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The seven members of the signal transducer and activator of transcription (STAT) family of transcription factors are 
activated in response to many different cytokines and growth factors by phosphorylation of specific tyrosine residues. 
The STAT1 and STAT3 genes are specific targets of activated STATs 1 and 3, respectively, resulting in large increases 
in the levels of these unphosphorylated STATs (U-STATs) in response to the interferons (STAT1) or ligands that active 
gp130, such as IL-6 (STAT3). U-STATs drive gene expression by novel mechanisms distinct from those used by phos-
phorylated STAT (P-STAT) dimers. In this review, we discuss the roles of U-STATs in transcription and regulation of 
gene expression. 
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Introduction 

Signal transducers and activators of transcription 
(STATs) were originally discovered as DNA-binding 
proteins that mediate interferon (IFN)-dependent gene 
expression [1-3]. STATs are latent in the cytoplasm un-
til they are activated by extracellular ligands, including 
cytokines, growth factors, and hormones [4, 5]. Binding 
of these extracellular ligands to their specific receptors 
leads to the activation of various tyrosine kinases (TKs), 
including JAKs, receptor TKs, and non-receptor TKs such 
as SRC and ABL, which can directly phosphorylate STATs 
in the absence of ligand-induced receptor signaling [6, 7]. 
These TKs phosphorylate a single tyrosine residue of each 
STAT, followed by homo- or hetero-dimerization of STATs 
through reciprocal Src homology 2 (SH2)-phosphotyrosine 
interactions, leading to nuclear translocation of the result-
ing dimers and activation of target genes. Seven STATs 
have been identified in mammals: STAT1, STAT2, STAT3, 
STAT4, STAT5A, STAT5B, and STAT6. Each is differen-
tially activated by specific extracellular ligands, allowing 
differential intracellular processing of signals transduced 
across the plasma membrane. The biological role of each 
STAT has been delineated by investigating the phenotypes 

of mice lacking their expression [5]. Recently, it has been 
found that STATs 1 and 3 (and probably other STATs) also 
play important roles in mediating gene expression without 
tyrosine phosphorylation. The expression of unphosphory-
lated STATs (U-STATs) 1 and 3 is greatly increased in re-
sponse to their activation, since the STAT1 gene is strongly 
activated by phosphorylated STAT (P-STAT) 1 dimers or 
ISGF3, which are formed in response to type II or type I 
IFNs, respectively, and, similarly, since the STAT3 gene is 
strongly activated by P-STAT3 dimers, which are formed in 
response to IL-6 and other ligands that activate the gp130 
common receptor subunit. Ligand-dependent increases 
in the concentrations of U-STATs drive the expression of 
genes that are distinct from those activated by P-STATs. 
The abnormally high levels of U-STAT3 that accompany 
the abnormal constitutive activation of STAT3 found in 
many tumors drive the over-expression of several genes 
that contribute to tumorigenesis. 

U-STAT1 mediates constitutive expression of the low 
molecular mass polypeptide (LMP) 2 gene by collaborating 
with IRF1 [8], and U-STAT3 binds to unphosphorylated 
NFκB (U-NFκB), in competition with IκB, and the result-
ing U-STAT3/U-NFκB complex accumulates in the nucleus 
with help from the nuclear localization signal of STAT3, 
activating a subset of κB-dependent genes (Figure 1) [9]; 
U-STAT6 cooperates with p300 and binds to a consensus 
STAT6 binding site located within the COX-2 promoter to 
enhance COX-2 expression [10]. The discovery of these 
specific mechanisms for how U-STATs mediate gene ex-
pression serves as examples for additional mechanisms 
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Figure 1 Interactions between the STAT3 and NFκB pathways. U-STAT3, induced to a high level due to activation of the STAT3 
gene in response to ligands such as IL-6, competes with IκB for p65/p50. The U-STAT3:U-NFκB complex activates the RANTES 
promoter plus a subset of other promoters that have κB elements. U-STAT3 also drives the expression of some genes that do 
not have κB elements, by an unknown mechanism. The κB element of the IL-6 gene is driven by canonical NFκB signaling 
in response to ligands such as TNF-α or IL-1, setting up a positive feedback loop that is driven by the activation of STAT3 in 
response to secreted IL-6, leading to an increased level of U-STAT3 that sustains the activation of genes such as RANTES. 
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that have yet to be revealed. Many of the STATs are sticky 
and interact with many different proteins. STAT1 and IRF1 
bind to each other even in the absence of DNA, and this 
heterodimer binds to a composite element in the LMP2 
promoter that recognizes each monomeric component 
separately. The ternary complex is stable enough to drive 
the constitutive expression of LMP2, but can be displaced 
by the more potent STAT1 dimer in IFNγ-treated cells. 
STATs can form several different homo- and heterodimers 
and STATs can form heterodimers with other proteins even 
without tyrosine phosphorylation. Different complexes, 
which may not be very stable as free forms in solution, can 
nevertheless form on specific target genes, depending on 
the stabilization through binding to specific DNA elements 
in each promoter and probably also through specific inter-
actions with other bound proteins. Thus, we expect many 
different mechanisms for U-STAT-dependent expression 
of different genes. 

