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Abstract. Hepatocellular carcinoma (HCC) is the most 
common malignancy of hepatocytes accounting for 75‑85% of 
primary hepatic carcinoma cases. Small extracellular vesicles 
(sEVs), previously known as exosomes with a diameter of 
30‑200 nm, can transport a variety of biological molecules 
between cells, and have been proposed to function in 
physiological and pathological processes. Recent studies have 
indicated that the cargos of sEVs are implicated in intercellular 
crosstalk among HCC cells, paratumor cells and the tumor 
microenvironment. sEV‑encapsulated substances (including 
DNA, RNA, proteins and lipids) regulate signal transduction 
pathways in recipient cells and contribute to cancer initiation 
and progression in HCC. In addition, the differential expression 
of sEV cargos between patients facilitates the potential utility 
of sEVs in the diagnosis and prognosis of patients with HCC. 
Furthermore, the intrinsic properties of low immunogenicity 
and high stability render sEVs ideal vehicles for targeted drug 
delivery in the treatment of HCC. The present review article 
summarizes the carcinogenic and anti‑neoplastic capacities of 
sEVs and discusses the potential and prospective diagnostic 
and therapeutic applications of sEVs in HCC.
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1. Introduction

Liver cancer is ranked as the sixth most prevalent malignancy 
worldwide, and was the third highest cause of cancer‑associ‑
ated mortality worldwide in 2020 with ~905,677 new cases 
and 830,180 cancer‑associated mortalities annually (1). 
Hepatocellular carcinoma (HCC) is the predominant subtype 
of hepatic carcinoma, and accounts for 75‑85% of all primary 
liver cancer cases (2). Infection with hepatitis B or C viruses 
(HBV or HCV, respectively) causes chronic liver injury and 
has recently been reported to play a pivotal place in the carci‑
nogenesis and development of HCC (3). Due to the vaccination 
against HBV, the prevalence of HBV and the incidence rate of 
HCC have markedly decreased in numerous high‑risk regions, 
such as China (4). However, the current situation is far from 
satisfactory in numerous low‑ and middle‑income countries, 
due to the shortage of HBV vaccines, and the lack of improved 
sanitation and regular screening (5). Thus, the 5‑year overall 
survival rate of patients with HCC remains low (<25%), and 
large‑scale efforts are urgently required to elucidate the 
mechanisms underlying the development of neoplasia and to 
improve the preliminary diagnostic rate of HCC (6,7).

Small extracellular vesicles (sEVs), which were previously 
known as exosomes, have a diameter of 30‑200 nm and are a 
subset of EVs that were first described by Johnstone et al (8) 
in the 1980s. Following several decades of research, it was 
observed that sEVs not only function in cellular waste 
disposal, but also serve as an excellent vehicle for cell‑cell 
communications. sEVs contain complex and diverse materials, 
including DNAs, RNAs, proteins, lipids and metabolites, and 
they shuttle these bioactive molecules between cells (9). The 
cargos of sEVs can be internalized by recipient cells, thus 
mediating the metabolic activities of recipient cells and conse‑
quently participating in both normal physiology and acquired 
abnormalities, such as immune responses, mammalian 
reproduction and development, central nervous system‑related 
diseases and cancers (10). In HCC, accumulated evidence has 
indicated that sEVs play an essential role in carcinogenesis 
and in the remodeling of the tumor microenvironment (TME), 
as well as in proliferation, metastasis, angiogenesis and drug 
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resistance (11). The profiles of sEV cargos are origin‑specific, 
and the distinct expression of sEV cargos between patients 
with HCC and healthy subjects renders sEVs a potential 
diagnostic biomarker for HCC (12). Furthermore, certain sEV 
RNAs may serve as molecular markers for the early detec‑
tion, TNM staging, prognostic evaluation and recurrence 
monitoring in HCC, which may contribute more effective to 
diagnosis and treatment options (13). Considering the intrinsic 
property of sEVs of transferring information and altering 
the biological response of recipient cells, recent studies have 
highlighted their potential utility values in the therapeutic 
fields of several diseases, including cardiovascular diseases 
and cancers (14,15).

The present review article summarizes the biogenesis of 
sEVs, as well as the role of sEVs in the tumorigenesis and 
progression of HCC. In addition, the potential and emerging 
clinical applications of sEVs in the diagnosis and treatment of 
HCC are discussed (Fig. 1).

2. Biology of sEVs

‘EV’ is a heterogeneous collective term for phospholipid 
bilayer membrane‑encapsulated nano or microvesicles. 
Traditionally, EVs were broadly categorized into cytoplasmic 
membrane‑derived ectosomes and exosomes of endo‑
some‑origin (16). However, without optimal isolation methods 
and real‑time imaging technologies to visualize the process 
of release or specific markers of different subtypes of EVs, 
the differentiation between exosomes and small ectosomes 
is unlikely due to their analogous intrinsic properties and 
the overlapping size. Thus, the latest guideline of Minimal 
Information for Studies of Extracellular Vesicles 2018 
(MISEV2018) proposed the use of standard terminologies for 
EV subtypes followed by physical characteristics, biochemical 
composition and the condition of progenitor cells (17). In the 
present review article, the term ‘EV’ encompasses a heteroge‑
neous population of both exosomes and nano‑scaled ectosomes 
with a diameter <200 nm.

