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Abstract

Prolactin, growth hormone and placental lactogen are
members of a family of polypeptide hormones which share
structural similarities and biological activities. Numerous
functions have been attributed to these hormones, among
which stand out their recently discovered effects on
angiogenesis, the process by which new blood vessels are
formed from the pre-existing microvasculature. Prolactin,
growth hormone and placental lactogen, along with two
non-classical members of the family, proliferin and
proliferin-related protein, can act both as circulating
hormones and as paracrine/autocrine factors to either
stimulate or inhibit various stages of the formation and
remodeling of new blood vessels, including endothelial cell
proliferation, migration, protease production and apop-
tosis. Such opposing actions can reside in similar but
independent molecules, as is the case of proliferin and
proliferin-related protein, which stimulate and inhibit
angiogenesis respectively. The potential to exert opposing
effects on angiogenesis can also reside within the same

molecule as the parent protein can promote angiogenesis
(i.e. prolactin, growth hormone and placental lactogen),
but after proteolytic processing the resulting peptide frag-
ment acquires anti-angiogenic properties (i.e. 16 kDa
prolactin, 16 kDa growth hormone and 16 kDa placental
lactogen). The unique properties of the peptide fragments
versus the full-length molecules, the regulation of the
protease responsible for specific protein cleavage, the
selective expression of specific receptors and their associ-
ated signal transduction pathways are issues that are being
investigated to further establish the precise contribution of
these hormones to angiogenesis under both physiological
and pathological situations. In this review article, we
summarize the known and speculative issues underlying
the effects of the prolactin, growth hormone and placental
lactogen family of proteins on angiogenesis, and address
important remaining enigmas in this field of research.
Journal of Endocrinology (2002) 173, 219–238

Introduction

In the past three decades, a striking number of studies have
been published on angiogenesis - the outgrowth of new
blood vessels from pre-existing ones. This process is
essential for tissue growth during development and nor-
mally stops at adulthood. Thus, with the exception of the
female reproductive organs (i.e. ovary, uterus, and pla-
centa), where angiogenesis occurs as a normal process, in
most adult tissues capillary growth occurs only rarely and
in association with tissue repair after injury by wounding
or inflammation. However, the lack of proper spatial and
temporal regulation of angiogenesis contributes to various
pathological conditions, including tumor growth, ophthal-
mic and rheumatic diseases, psoriasis, hemangioblastoma
and ischemic diseases (Folkman 1995). It is widely

accepted that angiogenesis is regulated by the interplay of
pro- and anti-angiogenic molecules and that the blood
vessels remain quiescent when the effects of these factors
are at equilibrium. This balance can be disrupted by the
overproduction of an endogenous promoter or the under-
production of an endogenous inhibitor of angiogenesis,
leading to the activation of the normally quiescent
angiogenic process. Conversely, when the balance is
shifted in favor of the anti-angiogenic factors, the angio-
genic process is impaired, and growth of new blood vessels
does not fulfil the tissue requirements.

Angiogenesis regulators can modulate the ability of
endothelial cells to digest the basement membrane, pro-
liferate, migrate and associate into a new capillary net-
work. Members of the vascular endothelial growth factor
(VEGF) and angiopoietin families are known to have a
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predominant role as pro-angiogenic factors (Ferrara 1999,
Ferrara & Alitalo 1999, Gale & Yancopoulos 1999, Holash
et al. 1999, Marti & Risau 1999, Yancopoulos et al. 2000).
Conversely, platelet factor 4, thrombospondin-1, and the
recently discovered angiostatin and endostatin stand out
as important endogenous anti-angiogenic molecules
(O’Reilly 1997, O’Reilly et al. 1997, Cao 1998,
Hagedorn & Bikfalvi 2000, Jiménez et al. 2000). Some of
these mediators have received special attention since their
action is specific for vascular endothelial cells. The control
of the endogenous synthesis or the exogenous admin-
istration of specific factors in pathologies associated with
exacerbated or impaired angiogenesis are considered
promising approaches for therapeutically modulating
angiogenesis, since these molecules would specifically
affect endothelial cells and no other cell types. Some of
the specific regulators of angiogenesis are already under-
going phase I, II and III clinical trials (for reviews see
Twardowski & Gradishar 1997, Nelson 1998, Ferrara &
Alitalo 1999, Carmeliet & Jain 2000, Hagedorn & Bikfalvi
2000, Kerbel 2000, Thompson et al. 2000).

While tremendous effort has been concentrated on
the investigation of factors thought to be specific for
angiogenesis, the role of ‘broad action agents’, such as
hormones, remains obscure. The study of the first type
of molecules has been facilitated because they have
clearly identified cellular targets (vascular endothelium,
smooth muscle and pericytes); however, the study of
hormones is difficult to interpret owing to the quantity
and diversity of their targets and actions. The effects of
hormones on the angiogenic process may be much more
complex since they could act directly on vascular cells, or
indirectly by recruiting other cell types to produce other
regulators.

One of the major advances in physiology over the past
decade has been to realize the importance of local,
paracrine, or autocrine actions of hormones, independent
of their systemic effects. Just as significant has been the
better understanding of the vasculature as an endocrine
tissue (Samson 1997). The endothelium can produce many
different hormones that locally regulate its function, and
endothelial cells are ideally positioned to respond to
circulating factors. It has recently been recognized that
members of the family of hormones that include prolactin
(PRL), placental lactogen (PL), and growth hormone
(GH), along with two non-classical members of the family,
proliferin and proliferin-related protein, can be locally
produced by endothelial cells or neighboring cells and can
act as pro- or anti-angiogenic factors. In the following
sections we will briefly describe the effects of the PRL/
GH/PL family members on angiogenesis. The possible
role of these molecules as autocrine, paracrine and/or
endocrine mediators will be discussed, with special refer-
ence to the proteolytic fragments of PRL which have
anti-angiogenic effects. Clinical implications and future
directions will also be addressed.

The prolactin/growth hormone/placental lactogen
family

The classical members of this family of peptide hormones,
PRL, GH, and PL, are homologous proteins thought to
have arisen from a common ancestral gene. PRL and GH
are mainly secreted by the anterior pituitary of all verte-
brates, while PL is present only in mammals and is secreted
by the placenta. These three hormones share many struc-
tural and biological features. Similarity at the mRNA and
protein levels between GH, PL and PRL has been
extensively reviewed (Nicoll et al. 1986, Goffin et al.
1996b) and clearly illustrated (Kelly 1990), with important
differences noted among species. However, the relation-
ship between structural homology and biological proper-
ties is not entirely clear. For example, there is 85%
sequence identity between the peptide sequences of hu-
man GH and PL, while human PRL shares approximately
25% similarity with the other two hormones. Never-
theless, human PL has a very weak affinity for the GH
receptor (Lowman et al. 1991) while all three human
hormones bind with high affinity to the PRL receptor
(Nicoll et al. 1986, Goffin et al. 1996b). Independent of
species-related differences, all three hormones contain
between 190–200 amino acids and the molecular mass of
the mature proteins is �22–23 kDa. Their tertiary struc-
ture is stabilized by intra-chain disulfide bonds and
is basically composed of four anti-parallel �-helices (for
reviews see Goffin et al. 1996b, Bole-Feysot et al. 1998).
Moreover, PRL and GH receptors are structurally and
functionally related to members of the class 1 superfamily
of cytokine receptors (Bazan 1989, Kelly et al. 1991,
Cosman 1993). These receptors are transmembrane pro-
teins that share highly conserved sequences in their
extracellular and intracellular domains (Murakami et al.
1991, Cosman 1993, O’Neal & Yu-Lee 1993, Bole-
Feysot et al. 1998, Waters et al. 1999), and they all can
activate the JAK/STAT (Janus kinases/signal transducers
and activators of transcription) signal transduction path-
way as a consequence of ligand binding-induced homo-
dimerization of the receptors (Ihle & Kerr 1995, Yu-Lee
1997, Bole-Feysot et al. 1998, Waters et al. 1999).

PRL and GH were originally named after their first
discovered functions, that is, the stimulation of milk
production and linear body growth respectively. However,
both hormones have a remarkable variety of biological
activities. More than 300 functions have been described
for PRL, including actions on reproduction, osmoregu-
lation, behavior, immune regulation, growth, and metab-
olism (Ben-Jonathan et al. 1996, Bole-Feysot et al. 1998,
Freeman et al. 2000). Likewise, GH actions include the
stimulation of body and bone growth, the regulation of
protein, carbohydrate and lipid metabolism, and modu-
lation of reproductive and immune functions, to name a
few (Ohlsson et al. 1998, Waters et al. 1999, Hull &
Harvey 2001). On the other hand, PL was initially

A M CORBACHO and others · Roles of the PRL/GH/PL family in angiogenesis220

www.endocrinology.orgJournal of Endocrinology (2002) 173, 219–238

Downloaded from Bioscientifica.com at 08/23/2022 11:14:36AM
via free access



discovered for its ability to bind the PRL receptor with
high affinity and to mimic the action of PRL (Kelly
et al. 1976). This hormone acts on the maternal compart-
ment to stimulate mammary gland development and to
maintain the corpus luteum and progesterone production
(Talamantes & Ogren 1988). The biological actions and
receptor-signaling events initiated by PRL, GH and PL
have been extensively reviewed recently (Ben-Jonathan
et al. 1996, Harvey & Hull 1997, Anthony et al. 1998,
Bole-Feysot et al. 1998, Soares et al. 1998, Linzer & Fisher
1999, Freeman et al. 2000, Lewis et al. 2000, Hull &
Harvey 2001), and only those effects related to angio-
genesis will be described here in detail.

