to their slicing of mRNAs. However, this remains

to be directly demonstrated.

Other regulatory relationships between transposons, lncRNAs, and piRNAs

The piRNA regulation of lncRNA expression can be manifested in different ways. Some

piRNA clusters that are expressed during the pachytene stage originate from testis-

specific lncRNAs, indicating that lncRNAs themselves can be precursors of piRNAs

[14, 101]. Although not as much is known about the relationship among transposons,

lncRNAs, and piRNAs in the primordial germ cells, in their precursor cells in humans,

i.e., human embryonic stem cells and induced pluripotent stem cells (iPSCs), the

presence of transposon families such as HERVH (human endogenous retrovirus H)

elements in lncRNAs is correlated with high expression levels of host lncRNAs,

implicating that HERVH sequences positively regulate the expression of lncRNAs in a

cell-type-specific manner [99], even though it is not known whether such regulation oc-

curs at the transcriptional or post-transcriptional level. In Drosophila OSS and OSC

cells, transposon insertions around lncRNA stimulate the expression of corresponding

lncRNAs in a Piwi-dependent manner [92], implying a possible role of piRNA in tran-

scriptional regulation of lncRNA expression.

In addition, some lncRNAs can produce piRNAs to promote gene expression at the

transcriptional level. In a human breast cancer cell line (MCF7), a lncRNA called

Growth Arrest Specific 5 (GAS5) facilitates the transcription of TRAIL [transcription of

tumor necrosis factor (TNF)-related apoptosis-inducing ligand] mRNA. This is through

GAS5-derived piRNAs that are associated with PIWI proteins [100]. These piRNA-

PIWI complexes then recruit WDR5 and the COMPASS complex, a key complex for

epigenetic modification, to the promoter of the TRAIL gene to modify the epigenetic

status of the gene, which facilitates TRAIL transcription. This indicates an important

role of PIWI-piRNA complex in epigenetic regulation of gene expressions (Fig. 5b). In

Tetrahymena, piRNAs that are derived from noncoding RNA loci bind to Tetrahymena

PIWI protein Twi8p and its target lncRNAs, which leads to a decrease in the level of

the targeted lncRNAs [102]. These roles are similar to what has been found in mamma-

lian systems.

The regulation of mRNAs by pseudogenes

There are 14,000 pseudogenes in the human genome [103]. Analysis of human sperm

small RNAs reveals that some piRNA clusters are located within pseudogenes [104].
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piRNAs derived from pseudogenes are predicted to target protein-coding cognate

genes. In mouse late spermatocytes, at least 14 genes are significantly regulated by their

pseudogenes [68]. Thus, pseudogene regulation of mRNAs via piRNAs may be a signifi-

cant mechanism in the germline that has been largely ignored.

Recent studies indicate that piRNA derived from pseudogenes can regulate the

expression of their cognate mRNAs. The first clear demonstration of such a

function comes from a study of the mouse late spermatocyte. The mRNA level of

the Stambp gene is dramatically increased in Miwi−/− and Mov10l1−/− late sper-

matocytes, indicating that the piRNA pathway may be involved in preventing the

over-expression of Stambp mRNA [68] (Fig. 6a). However, the Stambp mRNA

complements to PIWIL1-associated piRNAs that do not map to transposons but

uniquely to its pseudogene, Stambp-ps1 [68]. Indeed, knocking out Stambp-ps1 ex-

pression abolishes the Stambp-ps1-derived piRNAs and causes drastic increases in

Fig. 5 piRNAs mediate transposon regulation of lncRNAs. a piRNA mediates post-transcriptional regulation

of mRNAs. piRNA precursors are transcribed from piRNA clusters that contain transposon sequences and are

processed into mature piRNAs. Mature piRNAs are then loaded onto Piwi proteins and guide the Piwi

complex to target lncRNAs that contain complementary transposon sequences to degrade these lncRNAs

[68]. b piRNA mediates transcriptional regulation of mRNAs. In a human breast cancer cell line (MCF7), the

Growth Arrest Specific 5 (GAS5) lncRNA produces piRNAs that are associated with Piwi proteins [100]. This

piRNA-Piwi complex then recruits WDR5 and the COMPASS epigenetic complex to the promoter of the

TRAIL (transcription of tumor necrosis factor (TNF)-related apoptosis-inducing ligand) gene to modify its

epigenetic status to promote its transcription
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the Stambp mRNA level, illustrating the importance of a pseudogene in the regula-

tion of its cognate active gene via the piRNA [68].