Ectosomes, which are microvesicles and microparticles 
with a diameter ranging from 50 to 1,000 nm, are vesicles 
produced directly by the outward budding of the plasma 
membrane (18). By contrast, the process of the synthesis 
and release of exosomes is a more complicated and intricate 
sequence of multiple fusion events, budding of the plasma 
membrane and releasing of specific payloads (Fig. 2). The 
first inward invagination of a lipid bilayers contributes to 
the generation of early‑sorting endosomes (ESEs) (19). 
ESEs can mature towards late‑sorting endosomes (LSEs), 
which is followed by the formation of multivesicular bodies 
(MVBs) through the second intraluminal budding of the 
endosomal membrane, during which, specific bioactive 
compounds such as nucleic acids, proteins, and lipids are 
gradually enriched in intraluminal vesicles (ILVs) (20). 
Although the mechanisms underlying the formation of 
ILVs and specific bioactive compound sorting system have 
not yet been well elucidated, the majority of oncologists 
hypothesize that endosomal sorting complex required for 
transport (ESCRT) facilitates exosome budding. Of note, 
an ESCRT‑independent mechanism may play a role in the 
biogenesis of exosomes, since no notable decrease in the 

release of exosomes was observed following the inhibition 
of ESCRT family activity (21). These two pathways may not 
be completely separated, although they function synergisti‑
cally in the synthesis of exosomes (22). MVBs mainly have 
two endings: i) These mature MVBs may be incorporated 
into autophagosomes or lysosomes for hydrolysis of vesicular 
contents; or ii) they can be incorporated into the cellular 
plasma membrane and be subsequently expelled into the 
extracellular space as exosomes (23). When arriving to their 
recipient cells, sEVs are recognized and assimilated into cells 
via the following mechanisms: donor‑acceptor interaction, 
membrane fusion, phagocytosis, and clathrin‑independent 
and clathrin‑dependent endocytosis, depending on their 
physical and biological properties (24,25). For example, 
angiopoietin‑2 (ANGPT2)‑bearing sEVs derived from HCC 
cells are transferred into human umbilical vein endothelial 
cells (HUVECs) via endocytosis (26). The processes of 
formation, secretion and uptake of exosomes are depicted in 
Fig. 2, as reported in a previous study by the authors (27).

sEVs can be excreted by almost all cells types and are 
abundant in the human body, existing in biological fluids, 
such as plasma, urine, tears, plasma and breast milk (28). 
sEVs can be isolated from cell culture conditioned media, 
multiple biofluids, or tissue using several methods. The sepa‑
ration of sEVs principally involves five approaches, including 
differential ultracentrifugation, sucrose and iodixanol 
density ultracentrifugation, polyethylene glycol precipitation, 
size exclusion chromatography (SEC) and immunoaffinity 
capture (29). However, it is extremely difficult to identify a 
single separation strategy with both a high recovery rate and 
high specificity. The present study aimed to systematically 
review the recent, cutting‑edge research on sEVs and HCC, 
focusing on high‑quality studies using differential ultracentri‑
fugation or density gradient centrifugation as the separation 
methods of sEVs, with an intermediate recovery rate and 
purity according to MISEV2018 (17). Notably, all these 
aforementioned approaches have their own advantages and 
disadvantages; thus, a combined method, such as differential 
ultracentrifugation followed by SEC is scalable for future 
sEVs‑based studies (30). Other articles (31‑68) discussing 
methods of isolation of sEVs involving only ultracentrifugation 
or commercial kits are cited Table SI. Further investigations 
on a more effective and reproducible approach for separating 
sEVs are urgently required.

3. Roles of sEVs in HCC tumor formation and progression

As aforementioned, sEVs encapsulate a series of cargos, 
including nucleic acids, proteins and lipids, and sEV‑related 
research has mainly focused on the ability of sEVs to 
exchange of these cargos between cells (69,70). Previous 
studies on the roles of sEV cargos in cancer have demon‑
strated that sEVs are involved in almost all hallmarks of 
cancers, including tumor initiation and formation (71‑75), in 
the remodeling of the TME (76,77), apoptosis (50), angio‑
genesis (78,79), metastasis (80‑83), immune escape (52), and 
drug resistance (84). The present review article summarizes 
the literature that highlights the significance of sEV cargos 
in the carcinogenesis and development of HCC (Fig. 3), as 
presented in Table I.