Effects of prolactin isoforms on angiogenesis

PRL exists in several molecular forms, some of which arise
from alternative splicing of the PRL mRNA, but more
from post-translational processing of the predominant
23 kDa form (named full-length PRL or 23K PRL) (Sinha
1995). In fact, PRL does not circulate as a single molecular
species but as a family of related proteins (Smith &
Norman 1990). In humans, circulating PRL appears to
consist of five isoforms: the classical 23 kDa molecule, a
glycosylated PRL of 25 kDa, a 16 kDa fragment of PRL,
dimers of 50–60 kDa (‘big PRL’), and aggregates of
>100 kDa (‘big big PRL’) (for review see Smith &
Norman 1990, Sinha 1992, 1995). In addition, a signifi-
cant proportion of PRL molecules are phosphorylated on
serine and threonine residues, which accounts for much of
the charge heterogeneity observed for PRL (Walker
1994).

The functional diversity of PRL was thought to be
explained, in part, by the molecular heterogeneity of the
hormone (Sinha 1995), but there are few examples which
clearly support this notion. The actions of different mem-
bers of the PRL family on angiogenesis provide one of the
clearest examples directly relating PRL functional diver-
sity to its structural heterogeneity. In this regard, full-
length PRL was considered to be inactive on blood vessel
growth until recent data showed its potential as a pro-
angiogenic factor. Conversely, the enzymatically cleaved
16 kDa N-terminal fragment of PRL has a well-defined
anti-angiogenic effect.

Prolactin (23K form)

The effects of PRL on angiogenesis were largely un-
recognized since most studies failed to demonstrate any
significant effect of PRL using in vitro and in vivo assays for
angiogenesis (Ferrara et al. 1991, Clapp et al. 1993, Dueñas
et al. 1999a). Nevertheless, recent evidence shows that
PRL can stimulate the angiogenic process, but that its
action may depend on the model utilized and the local
conditions of the vascular endothelium (Struman et al.

1999, Merkle et al. 2000). This is perhaps best exemplified
by studies aimed at identifying a role for PRL in the chick
chorioallantoic membrane assay (CAM). This is an experi-
mental approach traditionally used by embryologists that
involves the analysis of the developmental potential of
grafts implanted in the chorioallantoic membrane of the
growing chicken embryo (Cockerill et al. 1995). The
CAM appears on the yolk sac 48 h after incubation of the
fertilized egg, becomes vascularized and grows rapidly
over the next 6–8 days, and finally stops growing after day
11 (Ausprunk et al. 1974). Thus, the CAM assay can be
performed in two different stages: before day 11, when the
endothelial cells are actively dividing (early-stage bioassay)
and after day 11, when endothelial cells divide infre-
quently and gradually acquire the characteristics of differ-
entiated endothelial cells (late-stage bioassay). PRL has no
effect on capillary outgrowth in the early-stage bioassay,
that is, on the actively developing blood vessels (Clapp
et al. 1993, Struman et al. 1999). Surprisingly, PRL
stimulates the formation of new capillaries when tested on
non-growing blood vessels during the late-stage CAM
bioassay (Struman et al. 1999). These paradoxical results
suggest that PRL may act to promote angiogenesis only in
more advanced developmental stages, and hence that its
action depends upon the local state of the vascular bed.
PRL may act indirectly through the stimulation of angio-
genic factors produced by non-endothelial cell types, or
alternatively, the endothelial cells at this later stage of
development may express the PRL receptor and respond
directly to PRL. Thus, these findings may reflect the
regulated expression of the PRL receptor in endothelial
cells. Along with this possibility, the PRL receptor is not
detected in all types of endothelial cells. For example, no
specific binding sites for PRL were found on bovine brain
capillary endothelial cell membranes (Clapp & Weiner
1992), and no PRL receptor mRNA was detected in rat
retina capillary endothelial cells (Ochoa et al. 2001),
bovine brain or in human umbilical vein endothelial cells
(C Clapp & P A Kelly, unpublished observations). Like-
wise, studies in these cells failed to show direct effects of
PRL on cell proliferation (Ferrara et al. 1991, Clapp et al.
1993, Struman et al. 1999, Ochoa et al. 2001), formation of
capillary-like tubes in type I collagen gels (Clapp et al.
1993), and plasminogen activator inhibitor-1 (PAI-1)
expression (Struman et al. 1999). PAI-1 is a known
inhibitor of the urokinase type plasminogen activator
(uPA), generally assumed to be involved in the stimulation
of some of the early steps of angiogenesis, i.e. local
proteolytic remodeling of matrix proteins and migration of
endothelial cells (Bacharach et al. 1992).

However, in contrast to the above studies, a recent
report demonstrated that bovine pulmonary artery endo-
thelial cells express the mRNA for the PRL receptor and
that these cells do respond to PRL (Merkle et al. 2000). In
this study, monolayers of bovine pulmonary artery endo-
thelium were subjected to mechanical injury and then
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treated with PRL. PRL disrupted the actin cytoskeleton,
produced changes in cell shape and reduced the adhesion
of the cells to the substrate (Merkle et al. 2000). Whether
PRL receptors and actions depend on the specific con-
dition (mechanical injury) or the type of endothelium
(bovine pulmonary artery) was not addressed. Likewise,
the functional implications of these actions are unclear.
Possibilities include an alteration of the barrier function
and of the migration of endothelial cells, both of which are
essential in blood vessel formation and thus PRL may have
a role in the angiogenic process associated with tissue
injury.

In summary, these data reveal that PRL may stimulate
angiogenesis, but that its effects are limited by local
conditions. It could be reasoned that specific developmen-
tal stages or stress conditions, such as injury, can induce the
expression of the PRL receptor in vascular endothelium
allowing PRL to promote angiogenesis or alter endothelial
cell function. In addition, there are fundamental differ-
ences in the control, duration and extent of angiogenesis
under physiological/pathological conditions that need to
be contemplated when studying the action of putative
regulators. Because in vitro studies disrupt these natural
interactions and add artificial conditions (culture substrata
and media, cell passage, etc) that further complicate
analysis, more studies using intact physiological models
should be performed and warrant further investigations.

16K prolactin

PRL can be proteolytically cleaved between amino acid
residues Tyr145 and Leu146 and between Trp148 and Ser149

by a naturally occurring mechanism (Andries et al. 1992,
Baldocchi et al. 1993). Excision of the tripeptide (Leu-
Val-Trp) and reduction of the disulfide bonds yields
N-terminal 16 364 Da and C-terminal 5808 Da fragments
(Baldocchi et al. 1993) (Fig. 1). The 16 kDa fragment of
PRL (16K PRL) retains PRL-like effects; it is mitogenic
in the pigeon crop-sac and in the Nb2 lymphoma cell
bioassays (Clapp et al. 1988), it has mammary mitogenic
activity in the rat in vivo (Mittra 1980a), and it is both
mitogenic and lactogenic in rat mammary cells in culture
(Clapp et al. 1988). However, this proteolytic cleavage is a
major posttranslational event that creates diversity in PRL
actions, since the resulting 16K PRL displays biological
actions not shared with the parent molecule. The specific
effects of 16K PRL include inhibition of angiogenesis,
both in vivo and in vitro (Fig. 2) (Ferrara et al. 1991, Clapp
et al. 1993, Dueñas et al. 1999a, Struman et al. 1999) and
‘proinflammatory’ stimulation of the expression of the
inducible isoform of nitric oxide synthase (iNOS) and
nitric oxide (NO) production by rat pulmonary cells
(Corbacho et al. 2000b).