STAT1-dependent gene expression

STAT1, the first member of the multi-gene family to 
be discovered, is a principal target of both type I and type 
II IFNs [2, 11-13]. STAT1-null (STAT1–/–) mice have lost 
responsiveness to both types of IFN and have thus acquired 
enhanced susceptibility to bacterial and viral pathogens 
[14]. The discovery that the active form of STAT1 is re-
quired for IFN-α and IFN-γ to inhibit the growth of cultured 
cells [15-17] has led to the assumption that inadequate func-
tion of STAT1 might result in cell growth deregulation and 
disturbed immune function, i.e. disorders that are pertinent 
to malignancy. The potential involvement of STAT1 in 
cancer has been supported by several observations report-
ing inappropriate activation of STAT1 and even loss of 
its expression in malignant cells derived from different 
histological types of tumors such as breast cancer, head and 
neck cancer, melanoma, leukemia, and lymphoma [6, 18-
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21]. However, convincing evidence on the role of STAT1 
in malignant tumors was provided by studies employing 
STAT1–/– mice. Although some recent data supported that 
STAT1–/– mice (therefore unresponsive to IFNs) lacking 
host-cell sensitivity to IFNγ in antitumor immunity form 
more spontaneous and chemically induced tumors than 
wild-type mice [22], most literatures observed no increased 
spontaneous malignancy in STAT1–/– mice. They mani-
fested heightened susceptibility to both chemically induced 
and transplanted tumors compared to control animals [23, 
24]. These data support the idea that STAT1 might function 
as a tumor suppressor [25]. Subsequent studies revealed 
that the involvement of STAT1 in oncogenesis is more 
complex and that only a part of its tumor growth-suppress-
ing activity is attributable to the loss of IFN-dependent 
anti-proliferative response when STAT1 is absent. Kaplan 
et al. [23] demonstrated that the elevated growth of tumor 
cells in STAT1-deficient, IFN-γ insensitive mice is at least 
partly due to the absence of well-known effects of IFN-γ on 
tumor cell immunogenicity and/or host response to tumor 
antigens. Since IFN-γ represents a critical component of 
the immune system required for tumor surveillance, it is 
likely that impaired STAT1 function negatively affects the 
immunogenic phenotype of developing tumors. Thus, the 
impaired responsiveness to IFN-γ due to STAT1 dysfunc-
tion may provide a selective growth advantage to some 
malignant cells at an early stage of tumor development, a 
process known as cancer immuno-editing [26, 27]. Several 
reports showing that some spontaneous human tumors are 
selectively unresponsive to IFN-γ due to perturbed STAT1 
activation suggest that, similarly to animal models, STAT1-
dependent tumor surveillance also operates in humans [28-
32]. More recently, it was shown that STAT1 can accelerate 
the development of hematopoietic tumors independently 
of IFN-dependent signaling. These authors demonstrated 
that the up-regulation of MHC class I expression represents 
a general mechanism for escape from tumor surveillance 
and that a low level of MHC class I expression might be 
beneficial for leukemia patients [33]. 

The first indication that STAT1 might function as a 
transcription factor in the absence of tyrosine phosphory-
lation came from an analysis of its role in TNF-induced 
apoptosis [34]. STAT1-null U3A cells are resistant to TNF 
plus cycloheximide, while parental 2fTGH cells or STAT1-
deficient U3A cells reconstituted with wild-type STAT1 
(U3A-R cells) are sensitive. Furthermore, the expression 
of caspases 1, 2, and 3 is defective in U3A cells and is 
induced only in 2fTGH and U3A-R cells but not in U3A 
cells following TNF treatment. Thus, STAT1 is required for 
TNF-mediated apoptosis and appears to act in the absence 
of any phosphorylation of tyrosine 701. Small amounts of 
constitutively P-STAT1 in 2fTGH and U3A-R cells are 

not responsible for the observed response since U3A-701 
cells, reconstituted with the Y701F mutant of STAT1, which 
cannot be phosphorylated on tyrosine, are also sensitive 
to TNF-mediated apoptosis and normal for caspase gene 
expression [34]. 