INTERNATIONAL JOURNAL OF ONCOLOGY  61:  91,  2022 3

Figure 1. The fundamental purpose of the present review was to introduce the biogenesis of sEVs, generalize the role of sEVs payloads in the initiation and 
development of HCC, and dialectically discuss the clinical applications of sEVs in the diagnosis and possible treatment applications of HCC. sEVs, small 
extracellular vesicles; HCC, hepatocellular carcinoma.

Figure 2. Schematic diagram illustrating the process of formation, secretion and uptake of sEVs. Inward budding of the cellular plasma membrane forms 
the early‑sorting endosomes. Subsequently, intraluminal budding of endosomes generates MVBs encapsulating intraluminal vesicles. sEVs are ultimately 
liberated by incorporating of MVBs to plasma membrane and the exocytosis of intraluminal vesicles. The mechanism of sEV uptake includes donor‑acceptor 
interaction, membrane fusion, phagocytosis, and clathrin‑independent and ‑dependent endocytosis. sEVs, small extracellular vesicles; MVBs, multivesicular 
bodies; ECM, extracellular matrix.
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TME. Tumorigenesis is not a single‑step event, but a consequence 
of long‑term alteration of mutations of genes and functional 
changes in the TME (85). Emerging evidence suggests that 
sEVs participate in the initiation, formation and remodeling 
of the TME in HCC (11). Chronic hepatitis B (CHB) remains 
a main factor responsible for HCC development, and sEVs 
are implicated in the spread, immune regulation and antiviral 
response of HBV infections (86). For example, exosomes from 
macrophages can deliver IFN‑α‑related microRNAs (miRNAs 
or miRs) to HBV‑infected hepatocytes, and activate the anti‑
viral response to suppress HBV replication and expression (87). 
The exosomal long non‑coding RNA (lncRNA) HOTTIP has 
been shown to play a role in mediating the antiviral effect of 
tenofovir alafenamide following HBV infection (88). It has 
been demonstrated that sEVs from CD4+ T‑cells can enhance 
B cell responses and potentiate the efficacy of the hepatitis 
B surface antigen vaccine (89). These studies indicate that 
sEVs can mediate immune regulation and antiviral response 
in HBV infection. A previous study also indicated that sEVs 
may exert negative immune regulatory effects, and that they 
are indispensable in the transformation from liver cirrhosis 
(LC) to liver cancer (90). The interplay between cancer cells 
and the TME is an essential activity that supports or prevents 
tumor development and progression. In HCC, tumor cells 
co‑exist with other non‑cancerous cells that constitute the 

TME and enhance tumor growth via various mechanisms. 
sEVs can exert an effect on the information and remodeling of 
the TME. For instance, exosomal miR‑21 derived from HCC 
has been found to promote the conversion of hepatic stellate 
cells into cancer‑associated fibroblasts (CAFs), and to facili‑
tate the formation of the TME (91). Exosomal‑miR‑1247‑3p 
from HCC cells has been shown to reduce the expression of 
B4GALT3 in CAFs and stabilize β1‑integrin, leading to the 
activation of fibroblasts via the NF‑κB signaling pathway (92). 
To summarize, sEVs play an essential role in the pathogenesis 
of HBV‑related hepatic diseases, transformation from precan‑
cerous diseases to HCC and in the formation of the TME to 
confer tumorigenesis in HCC.

Proliferation and apoptosis. The development of HCC can be 
partly attributed to the rapid proliferation and uncontrolled 
expansion of tumor cells, which also accounts for tumor 
progression and resistance to therapy. sEVs mediate tumor 
growth and expansion by affecting the cell cycle, proliferation 
rate and apoptosis of HCC cells (93‑95). Cao et al (71) suggested 
that exosomal miR‑21 can influence HCC by altering the 
expression of the tumor suppressor genes, PTEN and PTEN 
pseudogene 1. Sun et al (96) indicated that exosome‑specific 
miR‑155 targeted PTEN and consequently stimulated 
the proliferation of HCC cells. On the contrary, certain 

Figure 3. Biological function of sEV cargos in development of HCC. sEVs cargos are involved in numerous hallmarks of HCC, including proliferation, 
angiogenesis, epithelial‑mesenchymal transition, metastasis, immune escape, drug resistance as well as remolding of the tumor microenvironment. The figure 
was created using Biorender (https://biorender.com/). sEVs, small extracellular vesicles; HCC, hepatocellular carcinoma.
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sEV‑encapsulated cargos, such as miR‑338‑3p can inhibit cell 
proliferation, induce cell apoptosis and consequently repress 
the progression of HCC (97). In addition, another study 
demonstrated that the proliferative and migratory abilities of 
HCC cell lines were potentiated, while their apoptosis was 
counteracted via the enforced expression of the exosomal 
lncRNA H19 (98). Furthermore, sEV constituents may inter‑
vene in the cell cycle to regulate the progression of HCC. It has 
been corroborated that circ_0061395 silencing can trigger cell 
cycle arrest and apoptosis, and suppress the proliferation of 
HCC in vitro, as well as inhibit tumor growth (56). Similarly, 
miR‑4454 inhibitor‑mediated exosomes can substantially 
exacerbate cycle arrest, apoptosis and the formation of reactive 
oxygen species in HCC (95). Of note, the progression of HCC 
is a result of the accumulation of several time‑intersecting 
steps, including invasion, migration, angiogenesis, immune 
escape and metastasis, and sEV cargos may also function 
via several mechanisms. Huang et al (62) suggested that the 
silencing of circANTXR1 can suppress HCC progression, not 
only by inhibiting the proliferative ability of HCC, but also 
by hampering the migration, invasion and metastasis of tumor 
cells. The roles of sEVs in other hallmarks of tumor progres‑
sion will be further discussed in the following section.