16K PRL is a potent inhibitor of in vitro angiogenesis
(Fig. 2). It inhibits basal and basic fibroblast growth factor
(bFGF)- or VEGF-stimulated proliferation of human

(Clapp et al. 1993), bovine (Ferrara et al. 1991, Clapp et al.
1993, Struman et al. 1999) and rat (Ochoa et al. 2001)
endothelial cells. Moreover, 16K PRL causes endothelial
cell dissociation and disruption of the capillary-like struc-
tures formed when cells are cultured in three-dimensional
type I collagen gels (Clapp et al. 1993). These capillary-
like structures have a characteristic lumen and basal
membrane, and they reflect the ability of endothelial cells
to migrate, associate and modify the underlying extracel-
lular matrix (Montesano et al. 1983). In this regard, 16K
PRL also stimulates levels of PAI-1 mRNA and protein,
and it inhibits uPA activity in endothelial cells (Lee et al.
1998, Struman et al. 1999). PAI-1 is the main inhibitor of
uPA, and is known to prevent angiogenesis by limiting
uPA-induced degradation of the extracellular matrix
(Menashi et al. 1993), a requisite for angiogenesis. The
formation of capillary-like structures in collagen gels
requires uPA and is completely blocked by anti-uPA
antibodies or by inhibiting the interaction of uPA with its
receptor (Kollwijk et al. 1998). Therefore, 16K PRL is
able to act directly on endothelial cells to inhibit processes
that are essential for angiogenesis, such as endothelial cell
growth, cell–cell and cell–extracellular matrix interactions,
and the degradation of extracellular matrix.

Finally, the ability of 16K PRL to inhibit angiogenesis
also appears to be related to its capacity to promote
endothelial cell apoptosis. 16K PRL, but not full-length
PRL, stimulates apoptosis of endothelial cells as revealed
by induction of DNA fragmentation, activation of the

Figure 1 Diagram showing the linear sequence of a molecule of
rat prolactin (PRL) with proteolytic cleavages between amino acids
145 and 149, which upon reduction of the intermediate disulfide
bond generates an amino-terminal 16·4 kDa fragment and a
carboxyl-terminal 5·8 kDa fragment.
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caspase cascade and inhibition of the anti-apoptotic action
of the Bcl-2 family of proteins (Martini et al. 2000). Thus,
16K PRL action is not limited to the inhibition of the
initial stages of angiogenesis, but may also affect apoptosis-
related events such as vascular remodeling processes and
blood vessel regression (Dimmeler & Zeiher 2000). Simi-
larly, the anti-angiogenic factors angiostatin (Claesson-
Welsh et al. 1998, Lucas et al. 1998), endostatin (Dhanabal
et al. 1999) and thrombospondin-1 (Guo et al. 1997,
Jiménez et al. 2000) induce endothelial cell apoptosis.

The anti-angiogenic properties of 16K PRL have been
analyzed in vivo using the rat cornea neovascularization
assay and the CAM assay (Fig. 2). To investigate the effect
of 16K PRL, corneal angiogenesis was stimulated with
bFGF in the absence or presence of 16K PRL, using PRL
as a control. While full-length PRL had no effect, 16K
PRL reduced the magnitude of the angiogenic bFGF-
induced response by more than 65% (Dueñas et al. 1999a).
Similarly, when tested on the early-stage CAM bioassay,
16K PRL inhibited the proliferation of actively growing

Figure 2 Anti-angiogenic actions of 16K PRL have been demonstrated using multiple in vitro and in vivo models of angiogenesis. In vitro
models included assays for endothelial cell (EC) proliferation, apoptosis, and capillary-like formation in a collagen three-dimensional matrix.
Studies in vivo included analysis of the effect of 16K PRL on angiogenesis of chicken chorioallantoic membrane, tumor growth in mice,
and neovascularization of rat cornea. The identity of 16K PRL receptor and its mechanism of action remain unknown. However, 16K PRL
inhibition of endothelial cell proliferation has been shown to involve the inactivation of the Ras/Raf/MEK/MAPK signaling pathway. The
induction of apoptosis by 16K PRL occurred through the activation of the caspases cascade and the regulation of members of the Bcl-2
family (Bcl-X). Finally, 16K PRL induced the expression of plasminogen activator inhibitor 1 (PAI-1), contributing to the inhibition of
extracellular matrix protease activity.

Roles of the PRL/GH/PL family in angiogenesis · A M CORBACHO and others 223

www.endocrinology.org Journal of Endocrinology (2002) 173, 219–238

Downloaded from Bioscientifica.com at 08/23/2022 11:14:36AM
via free access



capillaries (Clapp et al. 1993, Struman et al. 1999).
Remarkably, 16K PRL had no effect on the outgrowth of
capillaries of the late-stage CAM bioassay (Struman et al.
1999), suggesting that 16K PRL might not promote the
regression of an already established capillary network. This
observation contrasts with data showing that endothelial
cell capillary-like structures in collagen gels are dis-
assembled in the presence of 16K PRL (Clapp et al. 1993),
and with the proposal that 16K PRL induces apoptosis
(Martini et al. 2000) as a means of blood vessel regression
(Dimmeler & Zeiher 2000). Therefore, in vivo conditions
present in specific tissues or developmental stages, such as
the CAM, may influence the effect of 16K PRL as an
anti-angiogenic factor.

The anti-angiogenic properties of 16K PRL make it a
potential factor to limit angiogenic-dependent diseases
such as tumor growth. A recent study clearly demonstrates
that 16K PRL can inhibit tumor vascularization and
growth from human colon cancer cells implanted in T-
and B-cell-deficient mice (Bentzien et al. 2001). Cancer
cells stably transfected with an expression vector coding for
16K PRL secreted large amounts of the biologically active
PRL fragment. When injected into mice, these cells
resulted in tumors 63% smaller and 44% less vascularized
than those produced by control non-transfected cancer
cells (Bentzien et al. 2001).

The signaling mechanisms mediating 16K PRL actions
are not well understood. The observation that 16K PRL
has unique effects not shared with the full-length PRL is
consistent with the fragment acting via a specific receptor,
different from the known PRL receptor. In agreement
with this notion, a specific, high-affinity, saturable binding
site for 125I-labeled 16K PRL has been described on
capillary endothelial cells, and 23K PRL does not compete
for this site (Clapp & Weiner 1992). Moreover, no
evidence of specific binding sites for 125I-labeled PRL
(Clapp & Weiner 1992) nor for the expression of known
PRL receptor transcripts, has been obtained in any of the
endothelial cell cultures in which 16K PRL inhibited
endothelial cell proliferation (Ochoa et al. 2001, C Clapp
& P A Kelly, unpublished observations). Although the
identity of the 16K PRL receptor remains unknown, it has

been shown that 16K PRL can inhibit the mitogenic
actions of both bFGF and VEGF on endothelial cells by
acting distally to their receptors and proximally to the
mitogen-activated protein kinases (MAPKs), specifically
by inhibiting the activation of Raf-1 (D’Angelo et al.
1995, 1999). However, the molecular mechanisms
through which 16K PRL inhibits the activation of the
Ras/Raf/MEK/MAPK pathway, resulting in compro-
mised proliferation and stimulated apoptosis, remains
unclear.

In summary, results from both in vivo and in vitro studies
indicate that 16K PRL acts as a potent and specific
anti-angiogenic factor, while PRL is either inactive or may
function to promote angiogenesis under certain restricted
conditions. The dichotomous actions of 16K PRL and
PRL appear to be mediated by distinct receptors. Finally,
the relative contribution of each hormone to angiogenesis
would ultimately be determined by the activity of the
enzyme responsible for PRL cleavage and by the local
expression of the specific receptors in the endothelium,
and potentially other cell types, of different tissues.

Endogenous 16K prolactin

Using immunoblotting methodologies, a 16K immuno-
reactive PRL has been detected in human serum (Sinha
et al. 1985, Warner et al. 1993), and some evidence
suggests that its concentration is elevated in pregnant
women close to the day of delivery (Sinha et al. 1985)
(Table 1). The levels in serum of this 16K PRL-like
molecule have not been routinely analyzed under different
physiological or pathological conditions. In serum, PRL
levels are commonly detected by assays (RIA, ELISA,
IRMA) that depend on antibodies raised against the
unmodified monomeric form of the hormone (23 kDa
PRL). It has been shown that 16K PRL has low affinity
for such antibodies (Clapp et al. 1988), and thus these
immunoassays may underestimate multiple forms of the
hormone in serum.