Conversely, pseudogenes can also be regulated by piRNAs. In human breast cancer

cell lines MCF7 and ZR75–1, a piRNA called piR-36,712 directly binds to pseudogene

SEPW1P RNA and reduces its level [105] (Fig. 6b). This releases its bound miRNAs

miR-7 miR-324, allowing more miR-7 miR-324 to target the mRNA of its cognate gene

SEPW to reduce its stability and translation. The reduced SEWP level in turn weakens

its inhibition towards p53 and p21, allowing p53 and p21 to reduce the suppression of

E cadherin expression by a zinc finger protein called Slug, which blocks cancer

Fig. 6 piRNAs mediate pseudogene regulation of cognate mRNAs. a Anti-sense transcripts of pseudogenes

serve as precursors of piRNAs. These pseudogene-derived piRNAs form Piwi-piRNA complex that binds to

complementary sequences in the cognate mRNAs to promote their degradation [68]. b In human breast

cancer cell lines, the Piwi-piR-36712 complex degrades the RNA of pseudogene SEPW1P, which releases

SEPW1P-RNA-bound miR-7 and miR-324 to bind to cognate SEPW mRNA, promoting its degradation and

inhibiting its translation [105]. The reduction of SEPW protein weakens its repression towards p53 and p21,

allowing p53 and p21 to release Slug suppression towards E cadherin expression, which blocks

cancer progression
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development [105]. This type of regulation may be specific to cancer cells because piR-

NAs are not detected in normal somatic cells, such as breast epithelial cells,

Pseudogene-derived piRNAs have been identified across the evolutionary tree. In

Tetrahymena, pseudogene-derived small RNAs have been identified that have bind-

ing preference to Twi2 (Tetrahymena PIWI2) but not to Twi7 or Twi8 [106]. In

the marmoset testis, piRNA clusters contain processed pseudogenes that are

antisense-oriented relative to their cognate genes so they can produce piRNAs that

target their cognate genes (cf. Fig. 6aa) [107]. In addition, pig piRNA clusters are

also highly enriched for exon sequences of pseudogenes [108]. In vertebrate ge-

nomes, endogenous bornavirus-like nucleoprotein elements (EBLNs) represent a

special type of genomic sequences derived from ancient bornaviral nucleoprotein

mRNA via retrotransposition. Human EBLNs are actively transcribed pseudogenes

that give rise to piRNAs with a possible role in interfering with ancient bornaviral

infection [109]. Thus, regulation by pseudogene-derived piRNAs is likely a con-

served regulatory pathway.

Diverse functions of satellite-repeat derived piRNAs

Satellite-repeated derived piRNAs negatively regulates mRNA stability

In Drosophila, it has been shown that pericentromeric piRNAs, specifically, AT-chX

piRNAs and Su(Ste) piRNAs, also suppresses the vasa mRNA of a different species

of Drosophila during interspecies mating to ensure reproductive isolation [84].

Most recently, it was shown that a large number of piRNAs were derived from a

satellite repeat in both the soma tissues and germline of the mosquito Aedes

aegypti [110]. Two of them, tapiR1 and tapiR2 (tandem repeat-associated piRNA1

and 2), are associated with Aedes aegypti PIWI protein Piwi4. The resulting Piwi4-

piRNA complex silence target RNAs (both mRNA and lncRNA) via a sequence-

specific recognition rule reminiscent of microRNA seed sequence. Notably, the

piRNA-generating satellite repeats were highly conserved across mosquito species

for approximately 200 million years and are very similar to that of other higher or-

ganisms. Hence, there might be an evolutionarily conserved mechanism for post-

transcriptional regulation mediated by PIWI-satellite piRNA complex.

Subtelomeric piRNAs regulate telomeric function

Remarkably, the piRNAs are even involved in regulating telomeres and centromeres.

Telomeric and centromeric piRNAs have been reported in various organisms. Shortly

after piRNAs were characterized, piRNAs were mapped to subtelomeric regions of the

Drosophila genome. One of these piRNAs, the 3R-TAS1 piRNA, regulates the epigen-

etic state of the target subtelomeric sequence [111] and is essential for germline stem

cell maintenance [112]. Telomeric piRNAs in Drosophila are required for the depos-

ition of Heterochromatin Protein 1 (HP1) and its homolog Rhino as well as epigenetic

suppression of telomeric retrotransposon [113, 114]. Loss of piRNA pathway proteins

results in the significant upregulation of telomeric retroelement transcripts and down-

regulation of telomeric piRNAs [115–118]. HP1a, a partner of Piwi protein [49, 111], is

required for the generation of piRNAs that map to telomeres and peri-centromeres in

the Drosophila germline [119]. The nuclear CCR-NOT complex is required for the
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degradation of telomeric transcripts in a Piwi-dependent manner [120]. In addition,

Aub, Armi, and Ago3 mutations reduce telomeric piRNAs production and disrupt the

binding between telomere and telomere protection complex [117, 121]. All these find-

ings together indicate an essential role of the piRNA pathway in subtelomeric and telo-

meric function in Drosophila.