Angiogenesis. Angiogenesis refers to the formation of new 
blood vessels from pre‑existing ones. It is a complex, multistep 
process involving extracellular matrix remodeling, endothe‑
lial cell migration and ultimately generation of microvessels. 
Angiogenesis not only provides sufficient oxygen and nutrition 
for cancer cells, but is also essential for HCC proliferation, 
local invasion and distant metastasis. The significance of sEVs 
in cancer angiogenesis has been widely explored and docu‑
mented recently (98). In HCC, exosomal SNHG16 can sponge 
miR‑4500 and activate angiogenesis in HUVECs by regu‑
lating polypeptide N‑acetylgalactosaminyltransferase 1 via the 
PI3K/Akt/mTOR pathway (99). Lin et al (100) reported that 
tumor‑derived exosomes (TDEs) containing miR‑210 could 
target SMAD4 and STAT6 in endothelial cells, and thereby 
promote the angiogenesis of HCC. The functions of these sEV 
cargos are multifaceted, and they alter the gene expression of 
the recipient cells, which become more aggressive and exhibit 
malignant characteristics. Apart from regulating angiogen‑
esis, they may also control phenotypic changes, such as the 
proliferative or migratory abilities of cancer cells. A previous 
study demonstrated that circCMTM3‑bearing sEVs can drive 
the angiogenesis of HUVECs, as well as their viability, migra‑
tion and invasion (58). Certain studies have found that serval 
sEV cargos may play the opposite role and suppress angio‑
genesis in HCC (34,101). For instance, HCC‑derived exosomes 
containing miR‑3682‑3p have been shown to attenuate angio‑
genesis via targeting ANGPT1, which is dependent on the 
RAS‑MEK1/2‑ERK1/2 pathway (101). Taken together, these 
results indicate that angiogenesis is a complex process that is 
orchestrated by multiple biological factors, and the treatment 
of angiogenesis may provide a novel prospective therapeutic 
approach for HCC.

Epithelial‑mesenchymal transition (EMT) and metastasis. 
Widespread metastasis in patients with HCC remains a major 
challenge for treatment, and a main reason for treatment failure, 
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as well as one of the leading‑causes of cancer‑associated 
mortality (102). Metastasis is a multistep process involving EMT, 
invasion into vessels, intravascular transport and organ‑specific 
seeding. The most common mode of metastasis in HCC is intra‑
hepatic metastasis, followed by lymphatic metastasis and distant 
metastasis to the lungs. sEVs are involved in multiple steps of 
HCC metastasis, and the importance of sEVs in HCC metas‑
tasis has recently been widely reported. Firstly, sEVs contribute 
to the EMT of HCC cells. Yang et al (103) demonstrated that 
exosomal miR‑92a‑3p from high‑metastatic HCC cell lines 
can potentiate EMT and metastasis by inactivating PTEN 
and activating Akt/Snail signaling. Similarly, Chen et al (104) 
suggested that TDEs from HCC cells can accelerate EMT, 
and induce HCC progression and recurrence by activating the 
MAPK/ERK signaling pathway; however, those studies did 
not clarify the specific sEVs‑carrying cargo that is involved 
in this process. sEVs exacerbate the migratory and invasive 
abilities of HCC, which may promote the metastasis of HCC. 
It has been observed that miR‑374a‑5p in exosomes potentiates 
the migration and invasion of HCC by regulating growth arrest 
and DNA damage inducible alpha (105). In addition, sEVs can 
orchestrate the organotropic metastasis of HCC by converting 
the pre‑metastatic microenvironment into a tumor cell‑friendly 
site. A previous study demonstrated that Exo‑miR‑1247‑3p 
derived from HCC can trigger β1‑integrin‑NF‑κB signaling 
in fibroblasts in the lungs, and is positively associated with 
several pro‑inflammatory cytokines, such as IL‑8 and IL‑6, 
which promote the lung metastasis of HCC (92). Recent studies 
have identified numerous sEV cargos that are involved in the 
metastasis of HCC, including FAM138B (106), α(M) β(2) inte‑
grin (107), hsa_circ_0074854 (108) and lncRNA TUC339 (109). 
It should be noted that the aforementioned sEV cargos may not 
only participate in one step of metastasis, but may play multi‑
faceted roles in the whole process of metastasis. For example, 
Fang et al (42) indicated that, apart from promoting EMT 
and enhancing tumor motility in vitro, HCC cells can secrete 
sEV‑encapsulated miR‑103, which also potentiates vascular 
permeability and lung metastasis in mouse models.