16K PRL could reach the circulation from different
sources, including the pituitary gland and extra-pituitary
tissues (Table 1). A 16K immunoreactive PRL is detected

Table 1 16K prolactin (PRL) formation upon cleavage of endogenous PRL

Tissues References

Tissues in vivo Serum
Pituitary

Sinha et al. (1985), Warner et al. (1993),
Mittra (1980a), Sinha & Gilligan (1984),
Sinha et al. (1985), Pellegrini et al. (1988),
Shah & Hymer (1989), Warner et al. (1993)

Amniotic fluid Aston et al. (1984), Fukuoka et al. (1991)
Cornea, iris and retina Dueñas et al. (1999b)

Cells in vitro Rat pituitary cells Andries et al. (1992)
Human umbilical vein endothelium Corbacho et al. (2000a)
Rat pulmonary fibroblasts Corbacho et al. (2000b)
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in the anterior pituitary of rats (Mittra 1980b, Shah &
Hymer 1989, Andries et al. 1992), mice (Sinha & Gilligan
1984) and humans (Sinha et al. 1985, Pellegrini et al. 1988,
Warner et al. 1993) and may be a portion of the PRL
secreted into the bloodstream. Moreover, 16K PRL may
be generated by proteases present in the circulation. The
serum of lactating rats specifically cleaves PRL, generating
the 16K isoform (Baldocchi et al. 1992). In addition,
circulating PRL may be proteolytically processed to 16K
PRL in target tissues (Tables 1 and 2). In this regard, PRL
cleaving activity has been demonstrated in homogenates of
mammary gland (Wong et al. 1986, Clapp 1987), brain
(DeVito et al. 1992, Clapp et al. 1994), posterior pituitary
(Clapp et al. 1994), prostate, liver, kidney and spleen
(Compton & Witorsch 1984, Clapp 1987, Baldocchi et al.
1992). Finally, several extra-pituitary cell types express the
PRL gene (Ben-Jonathan et al. 1996) and can cleave
locally produced PRL. For example, human endothelial
cells (Corbacho et al. 2000a) and rat pulmonary fibroblasts
(Corbacho et al. 2000b) express PRL mRNA and produce
a 16K protein that may correspond to the N-terminal part
of the PRL molecule, as it is recognized in Western blots
by 16K PRL-directed polyclonal antibodies (Corbacho
et al. 2000b) and by monoclonal antibodies against the
N-terminal end of PRL (Corbacho et al. 2000a). Also,
incubation of exogenous PRL with a fibroblast lysate
results in the formation of 16K PRL (Corbacho et al.
2000b). Finally, a 16K immunoreactive PRL has been
detected in eukaryotic cells that express a transfected PRL
gene (Cole et al. 1991, Yamamoto et al. 1992), indicating
the existence of proteolytic activity to generate 16K PRL
from PRL.

Whereas 16K PRL is observed under many
physiological/pathophysiological conditions, the identity
of the proteolytic enzymes responsible for this posttrans-
lational modification has remained unresolved. However,
different lines of evidence suggest that cathepsin D, a
lysosomal aspartyl protease, may be one such enzyme
responsible for PRL cleavage into 16K PRL. Cathepsin D
has been demonstrated to cleave PRL to give the corre-
sponding fragments (Baldocchi et al. 1993). PRL cleavage
by tissue homogenates occurs at the same pH optimum
(pH 3–5) as that for cathepsin D activity (Compton &

Witorsch 1984, Wong et al. 1986, Clapp 1987, Baldocchi
et al. 1992). Finally, PRL remains intact in the presence
of pepstatin-A, an inhibitor of cathepsin D activity
(Baldocchi et al. 1993).

The ability to cleave PRL and generate 16K PRL
appears to differ among tissues and to change according to
various physiological states. Mammary gland homogenates
are able to generate more 16K PRL than the liver or
kidneys from the same rats (Baldocchi et al. 1992), and
result in more 16K PRL when extracted from lactating rats
than from virgin or pregnant rats (Clapp 1987). Interest-
ingly, estrogen treatment reduces the PRL cleaving
activity of neurohypophyseal enzymes (Torner et al. 1999),
suggesting that generation of 16K PRL can be regulated.
This is especially important in view of the unique proper-
ties of 16K PRL, because a regulated enzymatic activity
could constitute an on/off regulatory switch for 16K PRL
bioactivity. In support of this possibility, the expression of
cathepsin D can be regulated by estrogen and progesterone
in the uterus (Elangovan & Moulton 1980, Maudelonde
et al. 1990) and by estrogen in breast cancer cells (Westley
& May 1987, Wang et al. 2001).

It should be noted that whereas the sequence of the 16K
fragment of PRL produced by incubation of PRL with rat
mammary gland extracts or cathepsin D corresponds to the
N-terminal portion of the molecule (Baldocchi et al.
1993), proteolytic enzymes can generate other PRL frag-
ments with the same molecular weight. Khurana et al.
(1999) have demonstrated that thrombin cleaves PRL
between amino acid residues Lys53 and Ala54 resulting in
the formation of a C-terminal 16 kDa fragment that retains
little PRL mitogenic activity and lacks the specific anti-
angiogenic action of the N-terminal 16K fragment. Al-
though it is not known whether thrombin cleaves PRL in
vivo, or whether a C-terminal 16K PRL occurs normally,
these results raise reasonable concerns, and the nature of
endogenous 16K PRL fragments needs to be carefully
examined in future studies.

Neurohypophyseal and endothelium-derived prolactin

The number of PRL isoforms with effects on angiogenesis
increased with the discovery of two novel sites of hormone

Table 2 PRL cleavage activity and 16K PRL synthesis

Tissues References

PRL cleavage by tissue homogenates Mammary gland, prostate, liver,
kidney, spleen

Compton & Witorsch (1984),
Clapp (1987)

Rat brain De Vito et al. (1992)
Hypothalamo–neurohypophysis Torner et al. (1999)
Rat pulmonary fibroblasts Corbacho et al. (2000a)

PRL cleavage by tissue explants Mammary gland, liver, kidney, spleen Baldocchi et al. (1992)

PRL cleavage by serum Lactating rat and pups serum Baldocchi et al. (1992)
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production: the hypothalamo–neurohypophyseal system
and the vascular endothelium. The hypothalamo–
neurohypophyseal system consists of neurons of the
hypothalamic paraventricular (PVN) and supraoptic
(SON) nuclei, whose axons end in the neurohypophysis.
These neurons are classically known to produce vaso-
pressin and oxytocin (Brownstein et al. 1980). PVN and
SON neurons also express PRL mRNA and contain
PRL-like immunoreactive and biologically active proteins
of 23 and 14 kDa (Clapp et al. 1994, López-Gomez et al.
1995). The absence of smaller PRL mRNAs and the
presence of a cleaved, non-reduced PRL-like protein
support the idea that the 14K protein in these neurons is
generated not by alternative splicing but by the proteolysis
and reduction of PRL (Clapp et al. 1994). Presumably,
the neurohypophyseal 14 kDa PRL corresponds to the
N-terminal part of the PRL molecule, as it is recognized
by 16K PRL-directed polyclonal antibodies (Clapp et al.
1994), and by monoclonal antibodies directed against the
N-terminal end of PRL (Torner et al. 1995). Consistent
with it being derived from the N-terminal portion of PRL
(like 16K PRL), the neurohypophyseal 14K PRL-like
protein displays inhibitory actions on endothelial cell
proliferation (Clapp et al. 1994, López-Gomez et al. 1995).
The possibility of the 14K PRL-like protein being either
a proteolytically processed product of 16K PRL or an
independent product of PRL proteolysis needs to be
addressed. During recombinant synthesis of primate PRL
a PRL fragment of approximately 14 kDa that may arise
from proteolysis at Ile133 was observed (Cole et al. 1991).

The 14K PRL-like protein is localized within the
secretory granules of vasopressin-containing cells (Mejía
et al. 1997) and is released by cultured neurohypophyseal
endings (Torner et al. 1995). Moreover, because an
immunoreactive 14K PRL-like protein is detected in rat
(Torner et al. 1995) and human (Fukuoka et al. 1991)
serum, the hypothalamo–neurohypophyseal system may
be a source of this protein in the circulation (Clapp &
Martínez de la Escalera 1997). In addition, a 14K PRL-

like protein has also been detected in human amniotic
fluid (Aston et al. 1984, Fukuoka et al. 1991), and it is
synthesized by mammary epithelial (Lkhider et al. 1997)
and endothelial cells (Clapp et al. 1998, Corbacho et al.
2000a), suggesting other putative sources for this PRL.

With reference to endothelium-derived PRL, PRL
gene expression has been demonstrated in vitro in endo-
thelial cells from different species and vascular beds, i.e. rat
retinal capillary endothelial cells (Ochoa et al. 2001),
human umbilical endothelial cells (Corbacho et al. 2000a),
and bovine brain capillary endothelial cells (Clapp et al.
1998) (Table 3). Although all cells expressed the full-
length PRL mRNA and synthesized 23 kDa PRL, differ-
ences were observed regarding the production of lower
molecular weight PRL forms. While retinal cells only
expressed the full-length mRNA, and synthesize 23 kDa
PRL (Ochoa et al. 2001), umbilical vein and brain
capillary cells also expressed a small mRNA and PRL-
immunoreactive proteins of lower molecular weight.
Sequencing of the small mRNA indicated that it corre-
sponded to an alternatively spliced PRL mRNA with
deletion of the third exon of the gene (Clapp et al. 1998).
Theoretically, the translation of such a small mRNA
would correspond to a protein of about 20 kDa with
reduced capacity to activate the cloned PRL receptors
(Goffin et al. 1995). In this regard, a 21 kDa PRL-
immunoreactive protein is found in both brain capillary
and umbilical vein endothelial cells, along with 16 and
14 kDa PRL-like isoforms (Clapp et al. 1998, Corbacho
et al. 2000a). In addition to the heterogeneous expression
of PRL mRNA and protein, the amounts of PRL secreted
also varied between the different endothelial cell types.
Analysis of PRL-like bioactivity in the conditioned media
indicated that retinal endothelial cells released at least 300
times the amount of PRL secreted by brain capillary or
umbilical vein endothelium (Clapp et al. 1998, Corbacho
et al. 2000a).