Another indication of a role in transcription for STAT1 
without tyrosine phosphorylation came from an analysis 
of the expression of a gene encoding a component of the 
20S proteosome, LMP2 [8]. The bi-directional promoter 
that regulates LMP2 expression contains overlapping 
IFN consensus sequence 2 (ICS2) and gamma-activated 
sequence (GAS) sites. The IFN-inducible LMP2 gene is 
also transcribed at a lower level in the absence of IFN [35]. 
In vivo footprinting of the ICS2/GAS element revealed 
protein-DNA contacts at both sub-sites in unstimulated 
HeLa cells [36]. Thus, both STAT1 and IRF1 appear to 
be essential for basal transcription of the LMP2 gene. 
There is barely any LMP2 expression in IRF1-null mice 
[36]. STAT1-deficient U3A cells do not express LMP2, 
but the gene is transcribed in parental 2fTGH cells and its 
expression is restored when wild-type STAT1 is put back 
into U3A cells [8]. LMP2 transcription is also restored in 
U3A-701 cells, in which the mutant Y701F STAT1 cannot 
be phosphorylated [37].

Using DNA microarrays, a comparison of transcription 
in U3A cells and U3A-701 cells revealed that the basal 
expression of many genes is regulated similarly by wild-
type U-STAT1 and STAT1 Y701F. The genes include those 
encoding the MHC class II transactivator (CIITA), hsp70, 
and Bcl-xL. MHC class I and 2-microglobulin expression 
was similar in U3A-701 and 2fTGH cells [37]. The expres-
sion of several caspase genes is also regulated similarly in 
U3A-701 and 2fTGH cells [34]. Constitutive expression 
of the MHC class I and β2-microglobulin genes is lower 
in mouse STAT1-null T lymphocytes than in wild-type 
cells [38]. Several other examples of ligand-independent 
functions of STAT1 have been described more recently. 
In cardiac myocytes, transcriptional activation of Fas and 
FasL is dependent on S727 of STAT-1 but independent 
of Y701. Furthermore, S727 but not Y701 is required for 
the enhancement of cardiomyocyte cell death by STAT1 
following ischemia/reperfusion injury [39]. In another 
instance, 7-ketocholesterol-induced apoptosis requires 
STAT1 since this phenomenon is not observed in U3A cells, 
but apoptosis is restored when either Y701F or wild-type 
STAT1 is put back into U3A cells. However, U3A cells 
reconstituted with S727A STAT1 are not sensitive to 7-
ketocholesterol-induced apoptosis [40]. 

Thus, serine 727 of STAT1 appears to play an important 
role in some constitutive functions. Such a role is also indi-
cated by the fact that U3A-S727A cells are resistant to TNF-
mediated apoptosis and do not express caspases 1, 2, and 
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3 [34]. Serine phosphorylation of STAT1 can be induced 
independently of tyrosine phosphorylation [41] and STAT1 
can be phosphorylated only on serine 727 in response to UV 
[21], IL-1, or TNF [42]. The effect of the S727A mutation 
of STAT1 on basal transcription of caspase [34], GBP1, 
TAP1, and IFP53 genes [21] shows that this serine residue, 
which lies in the transactivation domain, is essential for 
STAT1 to be an effective transcription factor for certain 
genes. More examples were found recently. Timofeeva 
et al. [32] showed that, in Wilms’ tumor (WT), one of the 
most common pediatric solid cancers, STAT1 was found 
to be constitutively phosphorylated on serine 727 in 19 of 
21 primary WT samples and two WT cell lines. The inac-
tivating mutation S727A reduced colony formation of WT 
cells in soft agar by more than 80% and induced apoptosis 
under conditions of growth stress. S727-P-STAT1 provided 
resistance to apoptosis for WT cells by upregulating the 
expression of heat-shock protein (HSP)27 and the anti-
apoptotic protein myeloid cell leukemia (MCL)-1. These 
findings suggest that serine-P-STAT1 plays a critical role 
in the pathogenesis of WT and other neoplasms. Although 
it is tempting to suggest that the phosphorylation of S727 
is important for this function, there is at present no direct 
evidence to rule out the possibility that S727 is important 
per se, without phosphorylation, for vital protein-protein 
interactions on certain promoters. 