Immune response and therapeutic resistance. The immune 
system plays a paramount role in recognizing and eliminating 
malignant cells and foreign invaders. In the processes of tumor 
initiation and progression, aberrant proliferation and gene 
alteration in cancer cells can generate abnormally expressed 
antigens, which should be adequately presented, recognized 
and eliminated by the immune system (110). During their 
fight against the immune system, cancer cells also evolve, 
and may acquire the ability to evade immunosurveillance via 
various mechanisms. Among the immune escape effects, that 
contribute to cancer progression and drug resistance, engage‑
ment of the attenuation or abrogation of immunocytes is worth 
mentioning, and sEVs play a pivotal role in this process (111). 
Recent studies have suggested that HCC‑derived sEVs can 
impair the function of natural killer (NK) and T‑cells, as well 
as activate immuno‑suppressive cells such as M2 macrophages. 
For instance, exosomal circUHRF1 from HCC triggers the 
exhaustion of NK cells and subsequently induces resistance 
to therapy (52). Exo‑lncRNA TUC339 has also been shown 
to be internalized by macrophages, and to modulate M1/M2 
polarization and suppress the antitumor immune response 

in HCC (109). Apart from diminishing the activity of the 
innate immune system, previous studies have indicated that 
TDEs from HCC can also impede the activation and function 
of specific immunocytes such as T‑ and B‑cells (32,46,52). 
Wang et al (112) found that exosomal 14‑3‑3ζ released by 
HCC cells suppressed the antineoplastic characteristics of 
tumor‑infiltrating T‑lymphocytes. Tumor‑derived exosomal 
HMGB1 can enhance the expansion the T‑cell Ig and mucin 
domain (TIM)‑1 (+) regulatory B‑cells and facilitate HCC 
immune evasion (113). Collectively, sEVs play multiple roles in 
the communication of HCC and immune cells, and are critical 
for the immune escape of HCC cells and tumor progression. 
Thus, sEVs may serve as ideal therapeutic targets for HCC, 
although further investigations into this matter are warranted.

HCC is one of the most aggressive cancer types, and 
hepatic resection remains the gold standard of treatment 
for HCC if the patients can withstand surgery. For patients 
who experience HCC recurrence or cannot tolerate surgery, 
targeted therapies involving the use of sorafenib, a multi‑kinase 
inhibitor compound, and chemotherapy including paclitaxel 
and 5‑fluorouracil (5‑FU) are first‑line treatments. Resistance 
to drugs remains a main obstacle to the effective treatment 
of these patients. The mechanisms underlying drug resistance 
remain complex and elusive; however, but the roles of sEVs 
in this process is emerging and have captured the interest 
of researchers. For instance, a previous study found that 
transfection with GRP78 small interfering RNA into bone 
marrow‑derived mesenchymal stem cells could yield sEVs 
containing siGRP78, thus mediating targeted RNA silencing, 
which increased the sensitivity of drug‑resistant cancer cells 
to sorafenib and improved the drug resistance reversion (114). 
Furthermore, as previously demonstrated, sEV‑encapsulated 
miR‑23a/b derived from adipocytes was transferred to neigh‑
boring HCC cells, which enhanced their chemoresistance to 
5‑FU by targeting the VHL/HIF axis (115). The upregulation 
of miR‑32‑5p‑bearing sEVs has been shown to induce multi‑
drug resistance by potentiating EMT and angiogenesis via 
targeting the PI3K/PTEN/Akt signaling pathway (34). Another 
study demonstrated that sEVs secreted from cancer stem cells 
induced regorafenib insensitivity by upregulating Nanog 
expression (116). These findings highlight the significance of 
sEVs in the drug resistance of HCC, which results from sEVs 
directly suppressing drug efficacy against tumor cells, or from 
sEVs regulating the gene expression of recipient cells to facili‑
tate cancer survival. Since sEVs can alter the drug sensitivity of 
HCC cells, it is tempting to engineer a sEV‑derived vehicle to 
deliver specific agents for HCC treatment (117). Studies on this 
topic are currently underway, and the preliminary results are 
promising. Wang et al (118) indicated that the downregulation 
of miR‑744 in HCC tissue and cell lines was implicated in the 
chemoresistance to sorafenib, and HCC cell lines treated with 
miR‑744‑upregulating sEVs were more sensitive to sorafenib, 
which provides a potential approach to reduce the occurrence 
of drug resistance.