The observation that endothelial cells produce and
release PRL suggests the possibility that PRL isoforms may

Table 3 PRL expression and action in endothelial cells

PRL mRNA
PRL-immunoreactive
proteins

Effect of anti-PRL
antibodies Autocrine effects

RRCEC Full-length 23 kDa PRL None None

HUVEC Full-length+
smaller mRNA

23, 21, 16, 14 kDa PRLs Stimulatory Inhibitory

BBCEC Full-length+
smaller mRNA

23, 21, 14 kDa PRLs Inhibitory Stimulatory

The expression of PRL mRNAs and proteins by different types of endothelial cells is summarized. Moreover, autocrine actions
of endothelial-derived PRLs are predicted based on the effect of anti-PRL antibodies on endothelial cell proliferation.
Antibodies had no effect on rat retinal capillary endothelial cells (RRCEC), stimulated human umbilical vein endothelial cells
(HUVEC) and inhibited bovine brain capillary endothelial cells (BBCEC). This indicates that RRCEC-derived PRL has no
autocrine effect, while HUVEC and BBCEC-derived PRLs have autocrine and anti-mitogenic and pro-angiogenic effects,
respectively, which were neutralized by the antibodies.
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function as autocrine regulators of angiogenesis. This
possibility was investigated by culturing endothelial
cells in the presence of anti-PRL antibodies to sequester
the endothelial-derived PRLs and block their possible
autocrine activity. Results of these studies again reflected
the heterogeneous nature of endothelial cells. While no
effect was observed on the growth of retinal capillary
endothelial cells (Ochoa et al. 2001), anti-PRL
antibodies stimulated human umbilical vein endothelial
cells (Corbacho et al. 2000a) but inhibited bovine brain
capillary endothelial cell proliferation (Clapp et al. 1998).
The lack of effect observed on rat retinal endothelial
cells is consistent with the fact that these cells only
produce 23 kDa PRL, a form of PRL shown to have
no effect on their proliferation in vitro (Ochoa et al.
2001). In human umbilical vein endothelial cells, the
stimulatory effect of anti-PRL antibodies suggested the
recognition and neutralization of PRLs that would
otherwise inhibit endothelial cell proliferation. Such
anti-mitogenic autocrine function could be attributed to
the 16K and 14K immunoreactive proteins secreted by
human umbilical vein endothelial cells, as they were the
major proteins recognized by PRL antibodies (Corbacho
et al. 2000a) and correspond to the PRLs with
antiangiogenic properties. Finally, the observation that
anti-PRL antibodies inhibit the growth of bovine brain
capillary endothelial cells was consistent with the
secretion of PRLs with an autocrine pro-mitogenic
effect, possibly the 21 kDa PRL-like protein (Clapp
et al. 1998). The expression of several PRL variants by
different endothelial cells, together with the paradoxical
effects attributed to them, adds to the known functional
heterogeneity of endothelial cells thought to play a
profound role in the tissue-specific regulation of
angiogenesis (Lelkes et al. 1996).

Finally, it should be mentioned that endothelial-derived
PRL may act in a paracrine manner on neighboring
cell types to regulate events dependent and independent of
angiogenesis. As mentioned before, 16K PRL stimulates
iNOS expression and NO production by rat lung fibro-
blasts and type II alveolar epithelial cells (Corbacho et al.
2000b). NO is a gaseous free radical with both pro- and
anti-inflammatory functions, and it plays important roles in
host defense, inflammatory responses, vasodilation and
inhibition of leukocyte and platelet adhesion to the blood
vessel wall (Clancy et al. 1998). Recent data suggest
that PRL may regulate leukocyte trafficking across
the vascular endothelium (Montes de Oca et al. 2000).
The treatment of peripheral blood mononuclear cells with
PRL stimulates their adhesion to human umbilical vein
endothelial cell monolayers, and this effect appears to
involve a PRL-induced activation of integrins LFA-1 and
VLA-4 in leukocytes (Montes de Oca et al. 2000). These
observations clearly warrant studies of PRL isoforms
which focus on effects not directly related to the
endothelium.

Ocular prolactin

Although different lines of evidence indicate that PRL
isoforms can regulate angiogenesis, it is necessary to
determine their physiological contribution to the process
in vivo. It has been hypothesized that endogenous, anti-
angiogenic PRL isoforms may restrain the angiogenic
process in vivo, helping to maintain the avascularity of
certain tissues like the cornea. Consistent with this hy-
pothesis, corneal implants containing anti-PRL-directed
antibodies specifically stimulate the local outgrowth of
new blood vessels (Dueñas et al. 1999a). The possibility
that these antibodies unmasked anti-angiogenic PRL mol-
ecules present in the cornea was substantiated by recent
findings in rats, showing immunoreactive PRL in the
aqueous humor and 23 kDa and 16 kDa PRL-
immunoreactive proteins in corneal homogenates (Dueñas
et al. 1999b). The possible involvement of PRL in ocular
angiogenesis is also suggested by the presence of PRL in
the aqueous humor and subretinal fluid of patients with
premature retinopathy, an ocular neovascular disease
(Quiroz et al. 2000).

Ocular angiogenesis is a leading cause of blindness
worldwide; it occurs in response to hypoxia in diseases that
include diabetic retinopathy, premature retinopathy, and
age-related macular degeneration. For example, in diabetes
there is a reduction in blood flow through areas of the
retinal microvasculature that results in ischemia. In prema-
ture babies, hyperoxic conditions resulting from the incu-
bator environment lead to the occlusion of normal retinal
blood vessels (Stone & Maslim 1997). In all cases, ischemia
leads to retinal hypoxia, a major stimulus for the release of
angiogenic factors that cause the outgrowth of blood vessels
in the retina that extend into the vitreous. The new blood
vessels recruit other cells, and the process results in
the formation of fibrovascular scar tissue that causes
loss of vision from vitreous hemorrhage and/or retinal
detachment (Stone & Maslim 1997, Adamis et al. 1999).

PRL measured in the ocular fluids of patients with
premature retinopathy may originate intra-ocularly from
the newly formed blood vessels. PRL mRNA can be
amplified by RT-PCR from the fibrovascular tissue
within the vitreous compartment (Quiroz et al. 2000) and
localized by in situ hybridization within endothelial cells
and infiltrating leukocytes (P Montes de Oca & C Clapp,
unpublished observations). This observation is consistent
with the fact that actively proliferating endothelial cells
from rat retinas stand out among other vascular endo-
thelium in their ability to produce and release PRL
(Ochoa et al. 2001). In conclusion, products from the PRL
gene are produced in the eye of patients with retinal
neovascularization and may affect angiogenesis. There is
evidence for hyperprolactinemia in diabetes but no corre-
lation was found between serum PRL and the occurrence
of retinopathy (Cerasola et al. 1981, Larinkari et al. 1982,
Mooradian et al. 1985). Analysis of the expression and
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proteolysis of PRL within the eye of patients with diabetic
retinopathy might provide important insights relevant to
the pathophysiology of this disease.

Other members of the PRL/GH/PL family with
effects on angiogenesis

Growth hormone
The role of GH as an angiogenic factor was initially
proposed in association with the mechanisms underlying
the development of diabetic retinopathy (Flyvberg 1990,
Merimee 1990, Sharp 1995). The initial implication stems
from the observation that retinal neovascularization in
diabetic patients diminished after the ablation of the
pituitary gland (Poulsen 1953, Flyvberg 1990, Merimee
1990). Although the reduction in retinal vasculature could
be attributed to the elimination of other pituitary hor-
mones, the role of GH was supported by the correlation
between diabetic retinopathy and elevated GH levels in
the circulation (Johansen & Hansen 1969, Hansen &
Johansen 1970, Passa et al. 1977, Sundkvist et al. 1984).
Likewise, in two patients given GH following hypophys-
ectomy, retinal neovascularization continued to develop
(Ray et al. 1968). Finally, GH deficiency in diabetic
subjects is associated with reduced retinopathy when
compared with diabetic controls (Merimee et al. 1970,
Passa et al. 1977, Merimee 1978).

