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Abstract

The oviduct or Fallopian tube is the anatomical region where every new life begins in mammalian species. After a long journey, the

spermatozoa meet the oocyte in the specific site of the oviduct named ampulla and fertilization takes place. The successful fertilization

depends on several biological processes that occur in the oviduct some hours before this rendezvous and affect both gametes. Estrogen

and progesterone, released from the ovary, orchestrate a series of changes by genomic and nongenomic pathways in the oviductal

epithelium affecting gene expression, proteome, and secretion of its cells into the fluid bathing the oviductal lumen. In addition, new

regulatory molecules are being discovered playing important roles in oviductal physiology and fertilization. The present review tries to

describe these processes, building a comprehensive map of the physiology of the oviduct, to better understand the importance of this

organ in reproduction. With this purpose, gamete transport, sperm and oocyte changes in the oviductal environment, and other

interactions between gametes and oviduct are discussed in light of recent publications in the field.
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The spermatozoon in the oviduct

Arrival, binding to, and releasing from epithelial cells

Depending on the species, the sperm are deposited in
different sections of the female tract. In a large number
of mammals, the semen is ejaculated into the anterior
vagina during coitus (e.g. cows, sheep, rabbits, primates,
dogs, and cats). In others, sperm are placed in the cervix
(e.g. sows) or directly spurted into the uterus (horses and
many rodents). Regardless of where the sperm is initially
dropped, to encounter the oocyte, the sperm is required to
go through the uterotubal junction and enter the oviduct.

However, not all the ejaculated spermatozoa reach
this initial portion of the oviduct. Once ejaculated, most
sperm are eliminated from the female tract by different
mechanisms (Yanagimachi 1994). A very low percentage
of the sperm population is able to reach the ampulla or
the ampullar–isthmic junction, and a recent work using
genetically modified mice models has shown that a
critical step in sperm transport is their migration through
the uterotubal junction (Tokuhiro et al. 2012). Although
the molecular basis of this transport is not well under-
stood, it has been observed that knockout models with
deficiencies in this transport are infertile. Presently,
analysis of sperm from eight different knockout mice
has shown problems in uterotubal junction transport.
The null mice models presenting this phenotype
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include those for Ace (Hagaman et al. 1998), Adam1a
(Nishimura et al. 2004), Adam2 (Cho et al. 1998),
Adam3 (Shamsadin et al. 1999), Calr3 (Ikawa et al.
2011), Clgn (Ikawa et al. 1997), Tpst2 (Marcello et al.
2011), and Pdilt (Tokuhiro et al. 2012). It is interesting
that all these models appear to converge in the lack
of ADAM3; therefore, it has been hypothesized that
this molecule is central to uterotubal transport and the
other knockout models presenting this phenotype are
involved in the process and regulation of ADAM3.

Once in the isthmus, the spermatozoa are bound to
the ciliated epithelial cells. This process seems to be
mediated by carbohydrate residues present in the
oviductal epithelial cells and lectin-like proteins on
the sperm head (Suarez 2002). The molecules involved
in this process vary among species (Talevi & Gualtieri
2010). In hamsters, sperm binding to oviductal epi-
thelium is mediated by sialic acid (DeMott et al. 1995)
and by galactose in horses (Dobrinski et al. 1996).
In pigs, galactosyl and mannosyl residues seem to be
involved in sperm–oviduct binding (Ekhlasi-Hundrieser
et al. 2005). In cattle, strong evidence supports the
involvement of fucose residues that are recognized by
spermadhesin BSP1 (also called PDC-109) (Ignotz et al.
2001, Gwathmey et al. 2003, Sostaric et al. 2008), and in
llamas (camelid), N-acetylgalactosamine and galactose
have been observed that inhibit the sperm binding to
the oviductal cells (Apichela et al. 2010).
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From the sperm side, several proteins have been
shown to have carbohydrate-binding affinities and
could then interact with the epithelial cells. Thus, it
was previously reported that the spermadhesins AQN1
and AWN bind to the sequences Galb1,3GalNAc
and Galb1,4GlcNAc (Dostàlovà et al. 1995, Calvete
et al. 1996). AQN1 also bind to mannose residues
(Ekhlasi-Hundrieser et al. 2005) and, in the bovine
species, spermadhesin BSP1 is able to recognize fucose
residues (Gwathmey et al. 2003).