4. Clinical applications of sEVs in HCC

sEVs as diagnostic and prognostic biomarkers in HCC. 
Despite the advances in the diagnosis of HCC, the number of 
new cases and cancer mortalities associated with HCC remain 
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high (1). The diagnosis of HCC relies heavily on imaging 
analyses, such as magnetic resonance imaging or computed 
tomography; however, the diagnosis of the majority of patients 
is confirmed at an advanced stage, and thus these patients miss 
the optimal treatment period (119). Immense efforts have been 
made as regards the early diagnosis of HCC, although success 
has been limited. Alpha‑fetoprotein (AFP) is a traditional 
HCC marker with a low specificity, which has a limited value 
in the differential diagnosis between HCC and other liver 
diseases (120,121). As regards other biomarkers, such as golgi 
glycoprotein 73, AFP‑L3, phosphatidylinositol proteoglycan 
3 and decarboxylated prothrombin, they do not provide any 
obvious advantage in the early diagnosis of HCC compared 
with AFP (122,123). Therefore, a non‑invasive method with a 
high diagnostic sensitivity and specificity is urgently required. 
Recently, liquid biopsies and particularly circulating tumor 
cells, have attracted extensive interest for the diagnosis and 
monitoring of HCC (124). Studies on other tumor‑derived 
components, such as circulating tumor DNA, sEVs and serum 
miRNAs are also increasing (125‑127).

sEVs have the following advantages: i) Due to being 
protected by the sEV membrane, sEV cargos have a high 
stability and cannot easily degraded by lysosomes; ii) since 
the secretion of sEVs is a normal physiological event for 
tumor cells, sEVs can be detected in the majority of fluids, 
and their extraction is relatively non‑invasive; iii) compared 
with plasma biomarkers, bioactive molecules from sEVs 
contain less interference of plasma; and iv) markedly, cargos 
of sEVs have extensive homology with recipient cells, which 
can confer sEVs superior sensitivity and specificity than 
traditional methods (128‑130). Differential ultracentrifugation 
is the most common method used to separate sEVs from the 
cell culture medium. However, each biological fluid presents 
specific biophysical and chemical characteristics that render 
it different from culture conditioned medium. Despite current 
mainstream commercial kits are based on precipitation, which 
may result in EV populations bound to or mixed with intro‑
duced components, such as antibodies, beads or polymers; 
the majority of studies on the potential clinical applications 
of sEVs use this method as it is user‑friendly, cost‑effective 
and has potential for scale‑up production (17). Furthermore, 
the efficiency and repeatability of sEVs separated using the 
ExoQuick™ kit have been demonstrated to be comparable with 
those of differential ultracentrifugation (131). Therefore, the 
articles cited in the current section include those that using 
commercial kits to isolate sEVs.

Numerous studies on the role of sEVs as HCC promising 
biomarkers have been conducted (132‑136). The importance 
of sEVs as HCC biomarkers is reflected in numerous aspects, 
including the fact that sEV cargos may serve as biomarkers 
for the early detection of HCC; among these sEV cargos, 
miRNAs are the most extensively investigated ones. For 
instance, the expression of miR‑21 and miR‑10b in sEVs is 
markedly increased in patients with HCC compared with that 
of healthy individuals and patients with CHB, indicating that 
sEVs‑carrying miR‑21 and miR‑10b may be used as early 
diagnostic biomarkers for HCC (80). Similarly, by comparison 
with that of patients with LC, the expression of miR‑221, 
miR‑192 and miR‑146a in exosomes was increased in patients 
with HCC, and Fründt et al (137) indicated that sEVs carrying 

miR‑146a could distinguish patients with HCC from patients 
with LC with an area under the curve value of 0.80±0.14 in 
a logistic regression model, and miR‑96, miR‑122, miR‑200a 
had similar effect (138‑140). Other sEV cargos, such as proteins 
and other non‑coding RNAs (ncRNAs), including lncRNAs 
and circRNAs, may also play a role in the preliminary diag‑
nosis of HCC, and it has been observed that LINC00161, 
circRNA 0006602, LDHC, sphingosines, dilysocardiolipins, 
lysophosphatidylserines, and (O‑acyl)‑1‑hydroxy fatty acids 
are early diagnostic biomarker candidates (48,121,141‑143).