The gene expression patterns induced by U-STAT1 
depend strongly on the cell type. Gene expression profiles 
performed in human fibroblast BJ cells and epithelial 
HME1 cells in which Y701F-STAT1 was stably expressed 
at a high level show quite different patterns of gene expres-
sion (H Cheon and GR Stark, unpublished data). 

STAT3-dependent gene expression 

STAT1 has been shown to drive gene expression in the 
absence of tyrosine phosphorylation [43]. In the case of 
STAT3, an array-based analysis of gene expression revealed 
that the relative levels of more than a thousand mRNAs 
changed in response to increased expression of wild type or 
Y705F-STAT3. In human primary epithelial hTERT-HME1 
cells, 1 420 mRNAs changed, positively or negatively, by 
more than 2-fold in response to a high level of wild-type 
STAT3 and 1 191 mRNAs changed by the same amount 
in response to a high level of Y705F-STAT3. Furthermore, 
869 mRNAs changed in common by at least 2-fold in both 
cell populations, and 84 of these changed by more than 4-
fold [44]. These mRNAs include several that are induced 
to very high levels (10- to 40-fold). Analysis of mouse 
cell lines provided complementary data. In addition to 
the obvious cell-type differences in the two experiments, 
mouse cells with high level of wild-type or Y705F-STAT3 

are compared with STAT3-null cells. In MEFs, more than 
a thousand mRNAs changed by more than 2-fold in cells 
with either high level of wild-type STAT3 or high level of 
Y705F-STAT3. Furthermore, about 400 mRNAs changed 
in common by more than 2-fold in both cell types [44]. 
Some of these genes are known to be regulated by STAT3 
homodimers, including SOCS-3 [45], c-Myc and DP1 [46], 
c-Fos and c-Jun [47-49],  and Bcl-x [50]. 

STAT3 was initially identified as an IL-6-dependent 
transcription factor important for mediating the inflamma-
tory response, tumorigenesis, and anti-apoptotic effects on 
cells. Recently, in addition to its ability to form complexes 
with itself and other STATs, there are several reports that 
STAT3 and NFκB interact with each other [51]. For 
example, Hagihara et al. [52] demonstrated that STAT3 
forms a complex with the p65 subunit of NFκB follow-
ing stimulation of cells with IL-1 plus IL-6, and that the 
bound STAT3 interacts with non-consensus sequences near 
the κB element of the serum amyloid A (SAA) promoter. 
Moreover, the complex formed by STAT3, p65, and p300 
is essential for the synergistic induction by IL-1 and IL-6 
of the SAA gene, which does not have a typical STAT3 
response element in its promoter. Yu et al. [53] found that 
U-STAT3, through direct interaction with p65, serves as a 
dominant-negative inhibitor to suppress the ability of P-
NFκB to induce cytokine-dependent activation of the iNOS 
promoter in mesangial cells. Yoshida et al. [54] showed 
that STAT3 and p65 physically interact in vivo and that p65 
homodimers can cooperate with U-STAT3 when bound to 
a specific type of κB motif. Reciprocally, this interaction 
appears to inhibit the function of STAT3 GAS-binding 
sites. In contrast, the p50 subunit of NFκB can cooperate 
with P-STAT3 bound to GAS sites [54]. Yang et al. [9, 
44] demonstrated that an increase in the concentration of 
endogenous U-STAT3 following long-term treatment with 
IL-6 allows U-STAT3 to compete effectively with IκB for 
U-NFκB, to form a novel transcription factor that induces 
RANTES expression by binding to the proximal κB site 
of the RANTES promoter. Since the Y705F mutant of 
STAT3, which cannot be phosphorylated on tyrosine, also 
activates RANTES expression, this function of U-STAT3 is 
clearly distinct from the absolute requirement for tyrosine 
phosphorylation that enables STAT3 dimers to bind to GAS 
sequences [55-57]. 

