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Abstract—Debris in space present an ever-increasing problem 

for spacecraft in Earth orbit. As a step in the mitigation of this 

issue, the CleanSpace One (CSO) microsatellite has been 

proposed. Its mission is to perform active debris removal of a 

decommissioned nanosatellite (the CubeSat SwissCube). An 

important aspect of this project is the development of the gripper 

system that will entrap the capture target. We present the 

development of roll-able dielectric elastomer minimum energy 

structures (DEMES) as the main component of CSO’s deployable 

gripper. DEMES consist of a prestretched dielectric elastomer 

actuator membrane bonded to a flexible frame. The actuator 

finds equilibrium in bending when the prestretch is released and 

the bending angle can be changed by the application of a voltage 

bias. The inherent flexibility and lightweight nature of the 

DEMES enables the gripper to be stored in a rolled-up state 

prior to deployment. We fabricated proof of concept actuators of 

three different geometries using a robust and repeatable 

fabrication methodology. The resulting actuators were 

mechanically resilient to external deformation, and display 

conformability to objects of varying shapes and sizes. Actuator 

mass is less than 0.65 g and all the actuators presented survived 

the rolling-up and subsequent deployment process. Our devices 

demonstrate a maximum change of bending angle of more than 

60 degrees and a maximum gripping (reaction) force of 2.2 mN 

for a single actuator.  

 
Index Terms— Active debris removal (ADR), artificial 

muscles, deployable mechanism, dielectric elastomer actuator 

(DEA), space debris. 

I. INTRODUCTION 

he field of space exploration is rapidly expanding with 
over one hundred new satellites placed into orbit every 
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year. With each launch space debris is produced in the form of 
remnants from the launch (e.g. rocket bodies), or when the 
satellites themselves reach the end of their useful life [1], [3]. 
Such debris present an ever-increasing risk to satellites and 
other spacecraft, as highlighted in 2009 by the high-velocity 
collision between the then operational Iridium 33 and the 
inactive Kosmos 2251 satellites [3].  

A solution has been proposed for tackling this problem in 
the shape of CleanSpace One (CSO) [4] (Fig. 1(a)), a low cost 
microsatellite (~30-40 kg) which aims to perform active debris 
removal (ADR). CSO is expected to launch in 2018 and its 
primary mission is to rendezvous and entrap a 
decommissioned nanosatellite currently in orbit at 750 km 
altitude (Fig. 1(b)), then deorbit the CubeSat. Though ADR 
for CubeSats is not the ultimate goal for this technology, this 
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       (b)           (c) 

Fig. 1.  (a) Proposed design for the CleanSpace One (CSO) satellite with 

conceptualized gripper, planned for launch in 2018 [1]. (b) Photo of 

SwissCube, the capture target for CSO’s first mission, a 100 mm × 100 

mm × 100 mm CubeSat launched in September 2009 [2]. (c) Model of 

proposed deployable, multisegment dielectric elastomer minimum 
energy structure gripper for CSO.  
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mission serves as an important validation of the concept.!A 

critical aspect of this project is the development of a gripper or 

end-effector with which to capture the CubeSat. Suggested 

solutions include capture mechanisms with: a) rigid links (e.g. 

robotic arms); b) flexible mechanisms (e.g., net, harpoon on a 

cable); or c) contactless approaches such as ion-beam 

shepherd [1]. 

The most suitable capture mechanism depends on many 

factors, including the debris itself (mass, size, whether it is 

cooperative or not etc.) and the quality of the information one 

has on the debris shape and composition. Nets and harpoons 

can cope with a wide range of debris shapes, and do not 

require very accurate matching of capture satellite and debris 

rotations. However nets and harpoons generally only allow for 

one single attempt at capturing debris (one cannot try again if 

the first gripping attempt fails) and present a high risk of 

generating additional debris. Moreover, these devices are 

essentially passive and so control of their position or shape 

post-deployment is not possible.  

Contactless techniques generate no additional debris, as the 

target is “pushed” by an ion beam from the capture satellite. 

The satellite does however require accurate pointing, and must 

have two ion engines (one to push the debris and another to 

counter the first), which consume significant electrical power, 

of order 40W/mN over long time periods. This is incompatible 

with a small satellite. 

Despite the flight heritage of rigid robotic arms, they have 

important drawbacks for this mission in terms of weight and 

stowed volume. An interesting approach for the end-effector is 

the use of dielectric elastomer minimum energy structures 

(DEMES) as foldable and compliant gripper mechanisms (Fig. 

1(c)).!A soft gripper can be used multiple times (on several 

targets, or repeatedly on the same target if the initial gripping 

attempt is unsuccessful), and presents only a small risk of 

generating additional debris.  

