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Abstract
Background: The heart is capable of maintaining contractile function despite a transient decrease
in blood flow and increase in cardiac ATP demand during systole. This study analyzes a previously
developed model of cardiac energetics and oxygen transport to understand the roles of the
creatine kinase system and myoglobin in maintaining the ATP hydrolysis potential during beat-to-
beat transient changes in blood flow and ATP hydrolysis rate.

Results: The theoretical investigation demonstrates that elimination of myoglobin only slightly
increases the predicted range of oscillation of cardiac oxygenation level during beat-to-beat
transients in blood flow and ATP utilization. In silico elimination of myoglobin has almost no impact
on the cytoplasmic ATP hydrolysis potential (GATPase). In contrast, disabling the creatine kinase
system results in considerable oscillations of cytoplasmic ADP and ATP levels and seriously
deteriorates the stability of GATPase in the beating heart.

Conclusion: The CK system stabilizes GATPase by both buffering ATP and ADP concentrations
and enhancing the feedback signal of inorganic phosphate in regulating mitochondrial oxidative
phosphorylation.

Background
The working heart relies on uninterrupted supplies of oxy-
gen and substrates to maintain its normal function under
different workloads [1,2]. However, during the systole the
heart muscle contracts and the coronary blood flow is
greatly reduced; while during the diastole the heart muscle
relaxes, and the coronary blood flow approaches a maxi-
mum [1,2].

Abundant myoglobin and creatine pools exist in cardiac
tissue, and their roles have been extensively studied [3-8].

The O2-Mb binding reaction is

and the creatine kinase reaction is

Myoglobin may work as an oxygen buffer [6,9], facilitate
oxygen diffusion at low cellular oxygen tension [10-12],
and/or catalyze chemical reactions (such as NO scaveng-
ing) [13-15]. Similarly, the creatine kinase system may
either buffer cellular ATP levels or facilitate ATP diffusion
inside myocytes [7,8,16].
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Under normoxic conditions facilitated diffusion of oxy-
gen by oxy-myoglobin is not expected to play a significant
role in oxygen transport in the myocardium [6,17,18].
Therefore we consider only the oxygen storage function of
myoglobin in this computational study. The importance
of CK-facilitated high-energy phosphate transport
depends on diffusion path length and diffusivity of ATP
and ADP in cardiomyocytes [7]. Since the myofibrils gen-
erally have small diameters (1–2 m) and are surrounded
by dense mitochondria, it is possible that CK-facilitated
transport does not play a significant role in vivo either [7].
The CK-shuttle theory of Saks et al. [8,19,20] requires
restricted intracellular diffusivity of ADP, for which there
is no unambiguous experimental evidence. In this study
the buffering role of the CK system is investigated, and
CK-facilitated diffusion of high-energy phosphate is not
considered.

Here, the roles of myoglobin and creatine phosphate in
buffering the energy state (i.e., ATP hydrolysis potential)
in the working heart are investigated using a multi-scale
computer model integrating cellular metabolism with
oxygen transport in the cardiac tissue [21,22]. The cellular
metabolism model was adopted from a recently-pub-
lished computer model of energetic metabolism of car-
diac mitochondria [23]. The metabolic model is
integrated with a model of oxygen transport accounting
for heterogeneous oxygenation in cardiac tissue [21].

To examine roles of myoglobin and the CK system, simu-
lations were performed for the normal model (control)
and models with myoglobin and CK not active. The sim-
ulations demonstrate that the effects of myoglobin on
metabolite levels and cytoplasmic ATP hydrolysis poten-
tial are barely discernible in the working heart. In contrast,
the CK system plays an essential role in maintaining the
energetic state in the heart.

Methods
A computational model previously described and vali-
dated [21] is applied to simulate metabolic responses of
the beating heart to various workloads. The model com-
ponents are illustrated in Figure 1. A previously developed
and validated axially-distributed oxygen transport models
is used to simulate oxygen transport in the cardiac tissue
(illustrated in Figure 1). The axially-distributed oxygen
transport model is divided into three regions including
capillaries, interstitial space, and myocardium, where oxy-
gen binds hemoglobin in red blood cells in capillaries,
diffuses into myocardium, and is consumed in mitochon-
dria. A detailed cellular metabolism model is integrated
with the multiple-pathway model of oxygen transport, as
illustrated in Figure 1. For detailed descriptions of the
model, see the Methods and Appendices sections in Wu et
al. [21,23]. All model parameters and initial conditions

are the same as those used in our previous work [21]. To
reduce computational cost, we modify the model
described in Reference [21] by reducing the number of the
pathways from ten to one and assuming that the ATP
hydrolysis rate remains constant during systole. The
resulting single-pathway transport model lacks the capa-
bility of the multiple-pathway model to characterize the
heterogeneous oxygenation in cardiac tissue under
ischemia, but still provides a valid and reliable description
of oxygenation under normal physiological conditions as
simulated in this work [21,22]. The nomenclature and
symbols used in this paper are defined in Table 1.
Detailed descriptions of the computational model com-
ponents are included in Additional file 1.