It should be noted that several researchers have reported 
that additional phosphorylation of P-STAT3 dimers on 
Ser727 is needed for maximal activation of transcription, 
but not for DNA binding [4, 55]. However, Ser727 phos-
phorylation seemed to be not required for activation of 
RANTES, because STAT3-β, a truncate form of STAT3 
which lacks 50 amino acids from the C-terminus, is still 
capable of driving RANTES expression. It seems possible 
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that the C-terminal domain, with Ser727 phosphorylated, 
might facilitate the transactivation of promoters other 
than RANTES in response to binding of the U-STAT3:U-
NFκB complex. For example, Ng et al. [58] have shown 
that STAT3 is phosphorylated on Ser727 but not Tyr705 
in response to activation of the TrkA receptor by nerve 
growth factor, and that serine-P-STAT3 is important in 
driving signal-dependent gene expression.

Another recent example is that U-STAT6 forms a 
complex with p300, which is able to directly bind to the 
cyclooxygenase-2 promoter [10]. Surprisingly, the U-
STAT6/p300 complex binds to the same GAS element that 
is presumed to be bound by P-STAT homo- or heterodimers. 
This result is different from the data obtained by Yang et al. 
[9], Yoshida et al. [54] and Chatterjee-Kishore et al. [37] 
for U-STAT3 and U-STAT1.

Nuclear-cytoplasmic transport of U-STATs 

Although all STATs share sequence and domain struc-
tures, each individual STAT protein that has been studied 
has evolved a distinct mechanism to regulate its intracel-
lular trafficking. Specifically, the movement of STAT1, 
STAT2, and STAT3 into the nucleus is governed by different 
kinds of importin transporters. STAT family members have 
similar nuclear-localization signals (NLSs) or nuclear-
export signals (NESs) domains that govern their passage 
into and out of the nucleus. STAT1 can be detected in the 
nuclei of 2fTGH cells in the absence of ligand-dependent 
stimulation, as can Y701F STAT1 [43]. A survey of sev-
eral established cell lines shows that STAT1 is present in 
the nuclei of all cells in the absence of ligand-dependent 
stimulation. Treating cells with IFNγ induces an increase 
in nuclear STAT1 and, although staurosporine inhibits the 
IFNγ-induced import of STAT1 into nuclei, it does not al-
ter basal levels of nuclear STAT1 [59]. Unlike the nuclear 
import of tyrosine-P-STAT1, that of U-STAT1 is sensitive 
to wheat germ agglutinin and occurs independently of the 
import receptor p97 [59]. Soon after the discovery of the 
importin-α/importin-β-dependent nuclear import pathway, 
importin-α5 was found to mediate nuclear translocation of 
tyrosine-P-STAT1 [60, 61]. Importin-α5 recognizes tyro-
sine-P-STAT1 either in the form of ISGF3 or as a homodi-
mer [62]. In this case, tyrosine phosphorylation of STAT1 
induces conformational changes that promote STAT/STAT 
interactions and facilitate STAT/DNA interactions, which 
are intimately linked to conditional nuclear import or ex-
port signals. However, unlike other STATs, such as STAT1 
and STAT2, which accumulate in the nucleus only follow-
ing their phosphorylation, STAT3 can enter the nucleus 
independently of its phosphorylation. The mechanisms 
underlying these differences relate to the involvement of 

distinct importins used by STATs for their nuclear import. 
For instance, the phosphorylation of the nuclear localization 
signal of STAT1 is a prerequisite for its interaction with 
importin-α5 and subsequent nuclear import [60, 61]. In 
contrast, STAT3 binds constitutively to importin-α3 and α6 
[63], and the shuttling of STAT3 in and out of the nucleus 
seems independent of its phosphorylation [63]. 

DNA binding of STATs without tyrosine phosphory-
lation 

P-STAT1 binds to DNA in the form of homo- or heterodi-
mers. Tyrosine phosphorylation is essential for the ligand-
induced formation of STAT1 homodimers or STAT1-2 
heterodimers and for their binding to the cis-recognition 
sequences in the promoters of IFN-regulated genes [13]. 
Without tyrosine phosphorylation, STAT1 does not regulate 
the transcription of IFN-inducible genes (e.g., IRF1) that 
have GAS sites in their promoters [37]. 