Independent of the specific carbohydrate residues or
the lectin-like proteins participating in the adhesion, the
role of the oviduct in such sperm–epithelial cell
interaction seems to be the formation of a sperm
reservoir. The more plausible explanation for the
formation of a sperm reservoir in different species of
mammals is the sequential releasing of sperm to allow
only a small quantity of them reaching the oocyte at
any given time and therefore reducing the possibility
of polyspermy (Hunter & Léglise 1971, Hunter 1973).
Interestingly enough, the sperm release is modulated by
the female estrous cycle with increased activity observed
during the periovulatory period (Suarez 2008b) and it is
probably related to the existence of unknown signaling
between the recently attached cumulus–oocyte complex
(COC) and the oviductal cells (Kölle et al. 2009) and with
the progesterone (P4) levels (Bureau et al. 2002).

Although the mechanisms responsible for sperm
release are not well understood, it seems that the
number of carbohydrate binding sites present in the
oviductal epithelium surface is not greatly affected
(Suarez et al. 1991, Lefebvre et al. 1995, Baillie et al.
1997). However, it has been proposed that this
release is correlated with capacitation events (Smith &
Yanagimachi 1991, Lefebvre & Suarez 1996). On the
one hand, sperm release could be due to a loss of
proteins involved in binding the sperm to the oviduct.
As an alternative possibility, as part of the capacitation
process, hyperactivation of the sperm motility might
play an important role allowing these cells to escape
the attachment by shear force (Demott & Suarez 1992,
Pacey et al. 1995). Even though, it cannot be discarded
that both mechanisms are coordinated to free the
sperm from the epithelium, but additional hypothesis is
also emerging.

Due to the complex protein composition found in the
oviductal fluid (Avilés et al. 2010, Mondéjar et al.
2012a), two additional mechanisms could contribute
to the regulation of the sperm oviductal interaction. First,
activities for different glycosidases have been detected
in the oviductal fluid showing variations along the
estrous cycle (Carrasco et al. 2008a, 2008b). These
enzymes could act on the specific carbohydrate residues
present in the epithelial cells necessary for the sperm
binding and contribute to the release of the sperm from
the reservoir. Supporting this model, it is important to
point out that the best characterized sperm–oviductal
Reproduction (2012) 144 649–660
interaction was described in the bovine model (Fig. 1).
In this species, it was reported that sperm protein BSP1
recognizes specifically the fucose residues contained in
the annexin present at the oviductal epithelium (Hung &
Suarez 2010). Thus, fucosidase activity, present in the
oviductal fluid (Carrasco et al. 2008b), could contribute
to the regulation of the binding. Additionally, the
presence of annexin in the oviductal fluid (Mondéjar
et al. 2012a) could also participate in such regulation,
as the atypical secretion of this protein has been reported
previously (Christmas et al. 1991).

Secondly, as mentioned earlier, AWN has the ability
to bind to carbohydrate residues. Unexpectedly, it was
reported that this protein is secreted by the epithelial
cells in the swine oviduct (Song et al. 2010) and,
consequently, could compete with the sperm for
oviductal carbohydrates suggesting its participation in
the sperm-releasing process. Additional experiments
are necessary to confirm these different hypotheses.
The development of improved experimental conditions
as the use of labeled sperm, video microscopy, and
the in vitro system culture for oviductal epithelium
will bring more light about the molecular mechanisms
involved in the sperm–oviduct interaction (Miessen
et al. 2011).
Capacitation

As explained earlier, it has been hypothesized
that release of the sperm from the oviductal epithelium
is due to their capacitated state (Smith & Yanagimachi
1991, Lefebvre & Suarez 1996). Discovered indepen-
dently by Austin (1951) and Chang (1951), capacitation
has been defined as those physiological events that
render the sperm able to fertilize. Discovery of
capacitation was fundamental to allow development of
IVF. First demonstrated in rabbits in 1959 (Chang 1959),
this technology led to the first test-tube baby in 1978
when Mary Louise Brown was born (Steptoe & Edwards
1978). This success was recognized in 2010 when
Dr Roberts was awarded the Nobel Prize in Medicine.
Although the initial experiments by Chang and Austin
were conducted using artificial insemination in live
female rabbits, most of what it is known about this
process is derived from in vitro experimentation.
In vitro capacitation in most mammalian species is
achieved by incubation of the sperm in a simple
media that mimic the oviductal milieu. In particular,
capacitation-supporting media requires bicarbonate,
calcium, energy sources, and serum albumin as a
cholesterol-binding compound.