Data on blood flow and heart rate under different oxygen
consumption rates are collected from a series of experi-
mental data on in vivo dog hearts reported by Zhang et al.
in Figure 2[24-29]. Here measured blood flow and heart
rate are shown at a number of measured oxygen consump-
tion rates. At the mean resting conditions baseline work
rate (MVO2 = 3.5 mol min-1 (g tissue)-1 and JATPase =
0.36 mmol sec-1 (liter cell)-1) blood flow and heart rate
are 0.76 ml min-1 (g tissue)-1 and 137 beats min-1,
respectively. At the average maximum observed work rate
(MVO2 = 10.7 mol min-1 (g tissue)-1 and JATPase = 1.2
mmol sec-1 (liter cell)-1) blood flow and heart rate are
2.31 ml min-1 (g tissue)-1 and 219 beats min-1, respec-
tively. The data in Figure 2 are used to determined rela-
tionships between rate of oxygen consumption and
average blood flow and heart rate. The linear relationships
are G = 0.2146 MVO2 + 0.0093 and HR = 11.415 MVO2
+ 96.95, where MVO2 is expressed in units of mol min-
1 (g tissue)-1, G is flow in units of ml min-1 (g tissue)-1,
and HR is heart rate in units of beats min-1.

To simulate dynamic blood flow and ATP hydrolysis
activity on the beat-to-beat time scale in the working
heart, square waves of blood flow and ATPase activity are
used, as shown in Figure 3A and 3B. This assumes that
blood flow totally stops and ATP consumption rate is
nonzero only during systole. Conversely, blood flow is
nonzero and ATP consumption is zero during diastole.
Experimental observations on coronary blood flow and
left ventrical pressure show that neither coronary blood
flow nor ATP consumption goes to zero during the heart
cycle [30]. Thus the square waves of blood flow and ATP
hydrolysis activity shown in Figure 3A and 3B simulate an
extreme mismatch between blood flow and ATP con-
sumption. This simplified model allows us to probe a the-
oretical upper limit on the range of oscillation of
concentrations of biochemical reactants.

Oxygen tension in the three compartments (capillaries,
interstitial space, and myocardium), mitochondrial mem-
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brane potential, and concentrations of metabolites are
obtained from model simulations. Myoglobin saturation
is computed from oxygen tension in myocardium

( ) as

where P50, Mb is the half-saturation partial pressure for the
oxygen-myoglobin binding, 2.39 mmHg [22].

The free energy potential of ATP hydrolysis is computed
from

where  = -34.89 kJ mol-1 [31] at ionic strength I =

0.17 M, and temperature T = 310.15 K, and R is the gas
constant equal to 8.314 kJ mol-1 K-1. The subscript "c"
denotes cytoplasm.
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Diagram of model used to simulate cardiac tissue oxygen transport and energy metabolismFigure 1
Diagram of model used to simulate cardiac tissue oxygen transport and energy metabolism. Oxygen is trans-
ported via advection in capillaries, diffuses into cardiomyocytes from capillaries through interstitium, and is reduced into water 
via the complex IV reaction in mitochondria. Cellular energy metabolism is simulated by a computer model of mitochondrial 
tricarboxylic acid cycle, oxidative phosphorylation, metabolite transport, and electrophysiology [23].
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Oxygen-myoglobin binding is assumed to be maintained
in equilibrium in the tissue model. The kinetics of the CK
reaction is governed according to the model described in
Reference [21]. Molecular diffusion of creatine, phospho-
creatine, and myoglobin are not included in the model
(see Reference [21]). Therefore putative roles of oxy-
myoglobin and phosphocreatine are not explored in this
work.

Results
To understand the roles of myoglobin and the creatine
kinase system as buffers in maintaining the energetic state
in the heart, we simulate transient responses and steady
states of cardiac energetics under different cardiac work-
loads in three systems: (1) a normal system with both the
normal myoglobin level and creatine kinase activity; (2) a
system without myoglobin (no-Mb system); (3) a system
with zero creatine kinase activity (no-CK system). The fol-

lowing analyses demonstrate the importance of the CK
system in stabilizing energetic states in the beating heart.
In the normal system, the myoglobin concentration (CMb)
is set to be a physiologically reasonable value 200 M
[32], and the creatine kinase activity is set to be an arbi-
trary large value to ensure that the CK reaction is rapid
enough to remain near equilibrium [33]. CMb is reduced
to zero in the no-Mb system, and the creatine kinase activ-
ity is set to be zero in the no-CK system.