The high-resolution structures of DNA-bound STATs 1 
and 3 [64, 65] and of the N-terminal portion of STAT4 [66] 
indicate that the mutual binding of two STAT monomers 
is possible without SH2-phosphotyrosine interactions. The 
structures indicate that each monomer of the DNA-bound 
STAT dimer contacts only half of the palindromic GAS ele-
ment. Also, the N-terminal coiled coil domain of the dimer 
is likely to have very few contacts with DNA and thus is 
essentially free for additional protein-protein interactions 
[64, 66]. Consistent with this, several recent studies have 
identified proteins that interact with this domain of STAT3 
or other STATs [67-71]. U-STAT1 monomers can bind to 
DNA on their own by contacting one half of a palindromic 
GAS. They can also form dimers through mutual interac-
tion of the N-terminal domain of each monomer and bind 
to GAS sequences in vitro [37]. The N-terminal region of 
STAT1, especially residues 135–200 within the first coiled-
coil domain, is required to form dimers of U-STAT1 on the 
LMP2 GAS in vitro. However, the affinity for U-STAT1 
monomers or dimers is much less than that for P-STAT1 
homodimers.

Weak STAT binding can be enhanced by increasing the 
concentration of STAT proteins or by interaction of STAT1 
with other proteins, either transcription factors bound to 
adjacent promoter sites or accessory factors and co-activa-
tors. In the case of the LMP2 gene, U-STAT1 binds to IRF1 
through the N-terminal domain of STAT1, and the STAT1-
IRF1 dimer binds to the overlapping ICS2/GAS site on 
the LMP2 promoter [37]. The adenovirus E1A protein can 
down-regulate LMP2 transcription by interfering directly 
with this interaction of U-STAT1 and IRF1 and thus with 
their binding to the LMP2 promoter [37].

In addition to U-STAT1 [37], other U-STATs have been 
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reported to be capable of binding to DNA. It has been 
shown that U-STAT6 associated with p300 binds directly 
to the COX-2 GAS element to drive its expression in 
NSCLC cells [10]; U-STAT3 competes with IκB and binds 
to NFκB and, with the help of importin-α3, brings the U-
STAT3/p65/p50 complex to the nucleus, which then binds 
to a κB site to facilitate RANTES gene expression [9]. In 
addition to its interactions with NFκB, STAT3 has been 
shown to bind to other transcription factors. For example, 
it forms a complex with the CRE-binding protein on the 
JunB promoter [72] and with c-Jun on the α2-macrogloblin 
APRE [73]. Other reports show that STAT3 has an effect 
on CRE-like sites in the C/EBPβ promoter [74] and on the 
glucocorticoid response element [75], which lack classical 
GAS sequences. It should be mentioned that fewer than 
half of the genes that respond to high-level expression of 
U-STAT3 respond also to TNF-α. The U-STAT3-respon-
sive genes that do not respond to TNF-α probably do not 
have functional κB elements, and two such genes do not 
need p65 in order to respond to U-STAT3. Therefore, it is 
extremely likely that U-STAT3 interacts productively with 
one or more transcription factors different from NFκB to 
drive the expression of this class of genes. Identification 
of these factors and characterization of their interactions 
with U-STAT3 are of interest for future studies.

The biology of U-STATs

All seven STAT proteins share a high degree of sequence 
homology, but they are expressed differently. In resting 
cells, STATs reside largely in the cytoplasm as inactive 
homodimers [76]. However, upon ligand binding, recep-
tor-associated JAKs become activated, leading to the phos-
phorylation of specific receptor tyrosine residues, which 
then direct the SH2-dependent recruitment of specific 
STATs, which in turn become JAK substrates. As activated 
STATs are released from the receptor they reorient into an 
antiparallel dimer, where the SH2 domain of one STAT 
binds to the phosphotyrosine of the other STAT. Activated 
STAT dimers translocate to the nucleus and bind to spe-
cific elements. STAT homodimers bind to members of the 
GAS family of enhancers (a palindrome, TTCNNNGAA). 
Different STATs are activated by phosphorylation of the 
tyrosine residue in response to different stimuli, for ex-
ample, STAT1 and 2 by type I and II IFNs, STAT3 by IL-6 
and EGF, STATs 4 and 6 by IL-12 and IL-4, and STAT5 by 
prolactin and IL-3, respectively [77-79]. As noted above, 
both the STAT1 and STAT3 genes are regulated by their 
own activation because their promoters contain GAS ele-
ments [80-82]. Long-term exposure of cells to IFNs leads 
to a large (20-fold or more) increase in the concentration of 
U-STAT1. Similarly, the STAT3 gene has a GAS element 