An example of a minimum energy structure (MES) is 

shown in Fig. 2. A prestretched elastomer membrane is 

bonded to an inextensible but flexible frame with an open 

section. The minimization of the strain and bending energy in 

the elastomer and frame, respectively, results in complex 

structures [5]. DEMES, first proposed by Kofod et al. [6], take 

advantage of this energy minimization using voltage-

controlled actuation to change the equilibrium state, typically 

resulting in bending actuation. This is achieved by patterning a 

compliant electrode on both sides of the elastomer region 

suspended within the open section (for the MES example 

shown in Fig. 2, this would be the region shaded in green in 

Fig. 2(b)). Applying a voltage bias V results in thickness 

compression due to charge interactions. The resulting 

compressive pressure produced, often referred to as the 

Maxwell stress p, is given by,  

 

! = !!!!
!

!

!

. (1) 

 
where e0 is the free space permittivity, er is the relative 

permittivity of the dielectric elastomer and t is the elastomer 

thickness (the V/t term is the electric field).    

The compressive Maxwell stress also gives rise to in-plane 

prestress relaxation (through material incompressibility [7], 

[8]), causing a change in equilibrium state and thus actuation 

[6]. DEMES have shown promise for gripping applications 

[5], [9] and their inherent flexibility and lightweight nature are 

 
                            (a)            (b) 

 
        (c)            (d) 
Fig. 2.  An example minimum energy structure (MES). (a) On the left, a 

prestretched polydimethylsiloxane (PDMS) membrane bonded to a rigid 

plastic holder with Kapton tape and to the right, a flexible but inextensible 

frame (printed with a hatched pattern on its surface for clarity). (b) The 

flexible frame bonded to the PDMS membrane surface with a double-sided 

transparent tape. The frame/membrane structure is released from the plastic 

holder by cutting the surrounding membrane (in a dielectric elastomer MES 

actuator, the region shaded in green is covered by a compliant electrode). 

(c) One minimum energy equilibrium state of the MES. (d) A second 

equilibrium state.  

 
Fig. 3.  Schematic of the capture scenario using a DEMES gripper. Stage 

1: The DEMES gripper is stored in its rolled state during launch and 

cruise. Stage 2: The DEMES gripper is deployed and re-assumes its un-

actuated form by virtue of the stored elastic forces in DEMES arms. 

Stage 3: The DEMES gripper is actuated by applying a high voltage, 

increasing the gripper opening. Stage 4: Once CleanSpace One has 

rendezvoused with the CubeSat, the DEMES gripper is de-activated. The 

elastic restorative forces apply a momentum to the capture target causing 

it to detumble. Stage 5: The DEMES gripper secures the CubeSat with 

no relative rotation between it and CleanSpace One.  
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advantageous for space applications. Moreover, studies have 

shown that the material properties of polydimethylsiloxane 

(PDMS) - an elastomer often used to fabricate DEAs - do not 

vary substantially over the temperature ranges and radiation 

levels found in low Earth orbits
1
 [10], [11].  

Multisegment DEMES differ from single segment versions 

in that they have more than one open section. This is achieved 

either by mechanically linking several single segment 

actuators together [12] or by designing multiple segments into 

a single frame. For actuators with a high aspect ratio (length 

versus width) this approach is advantageous as dividing the 

actuator into multiple segments improves prestretch 

homogeneity and retention, and restricts the number of stable 

states the actuator can take (Fig. 2(c)-(d)). Previous attempts at 

realizing multisegment DEMES involved the use of an acrylic 

dielectric elastomer and manually applied carbon grease 

electrodes, both of which are known for their poor long-term 

performance [12], [13]. Moreover, the manual fabrication 

approach is a limitation in terms of fabrication accuracy and 

repeatability.  

Here we present a proof of concept multi-segment DEMES 

actuator for the CSO satellite gripper. Our multisegment 

actuator uses casted silicone as the dielectric elastomer, and 

pad printed carbon-silicone composite electrodes for high 

fabrication accuracy and robustness [14]-[16]. The actuators 

utilize a single frame with multiple open sections, and are 

therefore optimized to enable rolled storage prior to 

deployment. Though developed primarily for CSO, our 

fundamental DEMES technology and fabrication methods are 

applicable to other application areas, such as deployable 

appendages (e.g. legs) for soft mobile robots or manipulators 

used in manufacturing for grabbing of objects with unknown 

shapes. In section II we lay out the actuator performance 

requirements and in section III we present our proof of 

concept designs and fabrication methodology. Section IV 

shows the results of the characterization of the actuator 

designs in terms of bending angle and gripping force. The 

 
1
 Temperatures experienced during launch may be outside the range 

experienced during orbit. However, the gripper will remain stowed during the 

launch phase and be deployed only once in orbit. 

discussion of these results is presented in section V followed 

the conclusion in section VI. 