One critical change in the sperm-surrounding milieu
after ejaculation is the change in HCO3

K concentration
(Fig. 2). This anion plays a role in the regulation of
the cAMP pathway (Visconti et al. 2011) through the
stimulation of a unique type of adenylyl cyclase
present in sperm, known as soluble adenylyl cyclase
www.reproduction-online.org
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Figure 1 Mechanism for the sperm binding and releasing from the oviduct in the bovine model. (a) Sperm binding is mediated by lectin-like protein
as BSP1 present in the sperm plasma membrane that recognizes fucose contained in the annexin molecule bound to the epithelial cell membrane.
(b) Sperm binding to the oviduct could be modulated by two different mechanisms that can act at the same time. (b1) Annexin present in the
oviductal fluid compete for the BSP1 binding site present on the sperm. (b2) Fucosidase enzymes present in the oviductal fluid can remove fucose
residues contained in the annexin present in the oviductal epithelium. (c) These different mechanisms and the development of hyperactivative
motility allow the sperm release from the oviductal reservoir.
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(SACY; Buck & Levin 2011). SACY knockout mice are
sterile (Hess et al. 2005, Xie et al. 2006) and their sterility
phenotype is mapped to a lack of capacitation; in
particular, sperm from the SACY null mice are not able
to move actively and cannot hyperactivate (Hess et al.
2005). Consistent with the role of cAMP in capacitation,
a similar phenotype is observed when the testis-specific
protein kinase A (PKA) catalytic subunit splicing variant
is eliminated by homologous recombination. Using
sperm of these mice in vitro, the authors clearly showed
that PKA is required for the activation of flagellar beat
and for the flagellar waveform asymmetry associated
with hyperactivation (Nolan et al. 2004). In addition to
genetic approaches, the role of cAMP in the regulation of
sperm is also supported by biochemical and pharma-
cological approaches. Inhibitors of PKA such as H89 and
rpScAMP and peptides that disrupt PKA binding to
anchoring proteins block sperm motility and IVF
(Visconti et al. 1995, Vijayaraghavan et al. 1997).
Downstream of the activation of a cAMP/PKA pathway,
www.reproduction-online.org
capacitation in vitro is also associated with an increase
in protein tyrosine phosphorylation (for review, see
Visconti et al. (2011)). Despite the fact that many groups
have shown similar regulatory pathways in sperm from
other species, there is still a limited knowledge on the
identity and the role of proteins phosphorylated during
capacitation.

Although it is believed that the regulation of signaling
pathways in vitro mimic those happening in vivo, this
possibility has not yet been demonstrated. Activation
of PKA occurs immediately upon ejaculation, once the
HCO3

K concentration surrounding the sperm milieu
increases from low millimolar levels in the cauda
epididymis to w25 mM concentration in the semen
and female tract fluids. However, tyrosine phosphory-
lation and hyperactivation are not believed to occur
until the sperm reach the oviduct.

As mentioned earlier, most of what it is known
about the signaling events controlling sperm capacita-
tion was obtained from in vitro experiments. While these
Reproduction (2012) 144 649–660
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Figure 2 Model for the regulation of sperm
capacitation. Removal of cholesterol by BSA
modulates the influx of HCO3

K and Ca2C. These
ions regulate the activity of the sperm-soluble
adenyl cyclase (SACY), increasing intracellular
cAMP, and activating PKA. The activation of cSrc
family kinase sensitive to both SU6656 and
SKI606 downregulates a ser/thr phosphatase,
which modifies the phosphorylated steady state
of PKA substrates. As a consequence, the onset
of PKA phosphorylation is followed by the
promotion of tyrosine phosphorylation associ-
ated with sperm capacitation. Okadaic acid is
a known ser/thr phosphatase inhibitor and can
induce some of the capacitation-associated
processes.
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observations are important, they do not address how the
female tract controls the speed of capacitation and
delivers freshly capacitated sperm to the ovulated eggs.
The assumption that capacitation is regulated by the
same signaling pathways in vivo as in vitro, although
logical, has not yet been tested. Studies of in vivo
capacitation are more complex because of the more
difficult access to the sperm and also because of the
smaller quantity of cells that can be obtained. Because of
these limitations, novel approaches should be
developed. Among them, the analysis of phosphoryl-
ation pathways could be performed by immunofluores-
cence analysis using anti-phospho antibodies such as
anti-phospho PKA substrate or anti-phosphotyrosine
antibodies (Krapf et al. 2010). Some of the challenges
presented by these experiments are i) that these
experiments should be conducted in static fixed sections
which would not allow following the fate of the signaling
changes in live sperm and ii) that sections could cut the
sperm in planes not compatible with anti-phospho
staining making it difficult to quantify the level of
phosphorylation. Despite these perceived problems,
this approach has the advantage that it does not need a
lot of material as in the case of western blots used in most
in vitro experiments. In addition, sections of oviducts
have been used successfully to visualize fluorescent
mouse sperm in the oviduct (Tokuhiro et al. 2012), and
confocal microscopy or even multiphoton microscopy
can be used to optically assess thick sections of oviduct
to provide more complete and clear images of different
sperm compartments. Alternatively, it is predicted that
the use of genetically modified mice in which fluor-
escent markers of capacitation are inserted through
transgenic technology would allow investigating how
the sperm behaves in vivo. This technology has been
Reproduction (2012) 144 649–660
used to observe the acrosome reaction (AR) using sperm
in which the green fluorescent protein is targeted to the
acrosomal compartment (Nakanishi et al. 1999).
Sperm hyperactivation