These clinical observations led investigators to postulate
that GH is an angiogenic factor and were followed by in
vitro and in vivo experimental approaches to confirm direct
effects of GH on the promotion of angiogenesis. GH
receptors were found in blood vessels of the human fetus
(Werther et al. 1993), the human ovary (Sharara &
Nieman 1994), and in the myometrium, endometrium,
and ovaries of the rat (Lobie et al. 1990). In vitro studies
illustrated that GH stimulates proliferation of human
retinal microvascular endothelium (Rymaszewski et al.
1991) and bovine brain capillary endothelial cells (Struman
et al. 1999). Moreover, GH stimulates in vivo angiogenesis
in the late-stage CAM assay (Gould et al. 1995, Struman
et al. 1999). However, as observed for PRL and PL, GH
actions on angiogenesis appear to depend on conditions in
the various tissues. For example, the proliferation of
human umbilical vein endothelial cells is not altered by
GH (Rymaszewski et al. 1991), and GH does not stimulate
angiogenesis in the early-stage CAM (Struman et al.
1999). There is evidence that GH can be proteolytically
cleaved in pituitary tissue (Lewis et al. 1980) and that
putative cleavage sites around amino acids 130–140 of GH
exist for the pituitary proteases, thrombin, plasmin and
collagenase (Baumann 1991, Alam et al. 1998, Aramburo
et al. 2001). Such enzymatic processing results in a
two-chain structure linked by disulfide bonds, which
upon reduction generates a 16K N-terminal GH fragment
homologous to those arising from PRL and PL. Like the

latter hormones, the 16K GH fragment inhibits endo-
thelial cell proliferation, PAI-1 expression and angiogen-
esis in the early-stage CAM (Struman et al. 1999).
Surprisingly, in a recent report Aramburo and colleagues
(2001) showed that the N-terminal 16K fragment of
chicken GH generated by thrombin cleavage between
amino acids Arg133 and Gly134 stimulates the proliferation
of cultured bovine endothelial cells. This finding may
relate to species-specific differences with the human
molecular counterpart.

In addition to the direct effects of GH on endothelial
cells, this hormone also induces the secretion of
insulin-like growth factor (IGF)-I, mainly by the liver
(Delafontaine 1995). Particularly IGF-I, but also IGF-II,
act as key mediators of GH’s effects (Cohick & Clemmons
1993, Delafontaine 1995). Actually, both IGF-I and
IGF-II have been implicated as direct angiogenic factors
(Bar et al. 1988, Nakao-Hayashi et al. 1992, Nicosia et al.
1994, Kim et al. 1998, Beckner 1999, Dunn et al. 2000,
Lee et al. 2000) and the action of GH in the promotion of
retinal neovascularization appears to involve systemic or
locally produced IGFs. IGF-I is elevated in the circulation
and in the vitreous humor of patients with diabetic
retinopathy (Merimee et al. 1983, Grant et al. 1986, Hyer
et al. 1989, Dills et al. 1991, Meyer-Schwickerath et al.
1993), and intravitreal application of IGF-I stimulates
retinal angiogenesis in rabbits (Grant et al. 1993). The
contribution of IGF-I to neovascularization is also sup-
ported by the presence of IGF-I receptors in endothelial
cells (Bar & Boes 1984, King et al. 1985, Boes et al. 1991,
Spoerri et al. 1998) and by in vitro studies showing that
IGF-I stimulates endothelial cell proliferation (King et al.
1985), migration (Grant et al. 1987), uPA production
(Grant & Guay 1991), and angiogenesis in vivo. Moreover,
evidence has been presented that the IGF-I gene is
expressed by endothelial cells (Kern et al. 1989,
Delafontaine et al. 1991).

Smith and coworkers (1997) have explored the role of
the somatostatin/GH/IGF-I axis in retinal neovasculariz-
ation. Transgenic mice expressing a GH antagonist (dwarf
phenotype) or normal mice treated with a somatostatin
analog to inhibit GH secretion were subjected to ischemia
in order to induce retinal neovascularization. Retinal
blood vessel growth was reduced in both types of mice
when compared with controls, suggesting that normal GH
levels promote the growth of new blood vessels under
ischemic conditions. Consistent with this finding, neo-
vascularization was partially or completely restored when
GH or IGF-I was co-injected with somatostatin, an
inhibitor of GH secretion. Accordingly, these data sug-
gested that GH can stimulate ischemia-induced neovascu-
larization, probably by acting through IGF-I (Smith et al.
1997). Most studies now agree that hypoxia-inducible
VEGF is the principal factor mediating ischemia-associated
ocular neovascularization (Stone & Maslim 1997). How-
ever, mice with decreased GH and IGF-I serum levels are
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resistant to hypoxia-induced retinopathy, even when reti-
nal expression of VEGF remains high (Smith et al. 1997).
A later study showed that an IGF-I receptor antagonist
suppresses retinal neovacularization in vivo, and that IGF-I
interaction with the IGF-I receptor is necessary to induce
maximal neovascularization by VEGF (Smith et al. 1999).
On the other hand, it should be mentioned that in addition
to reducing GH levels, somatostatin can act directly on
endothelial cells to inhibit angiogenesis (Danesi et al. 1997,
Woltering et al. 1997, Albini et al. 1999), a finding that
adds to the debated function of somatostatin and its analogs
in the control of tumor growth (Albini et al. 1999).

Although the data discussed above implicate GH and
IGF-I in the promotion of retinal neovascularization,
abnormally increased GH levels do not appear to exacer-
bate ocular angiogenesis. Transgenic mice expressing a
GH agonist (giant phenotype) showed no increase in
retinal neovascularization compared with controls, and
IGF-I alone did not increase neovascularization over
control levels (Smith et al. 1997).

Another example that illustrates the stimulatory effect of
GH and IGF-I on neovascularization comes from the study
of aging and cerebral cortical vasculature. Both GH and
IGF-I plasma levels decrease with age, and this correlates
with a decrease in cerebral cortical vasculature (Sonntag
et al. 1997). Interestingly, in contrast to the effect observed
in the retina (Smith et al. 1997), injection of GH stimu-
lated the growth of blood vessels in the cerebral cortex of
aging rats when compared with non-treated animals
(Sonntag et al. 1997). Taken together these results suggest
that the effects of GH and IGF-I on angiogenesis may be
determined by their local or circulating levels, the specific
tissues, and the ontogenic period.

In contrast with the newly discovered angiogenic factors
that are currently entering clinical trials, GH treatment has
been used for decades to treat GH deficiency. Thus, the
effects of GH deficiency or its therapeutic administration
on angiogenesis can already be evaluated in human sub-
jects. Elevated levels of GH (as occur in acromegaly) show
little correlation with retinopathy. Moreover, long-term
GH replacement therapy does not appear to increase the
risk of retinopathy in children or adults (Hellström et al.
1999, Blank et al. 2000, Radetti et al. 2000) and is rarely
associated with retinal neovascularization (Koller et al.
1998, 2000). Nevertheless, concerns are being raised
regarding GH and IGF-I treatment of diabetic chil-
dren and adolescents due to its potential to exacerbate
retinopathy, particularly since isolated cases of retinopathy
have been identified that are associated with exogenous
GH therapy in GH-deficient non-diabetic patients (Koller
et al. 1998). In one of these patients, discontinuation of GH
treatment was followed by full remission of the retinopathy
in the absence of additional treatment (Hansen et al. 2000).

In summary, evaluation of GH effects on angiogenesis is
limited by the complex endocrine status of disease states.
Although a large body of evidence indicates an angiogenic

role for GH and IGF-I, their actions appear to be
influenced by systemic and local factors. Understanding
these interactions may open new therapeutic avenues for
the treatment and prevention of vascular diseases, such as
diabetic retinopathy.

Placental lactogen

Angiogenesis is essential during the development of the
placenta, when remodeling of the maternal uterine vascu-
lature and growth of fetal vessels into the placenta takes
place. Placental hormones of the PRL family may regulate
reorganization and growth of maternal and fetal blood
vessels. PL binds with high affinity to the PRL receptor,
mimicking the action of PRL (Kelly et al. 1976). Accord-
ingly, PL could promote angiogenesis under the same
conditions in which PRL is active. Consistent with this
idea, both PL and PRL stimulate new capillary blood
vessel formation in vivo in the late-stage CAM bioassay, but
they do not affect the proliferation of bovine brain capillary
endothelial cells (BBCEC) in vitro (Struman et al. 1999).
As in the case of the intact hormones, the N-terminal 16K
fragments of PRL and PL have similar actions. An
homologous N-terminal 16K PL fragment produced by
recombinant DNA displays inhibitory actions on angio-
genesis equivalent to those of 16K PRL both in vivo and
in vitro. 16K PL inhibits BBCEC proliferation and PAI-1
expression, as well as the outgrowth of new blood vessels
in the early-stage CAM, but not in late-stage CAM
quiescent capillaries (Struman et al. 1999). Although there
is no evidence yet that 16K PL occurs naturally in vivo, PL
and 16K PL bear a striking resemblance to PRL and 16K
PRL in their opposing actions on angiogenesis in vitro.
Taking into consideration all these data, it is likely that PL
isoforms exert opposite actions on angiogenesis via the
PRL and 16K PRL receptors.

Proliferin and proliferin-related protein

While the angiogenic and anti-angiogenic actions of PRL,
GH, or PL reside within a single molecule, two non-
classical members of the mouse placental PRL family,
proliferin and proliferin-related protein, work as indepen-
dent molecules to modulate angiogenesis (Linzer & Fisher
1999). Proliferin and proliferin-related protein act as pro-
and anti-angiogenic factors respectively (Jackson et al.
1994). These two proteins share structural features (lo-
cation and type of the intron/exon splice sites, chromo-
some location, nucleic acid and amino acid similarity, etc.)
with PRL and PL (Soares et al. 1998).