Transient cardiac energetics in responses to a step change 
of workload
The normal system
Figure 4 illustrates transient changes of myoglobin satura-
tion level (SMb), phosphate metabolite levels, cytoplasmic
ATP hydrolysis potential (GATPase), mitochondrial inner
membrane potential (), and mitochondrial ANT trans-
port flux (JANT), following a step change of cardiac work-

Table 1: Nomenclature

Symbol Definition Units

C Buffer capacity of the CK system mol2 kJ-1

CMb Myoglobin concentration M

CRtot Total creatine pool in myocardium mmol (l cytoplasm water)-1

GATPase Cytoplasmic ATP hydrolysis potential kJ mol-1

Average magnitude of cytoplasmic ATP hydrolysis potential kJ mol-1

Transformed Gibbs free energy of ATP hydrolysis kJ mol-1

 Mitochondrial inner membrane potential mV

G Blood flow ml min-1 (g tissue)-1

HR Heart rate beats min-1

I Ionic strength M

JANT Mitochondrial ANT transport flux mmol sec-1 (liter mito)-1

JATPase Cytoplasmic ATP consumption rate mmol sec-1 (liter cell)-1

MVO2 Oxygen consumption rate mol min-1 (g tissue)-1

Partial oxygen pressure in myocardium mmHg

P50, Mb Half-saturation partial pressure for the oxygen-myoglobin binding mmHg

R Gas constant kJ mol-1 K-1

SMb Myoglobin saturation unitless

T Temperature K

t Time second

ΔGATPase

ΔGATPase
o’

PO ,cell2
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load and coronary blood flow (shown in Figure 3) in the
normal system. The ANT transport flux is the rate at which
ATP is transported from the mitochondrial matrix to the
cytoplasm in exchange for ADP. When the step change in
work rate occurs at time t = 6 seconds, these variables
move from their baseline steady state values to approach
new steady-state values at the maximal workload after

about 20 seconds. Average SMb decreases from 0.94 to
0.91, average [ATP]c remains almost constant (slightly
decreasing from ~9.66 to ~9.64 mM), average [CrP]c
decreases from ~23.4 to ~19.5 mM, average [Pi]c increases
from ~0.28 to ~2.1 mM, average [ADP]c increases from
~42 to ~62 m, average -GATPase decreases from ~70.2 to
~63.5 kJ mol-1, average  decreases from ~180 to ~174
mV, and average JANT increases from 0.36 to 1.2 mmol s-1

(l cell)-1. The range of oscillation of the variables in SMb,
[ATP]c, [CrP]c, [Pi]c, [ADP]c, and JANT increases slightly,
but interestingly, the oscillations of -GATPase and 
slightly decrease, implying that despite elevated instability
of oxygenation and phosphate metabolite levels, energetic
stability is slightly increased with increasing work rate.

The no-Mb system
To investigate the effects of myoglobin on cardiac energet-
ics, simulations of the no-Mb system following the same
protocols used above for the normal system were per-
formed. Comparing results from the no-Mb system
(shown in Figure 5) with those of the normal system (Fig-
ure 4), it is apparent that the myoglobin buffering has lit-
tle impact on the temporal fluctuations. The oscillations
in SMb are only slightly higher for the no-Mb system com-
pared to the control. These fluctuations do not impact
other energetic variables because the corresponding cellu-
lar oxygen tension remains above 15 mmHg at the maxi-
mum work rate and does not limit oxidative capacity in
the heart [18].

The no-CK system
To investigate the effects of CK buffering on the system,
simulations of the no-CK system were performed using
the same protocols used for the control, with the activity
of creatine kinase is set to be zero for the simulations.
Results illustrated in Figure 6 demonstrate the importance
of the CK system in maintaining cardiac energetic state.
Compared with the results in Figure 4, disabling the CK
system causes considerably enhanced oscillations of SMb,
[ATP]c, [Pi]c, [ADP]c, GATPase, , and JANT during the car-
diac cycle. In addition, removing CK prevents release of Pi
from creatine phosphate (CrP) in response to increases in
work rate. As a result, the average [Pi]c is reduced from
~2.1 mM in the normal system to ~0.7 mM in the no-CK
system at the maximum workload.