II. GRIPPER REQUIREMENTS 

The proposed CSO microsatellite dimensions are 300 mm × 

300 mm × 340 mm (excluding solar panels) and will weigh 

between 35-40 kg. The gripping target for CSO is the one-

unit, 100 mm × 100 mm × 100 mm CubeSat named 

SwissCube weighing 820g, launched in September 2009, and 

still operational [16]. SwissCube is smaller than some space 

debris (which can weigh as much as 9 tons) but many of the 

technologies required for ADR can be demonstrated at 

microsatellite scale [1]. The capture of SwissCube presents an 

important initial goal, laying the foundation for removal of 

more common scale space debris.  

The proposed gripper design uses four multisegment 

DEMES actuator arms of length 30 cm in a cruciform 

configuration for secure target gripping. A schematic of the 

anticipated capture scenario is depicted in Fig. 3. In stage 1, 

during launch and cruise, the DEMES gripper arms are stored 

in a rolled configuration to minimize volume. In stage 2, the 

gripper is released from its rolled configuration and assumes 

its default state by virtue of its elasticity. In stage 3, the 

gripper is actuated at high voltage, increasing the size of its 

opening to accommodate the debris. In stage 4, CSO performs 

a rendezvous with the CubeSat (by means of onboard debris 

detection technology [1]) and the voltage to the DEMES 

gripper arms is switched off. The elastic restorative force in 

the DEMES actuators causes the gripper to close and come in 

contact with the CubeSat surface. The DEMES arms exert a 

moment on the CubeSat causing it to slow its rotational 

velocity relative to CSO. In stage 5, the gripper secures the 

CubeSat to CSO, with no relative rotation between CSO and 

the debris.  

A. DEMES Actuator Requirements 

We identify two fundamental performance requirements for 

the DEMES gripper arms: 1) gripping force; 2) bending angle. 

 
  (a)              (b) 

Fig. 4.  Schematic cross-section of DEMES gripper (DEMES actuators 

shown as curved solid black lines, gripper base shown in blue). (a) 

Actuators placed closed together with a small spacing c0, resulting in an 

actuated opening diameter c1. (b) Actuators spaced further apart with 

spacing d0, resulting in a larger actuated opening diameter d1, relative to 

c1.  

 
  (a)              (b) 

Fig 5.  Actuator design (a) DEMES frame geometries for designs A-C 

(left to right) (b) DEMES electrode pattern.  
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Gripping force is defined as the reaction force on the 

DEMES actuator surface (side facing gripping target) arising 

from the elastic restoring force in the actuator subsequent to 

the deactivation of the applied voltage (as depicted in stage 4 

of Fig. 3). The gripping force required to accomplish this 

capture scenario was derived in [17] and was found to be 

between 0.001 mN and 6.5 mN for short detumbling durations 

(i.e. between 0.5 s and 60 s), and assuming CubeSat initial 

rotational velocities between 1 and 50 degrees/s.  

We describe bending angle in two ways: a) the change of 

angle of the actuator tip during actuation; and b) the change in 

projected displacement, which is the difference between c0 

and c1 (or d0 and d1) from Fig. 4, divided by two (see also 

Fig. 9(b)). The tip angle is a more familiar comparative metric 

used to characterized bending actuators, where as the 

projected displacement more directly relates to our gripper 

application. At the beginning of the detumbling phase the 

gripper opening needs to be large enough to accommodate the 

gripping target. This can be guaranteed by appropriately 

positioning the individual DEMES gripper arms on the gripper 

base (Fig. 4), such that the size of the gripper opening when 

the DEMES arms are actuated (c1 or d1 from Fig. 4) is larger 

than the size of the gripping target. However, it should be 

noted that in future missions, where the capture target is likely 

to be much larger than the capturing satellite, this may not be a 

feasible solution.  In general, it is desirable that the actuated 

bending angle be as large as possible for a given actuator 

geometry to reduce the accuracy required at the rendezvous 

phase and ensure secure capture.  

As an initial step we develop scaled (1:3 in length) versions 

of the real device to validate the fabrication methodology and 

prove the concept. These proof of concept devices correspond 

to a size of actuator that can be conveniently fabricated with 

our current laboratory set-up. This also enables us to develop 

and test multiple designs rapidly, acquiring a sense for the 

important design parameters relating to actuator performance.  

III. FABRICATION OF PROOF OF CONCEPT ACTAUTORS 

A. Actuator Design 

A preliminary investigation into multisegment DEMES [17] 

guided our prototype actuator designs. We begin with a 

DEMES design consisting of six segments with a 1:1.3 

(length:width) open section aspect ratio (design A). We also 

characterize two other designs to quantify the effect of varying 

the number of actuator segments for a fixed actuator length 

(design B), and the actuator width for a fixed open-

section:frame-width ratio (design C). The geometries for  

these designs, relative to design A, are depicted in Fig. 5 

where: a = 22 mm, b = 14 mm, c = 105 mm, d = 11 mm, e = 4 

mm, f = 4 mm and g = 14.5 mm. For this investigation we  

consider rectangular shaped segments only to simplify 

comparisons.  