Proliferin (PLF), also known as mitogen-regulated pro-
tein (MRP) (Nilsen-Hamilton et al. 1980), was originally
detected in 3T3 mouse fibroblasts in vitro (Nielsen-
Hamilton et al. 1980, Linzer & Nathans 1984) and shortly
thereafter its expression was also demonstrated in the
mouse placenta (Linzer et al. 1985, Lee et al. 1988).
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Similarly, proliferin-related protein is expressed in the
placenta of mice (Linzer & Nathans 1985, Colosi et al.
1988) and rats (Toft & Linzer 2000). Both hormones are
present in the circulation of the pregnant mouse and
whereas proliferin reaches peak levels by midgestation (Lee
et al. 1988), proliferin-related protein levels are increased
in the second half of pregnancy (Lopez et al. 1993).

The function of proliferin and proliferin-related protein
remained unknown until the discovery that they could
efficiently compete with 16K PRL for binding to endo-
thelial cells (Clapp & Weiner 1992), data that suggested
direct actions of these hormones on the angiogenic process.
Thus, proliferin and proliferin-related protein were tested
in both in vitro and in vivo assays for angiogenesis. Proliferin
was found to stimulate the migration of endothelial cells in
vitro and the growth of blood vessels in the rat cornea assay,
while proliferin-related protein exerted inhibitory effects
in both assays (Jackson et al. 1994). Consistent with the
temporal pattern of circulating levels during mouse preg-
nancy, proliferin was found to be a major component of
the angiogenic activity present in the placenta during
midgestation, whereas proliferin-related protein was
shown to contribute to the anti-angiogenic activity
detected in late-pregnancy placental tissues (Jackson et al.
1994). Indeed, proliferin and proliferin-related protein are
synthesized specifically in the placental trophoblast giant
cells (Linzer & Nathans 1984, Linzer et al. 1985, Lee et al.
1988, Carney et al. 1993) and could act as paracrine factors
regulating the local growth of blood vessels.

In addition to its actions on the placenta, proliferin may
have specific developmental functions. Proliferin, but not
proliferin-related protein, can be transported from the
placenta through the extraembryonic membranes of
the fetus (yolk sac) to the amniotic fluid, where it is
in direct contact with the developing fetus (Lee et al.
1988). Remarkably, in the fetus proliferin binds to the
developing heart, the blood vessels around the dorsal
artery, and the endothelial cells of the growing ribs
(Jackson & Linzer 1997). Although the physiological
effects of proliferin in the fetus are not yet known, it
has been proposed that it may stimulate endothelial cell
migration promoting angiogenesis during the development
of fetal tissues.

Furthermore, recent findings suggest that proliferin may
participate in angiogenesis in instances other than during
pregnancy and development. In a model of progressive
fibrosarcoma in mice, the expression of proliferin increased
in association with the progression of the tumor from
mildly noninvasive to aggressively invasive stage of tumor
development, a stage at which the tumor becomes highly
angiogenic. The expression of proliferin in the fibro-
sarcoma was associated with angiogenic activity in in vitro
and in vivo models of angiogenesis (Toft et al. 2001),
indicating that proliferin may be secreted by tumoral cells
and act as a pro-angiogenic factor to induce tumor
angiogenesis.

Proliferin comprises a group of homologous proteins
(PLF1, PLF2, MRP3, MRP4) encoded by four distinct
genes (Linzer & Nathans 1984, Wilder & Linzer 1986,
Nilsen-Hamilton et al. 1987, Jackson-Grusby et al. 1988,
Connor et al. 1989, Fassett et al. 2000). All forms of
proliferin are very similar in their amino acid sequences
and are glycosylated proteins; however, they can differ in
their degree of glycosylation (Fassett et al. 2000), a
characteristic that may determine differences in the func-
tional interactions with the proliferin receptors in vivo
(Jackson et al. 1994, Nelson et al. 1995, Jackson & Linzer
1997, Fassett et al. 2000). Although the proliferin orig-
inally found in 3T3 mouse fibroblasts (Nielsen-Hamilton
et al. 1980, Linzer & Nathans 1984) and in the mouse
placenta (Linzer et al. 1985) corresponds to PLF1, all forms
of proliferin have been detected in the mouse placenta,
MRP3 being the most abundant (Linzer et al. 1985,
Wilder & Linzer 1986, Lee et al. 1988, Fang et al. 1999,
Fassett et al. 2000). Also, the proliferin detected in skin
fibrosarcomas corresponds to PLF1 (Toft et al. 2001).

Recently, the expression of proliferin was investigated
in the adult mice and appeared to be limited to tail and ear
skin (Fassett et al. 2000), hair follicles (MRP3, MRP4),
small intestine (PLF1, MRP3 and MRP4) (Fassett et al.
2000, Fassett & Nilsen-Hamilton 2001) and skin kera-
tinocytes during wound healing processes in vivo (MRP3)
(Fassett & Nilsen-Hamilton 2001). It is remarkable that
proliferin is expressed in wound healing processes and in
developing hair follicles (Fassett et al. 2000, Fassett &
Nilsen-Hamilton 2001), events that represent two of the
few processes accompanied by angiogenesis in the adult.
Although it has not been directly proven, the very specific
site of proliferin expression suggests its participation in
normal angiogenic processes in the adult.

The expression of proliferins appears to be tissue-
specifically regulated by different growth factors, including
bFGF, epidermal growth factor (EGF), keratinocyte
growth factor (KGF) and transforming growth factor �
(TGF�) (Nilsen-Hamilton et al. 1980, Chiang & Nilsen-
Hamilton 1986, Fassett & Nilsen-Hamilton 2001). In
addition, their actions on endothelial cells appear to be
mediated by the IGF-II/mannose 6-phosphate receptor,
and the glycosylated state of proliferin appears to be
essential for the binding to this receptor (Lee & Nathans
1988, Volpert et al. 1996). Although the signaling pathway
associated with the IGF-II/mannose-6-phosphate recep-
tor is poorly understood, binding of either proliferin or
IGF-II activates a G protein that leads to MAPK activation
(Groskopf et al. 1997). Finally, proliferin can bind to a
specific, high affinity receptor present in the uterus that is
distinct from the IGF-II/mannose-6-phosphate receptor
and mediates cell proliferation (Nelson et al. 1995). How-
ever, the identity of this specific receptor remains un-
known. Therefore, different receptors may mediate
different actions of proliferin. Binding of proliferin in the
fetus occurs through the IGF-II/mannose-6-phosphate
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receptor (Jackson & Linzer 1997), whereas the transport of
proliferin through the yolk sac appears to be independent
of the IGF-II/mannose-6-phosphate receptor (Jackson &
Linzer 1997) and may be mediated by the specific receptor
identified in the uterus.

Contrasting with the pro-angiogenic effects of prolif-
erin, the anti-angiogenic properties of proliferin-related
protein make it an endogenous factor that has the potential
to impede angiogenesis-dependent pathologies, such as
tumor growth. To test the anti-angiogenic potential of
proliferin-related protein to block tumor growth, two
tumor cell lines, SVT2 fibroblasts (SV40-transformed
BALB/c 3T3 mice fibroblasts) and C6 glioma cells, were
engineered to secrete proliferin-related protein (Bengtson
& Linzer 2000). When injected into mice, tumor cells
secreting proliferin-related protein generated tumors that
were significantly smaller and showed a marked reduction
in vascular density, in comparison with the tumors pro-
duced by the control cancer cells (Bengtson & Linzer
2000). Consistent with proliferin-related protein’s anti-
angiogenic properties in vitro, these results demonstrate
that proliferin-related protein can restrict tumor growth,
most likely by acting directly on endothelial cells and
restricting tumor angiogenesis. Although a protein hom-
ologous to proliferin-related protein has not been ident-
ified in humans, proliferin-related protein can inhibit
human, rat, mice, and bovine endothelial cells, indicating
that the receptor and cell responses are conserved among

mammals (Bengtson & Linzer 2000). Finally, the receptor
for proliferin-related protein has not been identified, but
the signaling pathway appears to involve the inhibition of
arachidonic acid release (Bengtson & Linzer 2000).

Conclusions and future directions

Numerous studies have sought to identify molecules that
regulate blood vessel growth (for reviews see Browder
et al. 2000, Carmeliet 2000, Hagedorn & Bikfalvi 2000).
The complexity of the angiogenic cascade and the concept
of an angiogenesis or anti-angiogenesis-based therapy have
attracted scientists with widely ranging interests in basic
and clinical science. Among them, endocrinologists are
analyzing the effect of classical hormones on the angiogen-
esis process (Clapp et al. 1993, Jackson et al. 1994, Ponce
et al. 1997, Franck-Lissbrant et al. 1998, Struman et al.
1999).