The oviduct takes care of and modifies the sperm in such
a way that it is able to fertilize. One of these
modifications is the sperm pattern motility.

Sperm within the epididymis are unmotile or poorly
motile (inactivated). When they are released from the
epididymis and mixed with the seminal plasma, they
become activated. The term ‘activated motility’,
described by Yanagimachi (1994), means that the sperm
start to swim straight and vigorously with symmetrical
flagellar beats. Once the activated sperm are in the female
tract after mating, only a small population (hundreds to
thousands) will be able to reach the oviduct and become
established in the sperm reservoir (described earlier).
Spermatozoa in this storage place are attached and
stabilized during the preovulatory interval with sup-
pressed motility and intact surface membranes (for
review, see Hunter (2012)), but later sperm will detach
acquiring another motility pattern named ‘hyperactivated
motility’ (Fig. 3a). This condition was defined for the first
time by Yanagimachi (1970) who observed that hamster
sperm in the oviduct had a very vigorous motility pattern
with high amplitude and asymmetrical flagellar beating.
In the years following that discovery, it was demonstrated
that the ‘hyperactive motility’ is essential for the sperm to
fertilize. So, this term was redefined as the swimming
pattern shown by most sperm retrieved from the oviductal
ampulla at the time of fertilization (Suarez & Ho 2003).

But, when do mammalian spermatozoa become
hyperactivated? One of the known triggers is the increase
www.reproduction-online.org
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Figure 3 Roles of the hyperactivation induced by the oviduct on the sperm during the approach to the oocyte: (a) detaching of the sperm from the
epithelial cells, (b) transport to the fertilization site, (c) cross through cumulus cells, and (d) penetration of zona pellucida.
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in intracellular Ca2C([Ca2C]i) (Publicover et al. 2008).
This is probably prompted by ovulation and is a
consequence of P4 secretion influencing the oviduct
epithelium (for review, see Hunter (2012)) and helping
sperm transport to the fertilization place (Chang &
Suarez 2012). And, how is Ca2C mobilized into the
cytoplasm to induce hyperactivation? Spermatozoa
require Ca2C channels in the plasma membrane,
which have been identified and named as CATSPER1
(CATSPER) proteins (CATSPER1–4), located in the
principal piece of the flagellum (Kirichok et al. 2006,
Qi et al. 2007). In fact, several reports have shown
that male mice null mutant for Catsper1 genes are
infertile (Ren et al. 2001, Quill et al. 2003, Jin et al.
2007, Qi et al. 2007), suggesting that the reason is the
lack of hyperactivation in the spermatozoa of these
animals (Ren et al. 2001, Quill et al. 2003). Ho et al.
(2009) supported this hypothesis because spermatozoa
from Catsper-null mutants did not detach from the
epithelium or show deep asymmetrical flagellar bend-
ing. As indicated earlier, P4 could be involved in sperm
detachment (Bureau et al. 2002) and hyperactivation.
It is known that P4 rises [Ca2C]i levels in human sperm
(Publicover et al. 2007) but it is not known by which
mechanism. Recently, Lishko et al. (2011) and Strünker
et al. (2011) explained the action of this hormone on
human spermatozoa where the P4, in combination with
an elevation of intracellular pH, activates the CatSper
channels involved in Ca2C human sperm intake. The
extracellular pH increase in oviductal fluid during estrus
could possibly be the primary factor for inducing
hyperactivation in the oviduct, activating CatSper and
raising intracellular pH (Suarez 2008a). HCO3

K levels
could play an important role for this purpose.