Interestingly, the prevalence of subtelomeric piRNA clusters is significantly higher in

the genomes of Drosophila in the wilderness than in standardized laboratory Drosoph-

ila stocks [122]. Since a well-established telomeric function in Drosophila is to suppress

telomeric retrotransposons, this difference may reflect another function of telomeric

piRNAs in the suppression of telomeric retrotransposons, which might be more needed

by flies in the wilderness that are possibly more ridden with retrotransposons.

Because mammalian telomeres are composed of simple repeats instead of telomeric

retroelement, the telomeric function of piRNA in Drosophila is unlikely to be con-

served. However, subtelomeric sequence and structure is highly conserved from Dros-

ophila to mammals. Hence, some other important function of the subtelomere, such as

repressing and regulating nearby euchromatic gene expression (position effect), might

be conserved in higher organisms.

In Tetrahymena, telomeric repeat-derived small RNAs selectively bind to Twi10

[106]. In Caenorhabditis, perfect telomeric small RNAs are extremely rare among small

RNAs that are immunoprecipitated with Ago proteins; however, there are significant

numbers of telomeric small RNAs with mismatches were associated with Ago proteins

[123]. These small RNAs might be involved in telomere protection in a way similar to

that in Drosophila.

Pericentromeric and centromeric piRNAs regulate centromere function

In Drosophila, pericentromeric satellite repeats are known to be crucial for centromere

function and give rise to piRNAs [13, 28, 124] that are critical for the suppression of

satellite RNA expression [28, 125, 126]. The involvement of piRNAs in telomeres and

centromeres is likely to be crucial for the genome integrity and segregation during

germ cell division. A clear requirement of the Piwi-piRNA pathway for chromosome

segregation is illustrated by a most recent study in mice, where MIWI prevents aneu-

ploidy during meiosis by piRNA-guided cleavage of excess major and minor satellite

RNAs [127]. This allows normal assembly of homologous kinetochore pairs. Overex-

pression of these satellite RNAs in wildtype meiotic cells also causes aneuploidy. Dicer

facilitates the degradation of MIWI cleavage products and other double-strand satellite

RNAs. These findings, supported by another latest study on Dicer [128], start to reveal

a direct role of PIWI proteins and satellite RNAs in chromosome segregation during

meiosis.

Conclusion

A eukaryotic genome is composed of protein-coding genes, transposons, pseudogenes,

centromeres, telomeres, and other repeat sequences. Recent studies, mostly in the

germline, start to reveal important roles of piRNAs in functionally linking these major

constituents of the genome. piRNAs can be derived from transposon RNAs, pseudo-

gene RNAs, mRNAs, lncRNAs, and telomeric/centromeric repeat RNAs and

Wang and Lin Genome Biology           (2021) 22:27 Page 16 of 21



subsequently partner with PIWI proteins to recognize complementary sequences in

these RNAs. These observations together start to reveal a complex network of regula-

tion mediated by piRNAs that unifies the genome at the post-transcriptional level. This

is perhaps the first regulatory network of any kind that executes genome-wide regula-

tion in any cell type. Future investigations on this complex network at the mechanistic

level will further reveal how this network interacts with other canonical RNA regula-

tion mechanisms to define the genomic function in germ cells and shed light on such

function in other cell types.
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Glossary

Transposon:

A DNA segment that can undergo transposition into a different site in the genome.

Retrotransposons:

Transposons that transcribe itself into a RNA intermediate for reverse transcription to produce double-stranded

DNA for transposition (insertion).

Pseudogene:

A DNA segment that is an imperfect copy of a functional gene, often including a (sometime altered) promoter.

Most pseudogenes are transcribed but not translated due to mutations in protein-coding sequences.

lncRNA:

Long non-coding RNAs, which are conventionally defined as RNAs that are at least 200-nucleotide in length but

do not contain a protein-coding sequence.

Dicer:

A type of RNase III family endoribonucleases that cleave double-stranded RNA into short double-stranded RNA

fragments of mostly 21–22 nucleotides.

Centromere:

The region of a chromosome, containing highly repetitive DNA sequence, that serves as the attachment site for

microtubules of the spindle during cell division.

Pericentromere:

The chromosomal regions flanking the centromere that contains highly repetitive DNA and are heterochromatic.

Telomere:

The two end-regions of a chromosome that protect the chromosome from shortening after DNA replication or

from fusion to other chromosomes.

Subtelomere:

The two regions of a chromosome that is right next to the telomere, containing of highly repetitive DNA

sequences and are heterochromatic.

Pachytene:

A mid-stage of the prophase of meiosis I, following zygotene, characterized by the presence of shortened and

thickened paired chromosomes, with the two chromatids clearly separate.
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