that drives its expression in response to the activation of 
STAT3, for example, in response to IL-6 [9, 82]. Hu et al. 
showed that priming with low concentrations of IFN-γ for 2 
days leads to increased tyrosine phosphorylation of STAT1 
and increases total STAT1 expression in primary human 
monocytes in response to IFN-α [80]. Furthermore, the 
IL-6 and IFN-γ receptors preferentially activate STAT3 and 
STAT1, respectively, but also activate the other STATs with 
lower efficiency. Qing et al. [81] showed that, when STAT1 
is absent, IFN-γ activates STAT3 robustly and, conversely, 
when STAT3 is absent, IL-6 and other gp130-linked cyto-
kines activate STAT1 robustly [83]. It is interesting that, 
in addition to JAK1 and JAK2, SRC-family kinases are 
required to activate STAT3 in response to IFN-γ [81]. Be-
cause STAT1 and STAT3 usually have opposite biological 
effects, their reciprocal activation in response to IFN-γ or 
IL-6 suggests that their relative abundance, which may vary 
considerably in different normal cell types, under different 
conditions, or in tumors, may well have a major impact on 
how cells behave in response to these two different classes 
of cytokines [81]. The ratio of STAT3 to STAT1 may be as 
much as hundreds of times different in cells pretreated with 
IL-6 than in cells pretreated with IFN-γ, with significant 
consequences for downstream signaling in response to a 
second cytokine that activates either STAT, for example, 
IFNβ. Perhaps a more important consequence of up-regu-
lated STAT expression is the ability of U-STATs 1 and 3 to 
drive gene expression through mechanisms distinct from 
those used by p-STATs. In recent experiments, van Boxel-
Dezaire et al. have observed that, in freshly drawn human 
blood treated for 30–45 min with IFN-β, STATs 1, 3, and 5 
are activated to very different extents in CD4+ and CD8+ 
T cells, B cells, and monocytes, with little activation of 
STAT1 in B cells (A van Boxel-Dezaire and GR Stark, 
unpublished observations). It seems inevitable, therefore, 
that the IFN-induced patterns of gene expression will be 
very different in these different cell types, as will the bio-
logical consequences of exposure to IFN. 

The full biological relevance of the ability of P-STAT3 
to increase the intracellular concentration of U-STAT3 
remains to be established. In the context of cancer, the 
constitutive tyrosine phosphorylation of STAT3 in many 
different tumors is likely to lead to increased expression of 
U-STAT3, which in turn drives the expression of oncogenes 
such as MET and MRAS [9, 44]. In cell culture systems, 
long-term treatment with IL-6 increases total U-STAT3, and 
the levels of RANTES, MET, MRAS, and TIS11D [9, 44] 
are increased coordinately with U-STAT3. The biological 
role of U-STAT3-driven gene expression in normal physi-
ology is best addressed by experiments with genetically 
altered mice. An important attempt to do this was reported 
by Narimatsu et al. [82], who mutated a GAS element of 
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the endogenous STAT3 promoter. The ability of IL-6 to 
increase STAT3 expression was abrogated in some tissues 
but not in others, probably because STAT3-dependent 
expression of the STAT3 gene can be regulated through 
additional elements that were not recognized and therefore 
were not mutated. Incomplete suppression of the response 
of the STAT3 gene to IL-6 might well account for the mild 
phenotype of the promoter knock-in mouse observed by 
Naramatsu et al. Since complete deletion of STAT3 is 
embryonic lethal [84], it remains to be seen whether mice 
with complete loss of the STAT3-dependent induction of 
U-STAT3 expression would have severe defects, as might 
be expected if the up-regulation of U-STAT3 is important 
for the full physiological functions of the many cytokines 
that use the common gp130 receptor subunit to induce the 
phosphorylation of STAT3.

Concluding remarks 

STATs are ancient transcription factors, present in Dic-
tyostelium [85], Drosophila [86], and zebrafish [87]. The 
seven members of the mammalian STAT family range in 
size from 750 to 900 amino acids and feature several con-
served domains, especially an SH2 domain. It is tempting 
to speculate that a primordial STAT first functioned as a 
constitutive transcription factor, with the ability to dimer-
ize through ligand-dependent tyrosine phosphorylation as 
an additional function that was acquired more recently. 
Experiments in which the wild-type mouse genes encod-
ing STAT1 or STAT3 are replaced cleanly by the Y-F or 
S-A mutants should give important new information to 
distinguish between the ligand-dependent and ligand-in-
dependent functions of these STATs in mammals. 
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