Summarizing the oviductal influence on spermatozoa
physiology, an increasing body of research suggests
that periovulatory changes in pH, temperature, [Ca2C],
and HCO3

K levels in the oviductal fluid modulate
different aspects of sperm function, including releasing
from the epithelial cells, membrane modifications
leading to capacitation, and the hyperactive motility
that addresses them to the oocyte vicinity (Hunter
& Nichol 1986, Rodriguez-Martinez et al. 2001,
Rodriguez-Martinez 2007, Coy et al. 2010, Zumoffen
et al. 2010, Kumaresan et al. 2012).
www.reproduction-online.org
The oocyte in the oviduct

Arrival to the fertilization site

The role of the oviduct on the oocyte transport has been
classically attributed to the cilia beating and smooth
muscle activity, speeded up by estrogens and slowed
down by P4, when administrated in adequate dosages
and times (Chang 1966). This principle is still valid, and
modern video microscopy and biochemical techniques
have contributed to describe the process in detail.

From studies in hamsters, the importance of the
cumulus cells and the extracellular matrix of the COC
on the picking up and initial adhesion to the infundibu-
lum cilia was shown. Slight changes in the level of COCs
expansion affected the initial adhesion and made their
further transportation difficult (Talbot et al. 2003). Cilia
that cover the exterior surface of the infundibulum beat
in the direction of the ostium induce a current of
oviductal fluid and move the COC into the oviduct. It
was suggested in mice and humans that the P4 receptor,
localized in the lower half of the motile cilia of oviduct
ciliated epithelial cells, may directly regulate ciliary beat
frequency (Teilmann et al. 2006), thus confirming the
initial discoveries by Chang (1966).

Although it is a key factor, ciliary beating alone cannot
provide the propulsive force behind oocyte movement
along the oviduct. Spontaneous contractions of the
oviduct are also necessary, and interstitial cells of Cajal
associated with the smooth muscle cells along the
entire length of the oviduct are responsible for electrical
slow-wave events that couple in a one-to-one relation-
ship with phasic contractions of the myosalpinx (Dixon
et al. 2009). Dixon et al. demonstrated that these slow
waves are not initiated by neural inputs, but they are
driven by pacemaker activity provided by the oviductal
cells of Cajal.

Another interesting body of research about oviductal
motility and oocyte transport is that concerning the
role of nitric oxide synthases (NOS). Lapointe et al.
(2006) showed in the bovine oviduct that expression
of inducible NOS is selectively upregulated by
estradiol during the temporal window of oocyte
transport. As NO plays a role as a relaxing agent in
mammalian oviduct and its inhibition accelerates oocyte
transport (Perez Martinez et al. 2000), regulation of
NOS by estradiol suggests a fine-tuned equilibrium of
Reproduction (2012) 144 649–660

Downloaded from Bioscientifica.com at 08/23/2022 06:52:29AM
via free access



654 P Coy and others
the oviductal motility. Such equilibrium seems to be
reached by nongenomic pathways of estradiol action
including estradiol bound to its receptors, activation of
cAMP, and partial participation of PKA (Orihuela et al.
2003) that again confirm Chang’s discoveries.
Oocyte’s changes in the oviduct

Once in the ampulla, transported by the cilia beating and
smooth muscle contractions, the COC remains attached
to the epithelium for a variable period of time. While
previous in vivo studies in the pig model indicated that
unfertilized oocytes reached the ampullar–isthmic
region within 30–45 min from the beginning of ovulation
(Hunter 1974) and that spermatozoa met them in this
site, digital video microscopical studies in the cow
oviduct have suggested that as soon as the mature COCs
enter the ampulla, they are immediately firmly attached
to the oviductal epithelium (Kölle et al. 2009). Whether
inter-specific differences between the pig and cow or
methodological differences between the experiments
(in vivo in the pig and ex vivo in the cow) explain this
controversy remains elusive.

One important change for the oocyte at this time is
related to the removal of its investments: in some
species, such as cows and sheep, cumulus cells are
rarely detected around recently ovulated oocytes,
whereas in primates and in pigs cumulus cells and
oocytes are immersed in a dense plug (Hunter 1989).
Even in this case, the plug is dissolved in the porcine
species a few hours later and oocytes collected from the
oviduct become naked within 1 h (Coy et al. 1993).
However, a general consensus exists, based on wide
experimental evidence, about the improving of the
fertilization rates in most mammalian species in the
presence of cumulus cells (Campos et al. 2001, Zhuo
et al. 2001, Van Soom et al. 2002), underlying the
importance of a rapid response of the oviduct, releasing
the sperm from the reservoir, as soon as the oocyte
arrives surrounded by the cumulus.