Steady-state cardiac energetics at varying workloads
The preceding transient simulations demonstrate the
important role of the CK system in maintaining energetic
stability in the beating heart. Next, we further explore
impacts of the CK system on steady states of SMb, [ATP]c,
[CrP]c, [Pi]c, [ADP]c, GATPase, , and JANT at varying
workloads by simulating steady-state metabolite levels as
a function of work rate. In Figure 7, the predicted range
(over the cardiac cycle) of each illustrated metabolite is

Relationships between oxygen consumption rate (MVO2), blood flow (F), and heart rates (HR) in cardiac tissueFigure 2
Relationships between oxygen consumption rate 
(MVO2), blood flow (F), and heart rates (HR) in car-
diac tissue. (A.) Plot of blood flow against oxygen consump-
tion rate. (B.) Plot of heart rate against oxygen consumption 
rate. Experimental data are obtained from the following 
sources: ❍, Zhang et al. [25]; ã, Zhang et al. [24]; , Gong et 
al. [26]; �, Ochiai et al. [27]; á, Gong et al. [28]; �, Bache et 
al. [29]. The relationship between JATPase, the ATP hydrolysis 
rate, and MVO2 is predicted by the computer model. The 
solid lines represent the best fits to the data: G = 0.2146 
MVO2 + 0.0093 with R-squared value (R2) = 0.9414 (in Figure 
A) and HR = 11.415 MVO2 + 96.95 with R2 = 0.6892 (in Fig-
ure B). The vertical dashed lines mark baseline (JATPase = 0.36 
mmol s-1 (l cell)-1) and high MVO2 (JATPase = 1.2 mmol s-1 (l 
cell)-1). JATPase is expressed in units of mmol s-1 (l cell)-1, G in 
units of ml min-1 (g tissue)-1, and HR in units of beats min-1.
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plotted as a shaded region. Black regions represent simu-
lations of the control system; gray represents simulations
of the no-CK system. Upper bounds of the regions repre-
sent the maximum values of the investigated variables
during a heart cycle, and down bounds represent their
minimum values.

Figure 7A illustrates that the oxygenation levels in the no-
CK system vary slightly more than in the control system,
while average oxygenation levels in the both system are
nearly identical. Figure 7B shows that [ATP]c is main-
tained at an almost constant level (~9.66 mM) without
noticeable oscillations over the whole range of cardiac
workload in the control system; in the no-CK system

[ATP]c oscillates over a wider range (~± 0.2 mM at the
maximum workload), and the average [ATP]c decreases
from ~9.66 mM at the baseline workload to ~9.52 mM at
the maximum workload in the no-CK system. Figure 7C
shows that the average [CrP]c decreases from ~23.4 mM at
the baseline workload to ~19.5 mM at the maximum
workload in the control system. ([CrP]c is constant in the
no-CK system because of zero CK activity.) Figure 7D
shows that the average [Pi]c at the maximal work rate is
three-folder lower in the no-CK system than in the control
system. Average [Pi]c is ~0.7 mM at the maximum work-
load in the no-CK system compared to ~2.1 mM in the
control simulation. Figure 7E shows that [ADP]c oscillates
drastically in the no-CK system, where [ADP]c varies
between ~85 m and ~270 m at the maximum work-
load, compared with [ADP]c varying between ~60 and ~63
m at the maximum workload in the control system. As
shown in Figure 7F, the average values of GATPase are
approximately equal between the control and no-CK.
However, it is apparent from the predicted ranges of oscil-
lation that the CK system acts in stabilizing GATPase in the
myocardium. Over the whole range of cardiac workload,
the range of oscillations of GATPase is approximately four
times higher in the no-CK system than in the control.
Mitochondrial inner membrane potential () also oscil-
lates over in a wider range (~± 5 mV) in the no-CK system
than in the control system (< ± 1.2 mV) as shown in Figure
7G. Figure 7H shows that in both the control and the no-
CK systems the average JANT at the steady state is equal to
the average cytoplasmic ATP hydrolysis rates at different
cardiac workloads, indicating the oxidative phosphoryla-
tion flux is able to match the cellular ATP demand in both
cases. However, the oxidative ATP synthesis rate in the no-
CK case oscillates over a much larger range in the no-CK
case.

These results demonstrate two roles of the CK system in
maintaining cardiac energetic state. The first role as a
buffer has been widely appreciated [7,8,16,34]. The sec-
ond role is to provide a source of increasing inorganic
phosphate with increases in work rate. This allows the car-
diomyocytes to maintain relatively stable ATP and ADP
concentration, as illustrated in Figure 7B and 7E. Briefly,
Figure 7 clearly demonstrates significant roles of the CK
system in maintaining energetic stability during the heart
cycles at varying cardiac workloads.

Discussion
Minor impact of myoglobin on cardiac energetics
Comparisons between Figure 4 and 5 demonstrate the
oxygen-storage function of myoglobin plays minor roles
in maintaining energy state of the heart in normoxic con-
ditions. However, possible physiological roles of
myoglobin may be revealed under extreme conditions.
The concentration of myoglobin in the heart of most ter-