Apart from their early diagnostic value, sEV cargos may 
be involved in the prediction of tumor staging and metas‑
tasis (144‑147). Exo‑miR‑1307‑5p expression in plasma has 
been found to be positively associated with tumor stage and 
progression, while sEVs carrying miR‑125b have been shown 
to possess anti‑metastatic features and are indicators of early 
metastasis in HCC (148‑150). Other sEV cargos can play a 
similar role in tumor staging or metastasis prediction, and the 
function of lncRNA ATB, hnRNPH1 and ASMTL‑AS1 in this 
regard has been reported (151‑153). In addition, certain sEV 
cargos may serve as prognostic indicators and may predict the 
prognosis of patients with HCC. It has been corroborated that 
miR‑638, miR‑150‑3p, lncRNA CRNDE and circAKT3 in the 
sEVs of patients with HCC are implicated in overall survival 
and disease‑free survival and may serve as independent indi‑
cators of a poor prognosis (31,154‑157). It should be noted 
that the abnormal expression of certain sEV cargos, such as 
miR‑718, miR‑125b and miR‑92b is not only an effective tool 
to evaluate survival, but is also a potential marker to predict 
the recurrence of HCC (32,149,158). Notably, sEVs‑carrying 
miR‑122, hsa‑circRNA‑G004213 and DANCR are also 
potential markers to evaluate the efficacy of HCC surgical 
and interventional treatment (153,159‑161). In addition to the 
above, a panel of tumor specific biochemical indicators has 
been proposed for a higher sensitivity and specificity compared 
with single one (162‑166). For example, Sorop et al (167) estab‑
lished exosomal miR HCC Score including serum AFP and 
the level of plasma sEVs‑carrying miR‑21‑5p and miR‑92a‑3p 
with a great diagnostic ability of HCC (AUC=0.85). Taken 
together, previous studies have demonstrated that certain sEV 
cargos, including ncRNAs, mRNAs, lipids and proteins, may 
serve as potential HCC diagnostic and prognostic biomarkers. 
The potential HCC biomarkers are summarized in Table II and 
the efficacy of these candidates warrants further validation.

Therapeutic potential of sEVs in the treatment of HCC. Liver 
cancer is ranked as the third leading cause of cancer‑associated 
mortality worldwide due to resistance to traditional drugs, as 
well as diagnosis in the late stage (1,168). The identification of 
novel drugs for targeted therapy is imperative for patients with 
HCC (169). As aforementioned, the distinctive property of sEVs 
in delivering functional molecules and altering the biological 
behavior of recipient cells highlights their potential applica‑
tion as ideal therapeutic vehicles in cancer therapy, both at the 
theoretical and practical level. The development of engineered 
sEVs, with a purpose of acting as alternatives to chemothera‑
peutic and targeted agents, is currently ongoing. sEVs have 
several advantages compared with previous drug carriers, 
such as liposomes: First, sEVs achieve highly efficient drug 
delivery due to their facility of penetrating biological barriers. 
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In addition, the cellular origin of sEVs makes them well toler‑
ated, and they can easily escape immune clearance, which also 
reduces drug dose and toxicity (111,170,171); Furthermore, the 
heterogeneity of proteins on the sEVs membrane facilitates 
the targeting abilities of sEVs. In addition, sEVs are more 
biocompatible, safe and stable than liposomes (172,173). Taken 
together, sEVs have a great potential to serve as nano‑carriers 
in the treatment field. The present section mainly focuses 
on the advancements made in sEV research as regards their 
application in therapy.

To achieve a better understanding of sEVs as vehicles 
for therapeutic agents, methods of sEV preparation, the 
engineering of sEVs and the selection of cargos are under 
investigation, and the preliminary results are promising. 
Multiple therapeutic agents, including chemotherapeutic 
drugs and nucleic acids or their inhibitors, can be loaded. For 
example, in a previous study, the subcutaneous injection of 
sEVs containing miR‑let‑7a into a breast cancer mouse model 
exhibited an antitumor ability by targeting EGFR (174). In 
HCC, recent research has validated the importance of sEVs 
in the delivery of EV‑packaged drugs (175). A previous study 
provided a prospective approach for generating sEV‑associ‑
ated adeno‑associated virus containing inducible caspase 9 
(iCasp9) suicide gene (Vexo‑AAV6‑iCasp9). The engineered 
sEVs possessed a low immunogenicity and toxicity, and were 
readily absorbed by HCC cells, consequently increasing 
HCC regression in an in vivo xenograft model (176). Another 
study encapsulated erastin (a typical ferroptosis inducer) and 
rose bengal (RB, a well‑known photosensitizer) into sEVs 
and engineered CD47 on the surface of sEVs to protect the 
designed sEVs from phagocytosis by macrophages. The 
sEVs induced obvious ferroptosis in HCC, with minimized 
toxicity in the liver and kidneys (177). Apart from packing 
antitumor payloads into sEVs, previous studies have devel‑
oped nanoparticles targeting specific adhesion or receptor 
proteins on the surface of sEVs membranes for targeted 
delivery. Tian et al (80) designed a nano‑drug based on 
the PDCM system by targeting sEVs shuttling miR‑21 and 
miR‑10b, which markedly decreased HCC growth and the 
numbers of metastatic lung nodules. TDEs not only assist in 
exacerbating tumor progression, but also increase the resis‑
tance of cancer cells to antitumor treatments (178). Sorafenib 
and transarterial chemoembolization have been considered 
optional treatments for terminal‑stage HCC for numerous 
years. Due to acquired drug resistance to commonly used 
chemotherapeutic agents, the clinical outcome and overall 
survival of patients with HCC remain unsatisfactory (179). 
The expression of programmed cell death protein 1 (PD‑1) 
in HCC tissues from patients with HCC who accepted 
sorafenib treatment was upregulated and induced T‑cell 
apoptosis (180). Therefore, immune checkpoint inhibitors, 
such as commonly used PD‑1 antibodies and PD‑L1 anti‑
bodies have been introduced into medical practice as part 
of the HCC regimen; however, the efficacy of the combina‑
tion of sorafenib and immunotherapy has not yet been fully 
elucidated. Shi et al (180) treated mouse models of HCC 
with the triple treatment of sorafenib, PD‑1 antibodies and 
DC‑derived exosomes (DEXs), which markedly prolonged 
the survival time mice with HCC by comparison with the 
mice treated with sorafenib alone, DEXs alone, or the 
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combination of DEXs and sorafenib. Taken together, these 
preclinical studies offer encouragement for the application of 
sEVs as vehicles for HCC treatment.