During the process of cumulus expansion and
disaggregation, zona pellucida (ZP) becomes more
accessible to the oviductal fluid permitting its
Figure 4 Pre-fertilization ZP hardening (adapted from Coy & Avilés (2010))
oviduct-specific glycoprotein (OVGP1) surround it in a ‘shell’ 2) that is respo
oviduct fluid stabilizes and reinforces the binding of OVGP1 with ZP, whic
modified ZP. 5) In the transit toward the uterus, the system is destabilized and
reaching the uterus returns to the low resistance to proteolysis showed by t
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modification by different molecules. Differences in ZP
among oviductal and follicular oocytes, or zona
maturation, have been referred by a number of authors,
most of them related to changes at the ultrastructural
level (Funahashi et al. 2001) and a few of them
identifying specific molecules in the oviductal ZP that
are not present in the ovarian ZP. Among them, oviduct-
specific glycoprotein (OVGP1), osteopontin, and lipo-
calin-type prostaglandin D synthase were demonstrated
to associate with the bovine ZP (Goncalves et al. 2008).
Moreover, OVGP1 and heparin-like glycosaminoglycans
(GAGs) from the oviductal fluid have been demonstrated
in the pig and cow to participate in the functional
modification of the ZP that, before fertilization, makes it
more resistant to enzymatic digestion and to sperm
penetration, contributing to the control of polyspermy
(Coy et al. 2008). This mechanism is represented in
Fig. 4. Finally, there is also a significant change in the
sugar moieties of glycoproteins in the ZP following
ovulation (Avilés et al. 1996, Aviles et al. 1997,
El-Mestrah & Kan 2001), although the specific role of
these changes needs to be investigated. Studies complet-
ing the list of proteins and sugars binding to the ZP in the
oviduct could contribute to the comprehension of the
molecular events affecting the sperm–oocyte interaction
and to the definitive description of a model assigning to
each molecule its specific role in this complex
mechanism.
Oocyte–sperm–oviduct interactions

Oviductal influence on the initial sperm approach to
the oocyte

Once the sperm are hyperactivated and released into the
oviduct, how do the sperm know which direction to
travel in order to reach the oocyte? The sperm in the
reservoir (Fig. 3a) are like ‘the boats docking in a
port’. they are attached, but when they are released
(‘sailing on the sea’) they need a guide (‘navigator’) to
reach the objective that in the sperm’s case is the
fertilization place. Thermo- and chemotaxis have been
defined, in terms of fertilization, as the process by which
. 1) When the oocyte is shedding in the ampulla soon after ovulation,
nsible for the ZP resistance to proteolysis. 3) Heparin-like GAGs in the
h determines the interaction of selected spermatozoa 4) with such a
OVGP1 is partially unbound or internalized. 6) Thus, ZP in the embryo

he ovarian oocyte in (1).
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sperm are guided by a temperature gradient (cooler to
warmer; for review, see Eisenbach & Giojalas (2006)) or
by a chemical gradient (Chang & Suarez 2010) to reach
the oocyte. There are only a few studies about the
motility on mammalian sperm responses to these
gradients. Some substances have been identified as
potential chemoattractants; for example, the P4 that is
released during the ovulation (present in follicular fluid)
and is produced by the cumulus cells that surround the
oocytes (Chang & Suarez 2010). It has been postulated
that [Ca2C]i increases during sperm chemotaxis (i.e. P4)
induce turning swimming with asymmetric flagellar
bending (for review, see Yoshida & Yoshida (2011)).
Other components in oviductal fluid have been ident-
ified as chemoattractant, that is, the case for natriuretic
peptide precursor, that modifies the sperm pattern
motility and enhances [Ca2C]i levels, whose receptor
has been recently shown in mouse spermatozoa (Bian
et al. 2012). Temperature also seems to play a role in
the levels of [Ca2C]i. Temperature stimulation activates
the release of the internal sperm Ca2C store affecting
flagellar bending (Bahat & Eisenbach 2010). In addition
to chemo- and thermotaxis, other factors as the move-
ment of oviductal fluid, oviductal contractions, oviductal
epithelium, and the internal structure of the oviduct
(Burkitt et al. 2012) could also influence the sperm
transport and guidance, although the evidence of these
aspects has not yet been demonstrated in vivo.