Temporal profiles of blood flow and cytoplasmic ATP con-sumption rate used as model inputsFigure 3
Temporal profiles of blood flow and cytoplasmic ATP 
consumption rate used as model inputs. (A.) Time 
course of blood flow with a step change occurs at time t = 6 
seconds corresponding to an increase of cardiac work rate 
from baseline to maximum level. (B.) Time course of cyto-
plasmic ATP consumption rate (JATPase) with a step change 
from baseline to maximum work rate at t = 6 seconds.
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Transient changes of myoglobin saturation, phosphate levels, cytoplasmic ATP hydrolysis potential, mitochondrial inner mem-brane potential, and mitochondrial ATP production rate in the control systemFigure 4
Transient changes of myoglobin saturation, phosphate levels, cytoplasmic ATP hydrolysis potential, mitochon-
drial inner membrane potential, and mitochondrial ATP production rate in the control system. (A.) Myoglobin 
saturation (SMb). (B.) Cytoplasmic ATP concentration ([ATP]c). (C.) Cytoplasmic creatine phosphate concentration ([CrP]c). 
(D.) Cytoplasmic inorganic phosphate concentration ([Pi]c). (E.) Cytoplasmic ADP concentration ([ADP]c). (F.) Cytoplasmic 
ATP hydrolysis potential (-GATPase). (G.) Mitochondrial inner membrane potential (). (H.) Mitochondrial ATP production 
rate, equal to mitochondrial adenosine nucleotide translocator flux (JANT). All variables are simulated for the time courses of 
the flow and ATP consumption rate in Figure 3.

0

0.5

1

1.5

2

2.5

[P
i] c (

m
M

)

D

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

Time (sec)

J A
N

T (
m

m
ol

 s
-1

 (
l c

el
l)-1

) H

0 5 10 15 20 25
160

165

170

175

180

185

Time (sec)

 (
m

V
)

G

60

65

70

75

-
G

A
T

P
as

e (
kJ

 m
ol

-1
)

F

18

20

22

24

26

[C
rP

] c (
m

M
)

C

9.2

9.4

9.6

9.8

10

[A
T

P
] c (

m
M

)

B

40

50

60

70

80

[A
D

P
] c (

M
)

E

0.88

0.9

0.92

0.94

0.96
S

M
b

A

 

 



BMC Systems Biology 2009, 3:22 http://www.biomedcentral.com/1752-0509/3/22

Page 8 of 16
(page number not for citation purposes)

Transient changes of myoglobin saturation, phosphate levels, cytoplasmic ATP hydrolysis potential, mitochondrial inner mem-brane potential, and mitochondrial ATP production rate in the no-myoglobin (no-Mb) heartFigure 5
Transient changes of myoglobin saturation, phosphate levels, cytoplasmic ATP hydrolysis potential, mitochon-
drial inner membrane potential, and mitochondrial ATP production rate in the no-myoglobin (no-Mb) heart. 
As for the control simulation of Figure 4, all variables are simulated for the time courses of the flow and ATP consumption rate 
in Figure 3.
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rain mammals (e.g., rat, dog, human) is typically between
130 and 320 M [35,36]. In the event of severe ischemia,
these concentrations can only satisfy the oxygen demand
of the heart for several seconds even at relatively low work
rate. Comparatively, CMb level is high in diving birds and
mammals (e.g., 4~5 mM in seals) [37], and may contrib-
ute to significant oxygen buffering [38].

First hypothesized over 30 years ago, the relative impor-
tance of Mb-facilitated oxygen transport has remained
unclear, in part, due to conflicting experimental measure-
ments on myoglobin diffusivity [10-12]. Early conclu-
sions on Mb-facilitated oxygen diffusion were mainly
drawn based on high estimates (7~23 × 10-7 cm2 s-1) of
myoglobin diffusivity from in vitro measurements in
dilute solution of myoglobin [4,10-12,39,40]. Using two
different techniques, microinjection and fluorescence
recovery after photobleaching (FRAP), Papadopoulos et
al. [9,41] report that that myoglobin diffusivity is approx-
imately 2.0 × 10-7 cm2 s-1 at 37°C in myocardiocytes.
Based on this low value of myoglobin diffusivity, Jurgen
et al. [6] and Beard and Bassingthwaighte [42] determine
that the intracellular myoglobin diffusivity may be too
low to provide significant facilitation of oxygen transport
in well-oxygenated cardiac tissue. Jue and colleagues
[43,44] report higher values of myoglobin diffusion in
cardiomyocytes, 7.85 × 10-7 cm2 s-1 at 35°C and 4.24 × 10-

7 cm2 s-1 at 22°C, obtained from a 1H-NMR technique.
However, even at these diffusivity values, myoglobin does
not impact oxygen transport into the cells significantly
when cellular oxygen tension is above P50 of myoglobin
[43,44]. Similarly, Timmons et al. [45,46] report that oxy-
gen supply does not limit oxidative ATP synthesis in rest-
work transition in skeletal muscle, also implying the
minor role of myoglobin in oxygen transport in oxidative
striated muscle.