The findings accumulated over the last decade indicate
that members of the PRL/PL/GH family are potential
endogenous regulators of physiological and pathological
angiogenesis (Table 4). These proteins can act as circulat-
ing hormones and/or as paracrine and autocrine factors, in
various stages of the formation and remodeling of new
blood vessels, including endothelial cell proliferation, pro-
tease production, and apoptosis. Furthermore, the recep-
tors for these hormones are members of the class 1 cytokine

Table 4 Structural characteristics, receptors and signaling mechanisms of members of the PRL/GH/PL family with effects on angiogenesis

MW
(kDa)

Posttranslational and
posttranscriptional
modifications Receptor

Intracellular signaling pathway
implicated in angiogenesis

Effect on
angiogenesis

PRL 23 Native form PRL receptor JAK/STAT pathway? None or
stimulatory

16 N-terminal fragment Unknown Inhibition of Ras/Raf/MEK/MAPK
Stimulation of PAI-1 expression
Activation of caspases
Inhibition of Bcl-X

Inhibitory

14 N-terminal fragment Unknown Unknown Inhibitory

21 Lacking third exon
sequence

Unknown Unknown Stimulatory

PL 22 Native form PRL receptor JAK/STAT pathway? None or
stimulatory

16 N-terminal fragment Unknown Unknown Inhibitory

GH 22 Native form GH receptor JAK/STAT pathway? Stimulatory

16 N-terminal fragment Unknown Unknown Inhibitory

Proliferin 27–38 N-glycosylated forms IGF-II/mannose 6-
phosphate receptor
and other

G protein and MAPK activation Stimulatory

Proliferin-related
protein

34–45 N-glycosylated form Unknown Inhibition of arachidonic acid release Inhibitory

MW, molecular weight.
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receptor superfamily, which also includes receptors for
cytokines with recently discovered angiogenesis-
related effects, such as interleukin-2 (Sakkoula et al. 1997,
Johansson et al. 2000), interleukin-15 (Angiolillo et al.
1997), and erythropoietin (Yasuda et al. 1998).

In contrast to previously identified regulators of angio-
genesis, the PRL/PL/GH family comprises homologous
molecules that can either stimulate or inhibit the process
(Fig. 3, Table 4). It is particularly interesting that, in some
cases, the potential to exert opposing effects resides within
the same molecule. The inhibitory activity can remain
quiescent in a stimulatory molecule (PRL, PL, GH) until
the parental protein is proteolytically cleaved, giving rise to
an anti-angiogenic fragment (16K PRL, 16K PL, 16K
GH). This appears to be a very efficient and low cost
mechanism to simultaneously down-regulate a stimulatory
factor and up-regulate an inhibitory factor.

It is important to mention that several other endogenous
inhibitors of angiogenesis result from the proteolytic cleav-
age of proteins with functions distinct from angiogenesis,
for example, angiostatin (from plasminogen), endostatin
(from collagen XVIII), endostatin XV (from collagen XV),
and vasostatin (from calreticulin) (for review see Folkman
1997, Hagedorn & Bikfalvi 2000). Together, these
findings suggest that proteolytic cleavage may be a
general mechanism underlying the production of inhibi-
tors of angiogenesis at a local site. In view of the unique
properties of the fragments versus the full-length mol-
ecules, the regulation of the protease activity respon-
sible for the specific protein cleavage would critically
influence the angiogenic process.

Along with the generation of angiogenic or anti-
angiogenic factors, an important element to be considered
is the expression of specific receptors. The opposing
actions of members of the PRL/GH/PL family appear to
be mediated by different receptors. However, the nature
of the receptor for 16K PRL or for the other 16K

hormones remains unknown. Because the 16K PRL
receptor is different from the PRL receptor, the absence of
an angiogenesis phenotype in PRL receptor-deficient
mice (Bole-Feysot et al. 1998) may reflect the lack of
interference with 16K PRL inhibition of angiogenesis, but
also the compensatory actions of angiogenic molecules
other than PRL. The multiple levels of redundancy built
into the mammalian systems may also compensate for the
deficiencies in PRL isoforms in the PRL knockout mice,
where no apparent angiogenesis-related alteration is ob-
served. However, in these mice disruption of the PRL
gene was not complete, leaving an 11K N-terminal PRL
molecule (Horseman et al. 1997) that could still activate
the 16K PRL receptor. Furthermore, in mice lacking the
gene for collagen XV, a protein that is proteolytically
cleaved to generate the potent anti-angiogenic peptide
endostatin XV, no increase in the number of blood vessels
is seen (Eklund et al. 2001), suggesting that under normal
physiological conditions the absence of a single anti-
angiogenic agent can be compensated for by other mech-
anisms. Therefore, besides the regulation of hormonal
cleavage, the selective expression of specific receptors and
their associated signal transduction pathways must play a
decisive role in the outcome of hormonal effects on the
angiogenic process.

Understanding the mechanisms that regulate the
interplay of PRL/PL/GH isoforms will be essential for
establishing their contribution to angiogenesis-related
pathologies. In this respect, ongoing studies aim to eluci-
date the role of GH and PRL in neovascular eye diseases,
such as diabetic retinopathy and premature retinopathy.
Likewise, the action of PRL/PL/GH molecules on other
pathologies characterized by neovascularization, such as
tumor angiogenesis and rheumatoid arthritis, has begun to
be explored, and some evidence already suggests a possible
contribution of this family of molecules. Surprisingly,
recent work by Turner and coworkers (2000a) showed
that pituitary tumors are less vascular than the normal
pituitary gland, and that pituitary adenomas show different
levels of angiogenesis. Macroprolactinomas are signifi-
cantly more vascular than microprolactinomas (Turner
et al. 2000a), and their blood vessel density was directly
correlated with PRL levels in the circulation (Turner
et al. 2000b). Conversely, no such correlation was found
for macroadenomas and microadenomas secreting GH
(Turner et al. 2000a,b), although tumors producing both
GH and PRL were less vascular than tumors producing
GH alone (Turner et al. 2000b). It remains to be deter-
mined whether the reduced vascular density of PRL-
producing tumors is accompanied by the local or systemic
proteolysis of PRL into 16K PRL. In this regard, some
studies suggest the association of cathepsin D (the protease
implicated in PRL cleavage and 16K PRL generation)
with a tumorigenic and invasive phenotype in breast
cancer cells (Rochefort 1990), a result that allows specu-
lation about the possible production of 16K PRL in a

Figure 3 Members of the PRL/GH/PL family with pro-angiogenic
or anti-angiogenic actions. PLF, proliferin; PRP, proliferin-related-
protein.
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tumor environment. The synthesis of anti-angiogenic
factors by tumor cells has been demonstrated previously
(O’Reilly et al. 1994, 1997). Actively growing primary
tumors can secrete anti-angiogenic factors into the circu-
lation, as is the case of angiostatin and endostatin, which
can maintain tumors in a dormant state (O’Reilly et al.
1994, 1997, Cao 1998).

Exciting new work has shown that the anti-angiogenic
properties of 16K PRL (Bentzien et al. 2001) and
proliferin-related protein (Bengston & Linzer 2000) make
them promising candidates for limiting tumor growth. In
addition, the potential of PRL and other members of the
PRL/PL/GH family on angiogenesis in rheumatoid ar-
thritis promises to be rewarding. Clinical and basic science
observations have already implicated circulating and lo-
cally produced PRL in the pathophysiology of rheumatoid
arthritis (for a review see Neidhart et al. 1999). The
already developed GH and PRL receptor antagonists
(Goffin et al. 1996a, Okada & Kopchick 2001), together
with the availability of hormones (GH, PRL and IGF-I),
offer hope for potential therapeutic approaches in the
treatment of angiogenesis-related diseases. More recently,
dopamine, the major inhibitor of pituitary PRL, was
shown to act on D2 receptors present on endothelial cells
to inhibit VEGF-induced angiogenesis (Basu et al. 2001).
This finding represents a new avenue to be explored as
dopaminergic inhibition of endothelial-derived PRLs may
represent a new mechanism mediating dopamine anti-
angiogenic properties (Basu et al. 2001) and inhibitory
actions on tumor growth (Basu & Dasgupta 2000).

In summary, members of the PRL/GH/PL family
constitute novel stimulatory and inhibitory regulators of
angiogenesis. The implication of their actions for the
development of therapeutic strategies against angiogenesis-
dependent disorders has begun to be investigated. It is
clear that much further work will be necessary before the
relative importance of these hormones on physiological
and pathological angiogenesis can be understood. Never-
theless, regardless of the diverse settings in which angio-
genesis is encountered and the great redundancy of
mediator systems that participate in the process, the
characterization of the mechanisms that control the pro-
duction and action of angiogenic and anti-angiogenic
members of the PRL/GH/PL family will undoubtedly
prove to be a fruitful area of investigation that ultimately
will improve the treatment of patients who suffer from
angiogenesis-dependent diseases.
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