After the sperm are hyperactivated and guided to the
oocyte, they have to propel themselves through the
viscous glycoprotein secretion in the oviduct toward
the ampullar–isthmic junction (Fig. 3b). During the
preovulatory stage, the mucus within the oviduct is
extremely viscous before ovulation and may contribute
to the suppression of sperm motility (Hunter et al. 2011);
after ovulation, it become less viscous which would
facilitate an adequate flagellar beat and progression of
spermatozoa toward the ampulla (Suarez & Dai 1992,
Hunter et al. 2011). Suarez & Dai (1992) showed an
increase in flagellum propulsion when mouse sperm was
confronted with an increase viscosity gradient medium.
So, it seems that spermatozoa escape from the viscous
fluid thanks to the hyperactivation. The flagellar beating
during hyperactivation has been widely reported in vitro,
but only a few experiments show the flagellar behavior
simulating real conditions. Recently, Chang & Suarez
(2012) have recorded mice sperm in the oviduct in
conditions very close to in vivo. These authors showed
a different motility pattern called anti-hook instead of
pro-hook beating (amplitude of the bend in the same
orientation as the hook of the head) described before
in in vitro situations. The cause of these differences could
be found (among other factors) in the composition
(mucoid type) and viscosity of the oviductal fluid that
are absent in most of the in vitro media used, making
the sperm to propel themselves (better than to swim) in
such a semisolid environment.
www.reproduction-online.org
What seems to be obvious it is that sperm are exposed
to a different microenvironment (viscosity, chemical
agents, temperature, etc.) in their travel through the
oviduct and they are continuously re-adapting their
pattern motility to these conditions. As suggested by
Brenker et al. (2012), CatSper could function as a
polymodal translator for the chemical and physical code
of each microenvironment into Ca2C patterns to reach
the site of fertilization.

Once the sperm reach the oocytes, they have to cross
the cumulus cells surrounding them (Fig. 3c). Sperm
GPI-anchored surface hyaluronidases and hyper-
activated sperm motility are thought to be sufficient for
the sperm to get through the cumulus (for review, see
Yin et al. (2009)). Carrasco et al. (2008a, 2008b) have
described some hexosaminidases in oviductal fluid
(as it has been indicated in ‘Arrival, binding to, and
releasing from epithelial cells’ section), which could be
responsible for cumulus cell disaggregation from
ovulated oocytes helping the sperm to cross this barrier.
In addition, it was previously reported that SPAM1 (with
hyaluronidase activity) is secreted by the oviduct and
consequently can participate in the cumulus oophorus
dispersion (Griffiths et al. 2008). Preliminary data from
our laboratory also described the presence of the SPAM1
in the porcine and bovine oviduct (Acuña et al. 2011).

Moreover, in the latest reports, AR has also been
observed during the sperm pass through the cumulus
(Yin et al. 2009, Jin et al. 2011). Indeed, as Yanagimachi
(2011) pointed out recently, the place where AR begins
in mammalian sperm before fertilization has been a
controversial topic. On one side of the debate, some
researchers think that the AR takes place while the sperm
advance through the cumulus, while on the other side,
other scientists think that AR occurs on the surface of the
ZP. On combining information from the latest reports,
what seems to be clear is that the ZP may not be the only
site of AR; therefore, cumulus cells play an important
role in sperm AR. Among the potential chemoattractants,
it is interesting to note that P4 secreted by cumulus cells
is known to induce or promote the AR of spermatozoa of
various species, but the spermatozoa in the oviduct
are acrosome-intact or occasionally reacted (for review,
see Sun et al. (2011)). The reason that the sperm in the
oviduct are not reacted by P4 action is probably due to its
concentration; the possibility is that sperm stimulation
by low levels of P4 (mM–mM) does not induce AR
(Publicover et al. 2008; Fig. 5). Gahlay et al. (2010) using
transgenic mice (ZP2Mut and ZP3Mut) suggested that
sperm binding at the surface of the ZP is not sufficient to
induce sperm AR. In fact, Jin et al. (2011) recorded that
the spermatozoa beginning the AR before reaching the
zona were able to penetrate it. A new protein called
NYD-SP8 has been recently identified in the cumulus–
sperm interaction triggering Ca2C mobilization and P4

release from cumulus cells inducing the AR (Yin et al.
2009). It should be noted that no one has ever followed
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Figure 5 Progesterone (P4) levels close to the
fertilization location and its effect on sperm.
(A) Low P4 levels acting like a chemoattractant
driving the sperm toward the oocyte. (B) High P4

levels secreted by cumulus cells induce acrosome
reaction.
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a single spermatozoon from the beginning of the AR until
the end of fertilization, so the exact place where
fertilizing spermatozoa begin their AR and what triggers
the AR remain to be determined (Yanagimachi 2011).