Myoglobin can scavenge and catalyze degradation of NO
in vivo [13,47]. In addition, Rassaf et al. [14] propose that
myoglobin in the heart might work as an oxygen sensor
and metabolism regulator, since myoglobin can act as
either an NO scavenger at high cellular PO2 and an NO
producer at low PO2. Since oxygenation in cardiac tissue is
maintained above the P50 for myoglobin in normoxia,
myoglobin may act as an NO scavenger under normal
conditions.

The absence of myoglobin may elevate cytoplasmic NO
level and consequently impacts metabolism regulation,
structure, and functions in the heart. Experimental obser-
vations show that physiological performance of Mb-
knockout mice is comparable to those of normal mice,
but the Mb-knockout mice have significantly elevated cor-
onary flow, coronary reserve, and capillary density com-
pared to the control [48,49]. These differences may be

associated with elevated NO levels, resulting from
reduced NO scavenging in myocardiocytes of the Mb-
knockout mice. Elevated NO may also promote angiogen-
esis by regulating various growth factors and increase cap-
illary density [50-52]. Flogel et al. [53] propose that
decreased myoglobin may directly affect substrate selec-
tion. For example, elevated NO level impacts substrate
utilization by effecting gene expressions of the glucose
transporter (GLUT4) and the peroxisome proliferator-
activated receptor (PPAR) [53]. Hence, abnormally ele-
vated NO levels may contribute to the physiological adap-
tations observed in Mb-knockout mice.

In summary, our simulations predict that oxygen buffer-
ing by myoglobin in terrestrial mammals plays an insig-
nificant role in maintaining the energy state of the beating
heart. Significant changes of structure, hemodynamics,
and metabolism observed in Mb-knockout mice [49,53]
do not necessarily reflect compensation mechanisms for
oxygen deficiency in cardiac tissue. These differences may
be caused by elevated cellular NO levels in the knockout
mice via various pathways [2,50-56]. In aerobic muscles,
such as cardiac muscle, a large amount of mitochondria
are required to provide adequate and sustained energy
supply, and this high oxidative capacity is usually accom-
panied by abundant myoglobin, perhaps functioning pri-
marily to scavenge NO generated by mitochondria.

Creatine kinase system is essential in stabilizing cardiac 
energetic state
Simulations presented in Figure 6, 7 show considerably
diminished energetic stability in the no-CK system, and
thus demonstrate significant roles of the creatine kinase
system in maintaining normal function in the working
heart. These analyses show that the CK system not only
buffers cytoplasmic ATP and ADP concentrations but also
enhances the Pi feedback signal in regulating mitochon-
drial oxidative ATP synthesis.

The CK system enhances the Pi feedback signal in 
regulating oxidative ATP synthesis
Mechanisms underlying regulation of cardiac energetics
have been controversial for decades [19,57,58]. Our
recently published work suggests that substrate feedback
regulation plays an essential role in coordinating mito-
chondrial ATP synthesis with cellular ATP consumption
[21,23,59]. As a product of ATP hydrolysis, inorganic
phosphate (Pi) is a primary controller of mitochondrial
oxidative ATP synthesis [23,58,60]. As shown in Figure 7
and 8, the concentration of Pi in the no-CK system
increases significantly less with work rate in the control
system. At the same time ADP increases significantly more
in the no-CK system.
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Transient changes of myoglobin saturation, phosphate levels, cytoplasmic ATP hydrolysis potential, mitochondrial inner mem-brane potential, and mitochondrial ATP production rate in the heart without creatine kinase activity (no-CK)Figure 6
Transient changes of myoglobin saturation, phosphate levels, cytoplasmic ATP hydrolysis potential, mitochon-
drial inner membrane potential, and mitochondrial ATP production rate in the heart without creatine kinase 
activity (no-CK). As for the control simulation of Figure 4, all variables are simulated for the time courses of the flow and 
ATP consumption rate in Figure 3.
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Steady-state myoglobin saturation, phosphate levels, cytoplasmic ATP hydrolysis potential, mitochondrial inner membrane potential, and mitochondrial ATP production rate in the control and no-CK systemsFigure 7
Steady-state myoglobin saturation, phosphate levels, cytoplasmic ATP hydrolysis potential, mitochondrial 
inner membrane potential, and mitochondrial ATP production rate in the control and no-CK systems. Simu-
lated ranges of variables are shown as shaded regions, black for the control and grey for the no-CK system. The upper bounds 
of the regions represent the maximum values during a heart cycle at steady state, and the low bounds represent the predicted 
minimum values.
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One way to understand the relative importance of Pi and
ADP in regulating oxidative phosphorylation is to clamp
their concentrations and simulate the expected impact on
the phosphate metabolites. The concentrations of Pi and
ADP are clamped by setting their time derivatives to be
zero in the model, respectively. Results from these simula-
tion experiments are illustrated in Figure 8. The model
predictions of the control system are plotted as solid lines,
and those of the no-CK system are illustrated as dashed
lines. The previously obtained baseline and maximum
work rates (see Methods section), 0.36 and 1.2 mmol s-1