Despite the rapid development of advanced techniques, 
major limitations remain in the current understanding of 
sEVs vs. ideal treatment scenarios: i) For sEV technology 
to play a role as a drug delivery vector, it is necessary to 
ensure high purity and adequate production. There are 
still several obstacles which hamper the efficacy of current 
methods, such as being time consuming, having a high cost 
and generating polluting by‑products. Oncologists increase 
the total yield of sEVs by intracellular calcium production, 
external stress, cytoskeletal blocking, drug stimulation and 
the induction of gene expression factors. Furthermore, sEVs 
usually represent heterogeneous populations from different 
cell sources, and no standard separation process has been 
established to date to achieve product consistency (181); 
ii) the efficient incorporation of external antitumor agents 
and molecules is another demanding challenge that needs 
to be optimized. The high drug‑loading content in sEVs 
must be sufficient to obtain a therapeutic response. Several 
approaches, including transfection, electroporation and 
sonication (182,183), can be applied to upload the desired 
biomolecules into sEVs. However, it is difficult to ensure 
the integrity and biostability of the plasma membrane and 
the function of sEVs; iii) the current evidence for the ability 
of sEVs to deliver specific messages derives from cell 
culture studies. The biodistribution and tissue or cellular 
tropism in vivo will determine the application of therapeutic 
sEVs in clinical practice. At present, there is insufficient 
evidence for in vivo and clinical applications, which is a 
critical topic for future research in this area. Due to being 
subjected to elimination by the mononuclear phagocyte 
system, the half‑life of sEVs in the systemic circulation is 
relatively short (184). Thus, further studies on the balance 
between prolonged circulation time and increased risk of 
toxicity on major organs are warranted; and iv) currently, 
sEVs need to be stored under‑20 and ‑80˚C in phosphate 
buffer saline (185). Therefore, identifying a suitable storage 
method is one of the barriers to be overcome.

In summary, while the application of sEVs as a therapeutic 
drug delivery system remains in its infancy, the deeper under‑
standing of the aforementioned obstacles will provide a new 
orientation for cancer nanomedicine and immunotherapy.

5. Conclusions and future perspectives

sEVs can trigger the alteration of gene expression and induce 
aggressive behaviors in HCC cells; however, whether such 
observations can be replicated in vivo needs to be further 
investigated, since the precise isolation and high concen‑
tration of cell culture‑derived sEVs could not be achieved 
in the majority of in vivo studies published thus far. 
Paradigm‑shifting findings in the field of HCC diagnosis have 
resulted in new avenues for research on HCC biomarkers. 
Their easy availability, vesicle‑tethering stability and high 
donor‑homology confer sEVs an unparalleled advantage as 
HCC biomarkers compared with traditional biomarkers. 
However, the clinical value of sEVs as HCC biomarkers is 
still limited due to the absence of clinical research with large 

sample sizes. Extensive efforts are currently being made to 
identify sEVs biomarkers with high specificity and sensi‑
tivity, and apply them to clinical practice. The role of sEVs in 
cancer therapy has been studied extensively in recent years; 
however, research on sEVs for HCC remains limited. Before 
applying them in clinical practice, it is important to validate 
the purity, safety and effectiveness of sEVs‑encapsulated 
agents. Further research is warranted to guarantee the 
homogeneity of sEVs, improve the efficiency of their isola‑
tion methods and reduce the associated side‑effects. The 
targeting of sEVs is another issue that needs to be resolved. 
Surface modification is a typical approach to harvest targeted 
sEVs by modifying the proteins or peptides that specifically 
expressed on the cell membrane through gene transfection. 
Engineered sEVs can be selectively delivered to target cells 
and reach the standard in terms of yield and targeted therapy. 
However, the safety, mutagenesis and time‑consuming 
limit their clinical applications. Currently, aptamers, also 
known as chemical antibodies, have attracted the attention 
of oncologists. The majority of aptamers have been utilized 
to guide nanoparticles, therapeutic and imaging agents to 
target locations in several promising anticancer preclinical 
studies, whereby they are able to modulate tumor retention 
and biodistribution. However, all these issues cannot be 
solved in a short period of time, and as the number of clinical 
studies increases, more patients will gain clinical benefit 
from research in sEVs.
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