All the described steps related to the sperm modifi-
cations since they are ejaculated are probably addressed
to enable them to bind and penetrate the extracellular
matrix of the oocyte, the ZP (Gadella 2010). This is the
last barrier before gamete fusion (Fig. 3d). Although the
true mechanism is still unclear, and it is not the objective
of the present review to describe the different models
proposed for the sperm–ZP binding in the different
species, it has been hypothesized that the sperm
penetration through the ZP is dependent either entirely
or partly on the mechanical force that provided the
hyperactivated sperm (Kim et al. 2008). In fact, when
hyperactivation was blocked in hamster sperm bound to
the ZP, they were unable to penetrate it (Stauss et al.
1995) and, in this sense, hyperactivation induced by the
oviduct can be considered as one more role of this organ
in the fertilization process.
Does the oviductal fluid has any effect on fertilization
itself?

Apart from its roles on the female and male gamete
preparation for their meeting, discussed earlier, the
question about the specific function of the oviduct or
their secretions on the fertilization process itself, once
the spermatozoon has bound to ZP, has not received
significant attention in the research literature. Until
recently, no molecules present in the oviductal fluid,
other than OVGP1, already mentioned as a molecule
Reproduction (2012) 144 649–660
reducing the number of sperm bound to ZP (Coy et al.
2008), had been demonstrated to directly affect the
fertilization but new information is coming out every day
supporting this hypothesis.

First, quantification of activity for five glycosidases
in the oviductal fluid, with changes along the estrous
cycle, has brought about different proposals, such as
the possible role of oviductal hexosaminidase in
the sperm–ZP binding, hydrolyzing the b-N-acetyl-
glucosamine moieties at ZP (Carrasco et al. 2008b).
Oviductal b-D-galactosidase could also regulate the
sperm binding sites present in the ZP, as b-galactosyl
residues in the ZP oligosaccharides have shown to be
involved in porcine sperm–egg binding (Yonezawa et al.
2005). Further studies are necessary to describe the
specific function of each glycosidase in the oviduct.

Secondly, plasminogen, a serum zymogen mainly
produced by the liver, has also been quantified in the
oviductal fluid and demonstrated to bind oocytes at ZP
and oolemma level (Mondéjar et al. 2012b). Moreover,
the different components of the plasminogen–plasmin
system, including activators and inhibitors, are present
in the oviduct and a model has been proposed by which,
upon sperm contact to the oolemma, plasminogen
activators are released from the oocyte (Fig. 6) and
increase the conversion of the plasminogen into
plasmin; such plasmin seems to remove spermatozoa
attached to the ZP, thus contributing to the regulation of
sperm penetration in the oocyte (Coy et al. 2012).

Finally, attention must be paid to recent studies
about changes in the oviductal secretory proteome
and transcriptome induced by the arrival of oocytes
or spermatozoa to this organ (Fazeli et al. 2004,
www.reproduction-online.org
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Figure 6 Proposed model for the role of the plasminogen–plasmin system during fertilization. Plasminogen and plasminogen activators are present in
the oolemma and ZP of the oocyte (A1). Oocyte immunostaining with antibodies against plasminogen activators shows the oolemma strongly
labeled (B1). When the spermatozoa bind the oolemma, plasminogen activators are released and increase the activation of the plasminogen into
plasmin. Plasmin detaches additional spermatozoa bound to ZP (A2). The labeling in the oolemma decreases a few minutes after sperm binding (B2).
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Georgiou et al. 2005). It seems clear that gametes
modulate their own microenvironment and it can be
anticipated that in the immediate future new molecules
of oviductal origin participating in the fertilization
process will be identified. Data from the whole oviductal
transcriptome in different animal models and at the
different phases of the estrous cycle would be very useful
to complete the puzzle of the molecular pathways
playing a role in the beginning of a new life (Mondéjar
et al. 2012a).
Concluding remarks

A number of molecules participating in the oviductal
signaling affects different steps in the fertilization
process, including sperm binding and releasing from
the oviductal epithelium, sperm capacitation and
hyperactivation, oocyte oviductal maturation and pre-
fertilization ZP hardening, sperm–ZP binding, and
fertilization itself. Although descriptive genomic and
proteomic studies have identified a high amount of
www.reproduction-online.org
candidate molecules participating in these processes
(Fazeli et al. 2004, Georgiou et al. 2005), functional data
are now necessary to understand the specific role of each
molecule in each pathway. Only with these studies
could be reached a significant advance in the compre-
hension of the fertilization process and, consequently,
novel tools to modulate it, could be developed.
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