(liter cell)-1, respectively, are indicated by two vertical dot-
ted lines in the plots in Figure 8. The simulations without
clamped metabolite concentrations are demonstrated in
Figure 8A–C. Figure 8A shows that the magnitudes of aver-

age GATPase ( ) are approximately equal

between the control and no-CK over the range of work-
load. Figure 8B illustrates that the average [Pi]c only

increases approximately two fold over the range of work
rate in the no-CK system, compared to the approximately
eight-fold increase in the control. Figure 8C shows that
the average [ADP]c increases approximately four fold over

the range of work rate, compared to the only slight
increase of the average [ADP]c in the control. With [Pi]c

clamped at the baseline level, the model-predictions are
the same in both the control and no-CK system, as shown

Figure 8D–F. Figure 8D shows that  reaches the

critical value [21], 63.5 kJ mol-1, at JATPase = ~0.90 mmol s-

1 (liter cell)-1. Figure 8F shows a rapid increase of the aver-
age [ADP]c in responses of elevated work rate. Clamping

[ADP]c impacts the simulations less significantly, as

shown in Figure 8G–I. Figure 8G shows that with [ADP]c

clampled,  reaches the critical value at JATPase =

~1.04 mmol s-1 (liter cell)-1 in the control, and at JATPase =

~1.08 mmol s-1 (liter cell)-1 in the no-CK system. With
[ADP]c clamped (Figure 8H) and with [ADP]c free to vary

(Figure 8B), Pi concentrations are higher in the control
system than in the no-CK system because of a larger effec-
tive total pool of exchangeable phosphates in the control.

To summarize these findings, clamping [Pi]c has a more
significant impact on energetic stability than clamping
[ADP]c in both the control and no-CK systems. For both
systems, when Pi feedback is removed from the model (by
clamping [Pi]c) the free energy of ATP hydrolysis drops
more quickly with increasing work rate than in the
unclamped simulations. When [ADP]c is clamped, the

impact on the predicted energetic state is less significant
than when [Pi]c is clamped. Therefore, inorganic phos-
phate is a more important controller of oxidative phos-
phorylation than ADP in this model. Since this model is
well validated against steady-state and transient in vivo
data, it is likely that inorganic phosphate is a primary con-
troller of oxidative phosphorylation in vivo.

Previous analysis of data from purified mitochondria sug-
gests that Pi activates complex III of the respiratory chain
[60]. Indeed this phenomenon is incorporated into our
computational model [21,23]. When Pi level decreases in
the no-CK system, the mitochondrial membrane poten-
tial (Figure 6G) is diminished, leading to increased [ADP]c
and decreased |GATPase| compared to control. However,
even though the Pi signal is diminished in the no-CK sys-
tem, Pi remains the most important feedback signal for
oxidative phosphorylation.

Saupe et al. [61] observed that as work rate increases in
hearts isolated from mice with both mitochondrial and
M-form CK knocked out, [Pi]c changes little, [ADP]c

increases about three fold, and  decreases ~3 kJ

mol-1 in these hearts compared to the control. Thus, their
concentrations on ADP are qualitatively matched by our
simulations, while our model predicts that [Pi]c is lower in

the no-CK system compared to the control. Since the
knockout mouse cardiomyocytes show residual CK activ-
ity (40% of wild type), this animal model is not equiva-
lent to our no-CK model. The data of Saupe et al. [61]
show a decrease in CrP with increasing work rate, indicat-
ing that the CK system is potentially active in the knock-
out animals.

Feedback of ADP and Pi is also essential for matching oxi-
dative ATP synthesis to cellular energy demand in skeletal
muscle [23,59]. However, cytoplasmic Pi can increase to
20 mM and higher at high work rates in skeletal muscle
[59] while cytoplasmic Pi is predicted to stay below 3 mM
at maximal work rate in the heart [21]. Furthermore, the
cytoplasmic Pi concentration in resting slow oxidative
soleus muscle is in the range of 5 mM [62]. Therefore even
at rest, the Pi concentration is well above the predicted
regulatory feedback range for cardiac muscle. We would
expect that ADP acts as an important physiological feed-
back signal in those muscles, as has been established
[63,64].

Analysis of the energy buffering role of the CK system
A simple electrical analog model of Meyer [65] can be
used to analyze the buffering role of the CK system in the
cardiac energetics. In this model, the buffer capacity of the
CK system is computed by the following relationship:

ΔGATPase

ΔGATPase

ΔGATPase

ΔGATPase
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Based on the simulations of [CrP]c and GATPase at varying

cardiac work rates in the normal system (illustrated in Fig-
ure 7), Equation (3) can be evaluated based on finite dif-
ferences. The computed capacitance C is plotted Figure 9A
against the normalized cytoplasmic CrP ([CrP]c/CRtot),

where CRtot is the total creatine pool in myocardium,

40.14 mmol (l cytoplasm water)-1 [66]. As [CrP]c/CRtot

decreases from ~0.58 at the baseline work rate to ~0.48 at
the maximum work rate, the value of C increases more

than three fold (from ~0.33 × 10-3 to ~1.04 × 10-3 mol2 kJ-

1). As a result, the fluctuations of |GATPase| (plotted as

) decreases from ~1.1%

to ~0.55%, despite the increased range of oscillations of
cytoplasmic ATP consumption rate. In contrast to the
almost constant capacitance of the CK system determined
for skeletal muscle [65], the CK system is predicted to
increase in buffering capacity with work rate in the heart.

Other possible roles of the CK system
In additional to a temporal buffering function, the CK sys-
tem has been proposed to facilitate transport of energetic
phosphates in myocardium [7,19]. This hypothesis

d
d G
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[ ]
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Steady-state average values of GATPase, [Pi]c, [ADP]c, and [CrP]c plotted against ATP hydrolysis rate (JATPase)Figure 8
Steady-state average values of GATPase, [Pi]c, [ADP]c, and [CrP]c plotted against ATP hydrolysis rate (JATPase). 
Model-predicted average values of -GATPase, normalized [Pi]c, and normalized [ADP]c are plotted over the range of work rate 
with no clamped concentrations in A-C, with [Pi]c clamped in D-F, and with [ADP]c clamped in G-I. The model predictions are 
plotted as solid lines and dashed lines for the control and no-CK system, respectively. Model-predicted curves of the control 
and no-CK system overlap in D-F. The baseline and maximum hydrolysis rates, 0.36 and 1.2 mmol s-1 (liter cell)-1, are indicated 
by vertical dotted lines.
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remains controversial. Meyer et al. [7] describe both tem-
poral buffering and "spatial buffering" roles of creatine
phosphate associated with the near-equilibrium creatine
kinase (CK) reaction and a high cytoplasmic ATP-to-ADP
ratio. The spatial buffering role may be negligible in the
heart because of small diameters of cardiomyofibrils and
abundant surrounding mitochondria [7]. The phospho-
creatine shuttle hypothesis – that the free energy of ATP

hydrolysis is transported primarily by spatial gradients of
CrP and Cr between mitochondria and sites of ATP
hydrolysis – hinges on the existence of three critical phe-
nomena: (1) restricted diffusion of adenine nucleotides in
cardiomyocytes; (2) functional coupling (direct product-
substrate channeling) between mitochondrial adenine
nucleotide translocase and creatine kinase; and (3) dise-
quilibrium of the CK reaction in cardiomyocytes [67-70].
While computational models that invoke these three phe-
nomena are able to match data on the kinetics of oxida-
tive phosphorylation in isolated skinned cardiomyocytes
[71] and purified mitochondria [69], it remains to be
demonstrated that the available data, particularly in vivo
data, cannot be explained without invoking these phe-
nomena. Indeed, recent measurements of diffusivities of
labeled adenine nucleotides in cardiomyocytes demon-
strate that bulk diffusion is not restricted to the degree
necessary for the phosphocreatine shuttle to operate [72].
The existence and significance of "microcompartments"
[69] around mitochondria with restricted diffusion in car-
diomyocytes remains an active subject of investigation
and debate.

Conclusion
To determine the roles of myoglobin and the CK system
in stabilizing cardiac energy state, a computational model
of oxygen transport and cardiac metabolism is applied to
simulate transient changes and steady states in the beating
heart. The analysis suggests that myoglobin has little
impact on cardiac energetics, while the CK system is
important for the beating heart to maintain stable ener-
getic state over a range of cardiac work rate. Two distinct
functions of the CK system are apparent from this analy-
sis: first, the CK system buffers changes of [ADP]c and
[ATP]c and GATPase; second, the CK system enhances the
feedback of Pi to match the rate of mitochondrial ATP
synthesis to cellular ATP demand while maintaining rela-
tively stable [ADP]c.
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Buffer capacity of the CK system and range of oscillation of GATPase plotted as functions of relative fractions of [CrP]cFigure 9
Buffer capacity of the CK system and range of oscilla-
tion of GATPase plotted as functions of relative frac-
tions of [CrP]c. (A.) Capacitance of the CK system in 

buffering GATPase, calculated from Equation (5), is plotted 
against [CrP]c/CRtot predicted at different work rates. (B.) 

The predicted range of oscillation of GATPase is plotted as 

. The curves in A and B 

are obtained by varying ATP hydrolysis rate from baseline 
(0.36 mmol s-1 (l cell)-1) to maximum (1.2 mmol s-1 (l cell)-1) 
values.
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