We take the approach of designing multiple segments into a 

single actuator frame, rather than mechanically linking several 

independent single segment actuators [12]. This limits the 

chance of over-stiffening the actuator (thus inhibiting rolled 

storage) and simplifies fabrication.  

 
  (a) 

 
  (b) 

Fig. 7.  (a) Fabricated DEMES actuators (un-actuated state), designs A-C 

from left to right. Each actuator weighs less than 0.65 g. (b) 

Demonstration of mechanical resilience and robustness of the fabricated 

DEMES. 

 
Fig. 6.  DEMES actuator fabrication: (a) Zehntner automatic film 

applicator coater used in the elastomer membrane fabrication (picture 

source [23]). (b) Pure shear prestretching of membranes using custom 

built stretcher. (c)-(d) Pad-printing of electrodes through a PET foil 

mask; (e) Bonding of actuator frame to the elastomer membrane. (f) 
Releasing of finished actuator.  
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The segment electrode geometry was inset by 500 µm 

relative to the flexible frame geometry to prevent failure by 

over constraining the actuation zone. The corners of the 

electrodes were also filleted to prevent localized electric field  

concentrations, which could lead to premature actuator failure. 

We drive all the actuator segments simultaneously, thus tracks 

are incorporated into the electrode design that connect all the 

electrode segments electrically in series, and terminate at the 

base of the actuators. If required (for independent segment 

actuation for example), parallel electrical connection of the 

segments can be achieved simply by changing the electrode 

mask pattern (see section III.C).  

In future designs, sensing could be incorporated directly 

into the electrode design by means of dielectric elastomer 

switches [18], or by “self-sensing” of the electrode 

capacitance [19]. This would increase the device functionality 

providing feedback on the state of the actuator (i.e. deployed, 

non-deployed, successful target capture etc.). Alternatively, 

printed flexible electronics techniques could be utilized to 

embed sensing capabilities directly into the actuator frame 

[20].  

 Following the work of Kofod et al. [5] we use initially a 

pure shear stretch state in prestretching our elastomer 

membranes i.e. stretching in one planar dimension whilst 

keeping the other constant. Work has been done in trying to 

characterize the effect of elastomer membrane prestretch on 

performance for single segment devices  [14], [21], [22], but 

similar analyses for multisegment devices are yet to be 

performed. 

B. Elastomer membrane preparation 

We used a two-part silicone elastomer (Sylgard 186, Dow 

Corning) as the dielectric elastomer. The base and curing 

agent were mixed at a 10:1 ratio respectively, using a 

planetary mixer (Thinky ARE-310). The mixture was further 

thinned using a silicone solvent (OS-20, Dow corning) and 

blade cast onto a plastic substrate to a thickness of 

approximately 70 µm using a Zehntner automatic film 

applicator coater (Fig. 6(a)). The membrane was subsequently 

cured in an oven at 80°C degrees for approximately one hour. 

The cured elastomer membrane was cut into 80 mm long by 

45 mm wide sections and peeled from the substrate. The 

elastomer was then adhered to two rigid holders and pre-

stretched in pure shear to 1.3 times its original length using a 

purpose built prestretch device (Fig 6(b)). The film was then 

affixed to a rigid plastic holder lined with double-sided 

Kapton tape to maintain its prestretch.  

C. Electrode Realization 

Compliant electrodes are a key challenge for DEAs [13]. 

Our electrodes are realized via a stamping method using a 

Teca Print TPM101 pad-printing machine. The machine 

operates by doctor blading a small amount of liquid electrode 

material onto a shallow reservoir, which is subsequently 

picked up by a rubber stamp. The stamp then applies the ink 

onto the elastomer membrane surface through a PET foil mask 

which is laser cut with the desired electrode pattern. This 

 
  

Fig. 8.  Fabricated DEMES actuators wrapped around objects of various 

shapes and sizes to demonstrate conformability. Objects are (from left to 

right, top to bottom): Toblerone bar, PMMA piece laser cut into the shape 
of a fictional spacecraft, an apple, a model of SwissCube.  

 
            (a) 

 
            (b) 

 
(c) 

Fig. 9.  (a) Actuator release mechanism; left while rolled-up, right, after 

releasing by melting the nylon wire. (b) Actuator design A at 0 V (Left) 

and 3800 V (Right) All measurements were done in air and at room 

temperature. Tip angle and projected displacement indicated; (c) 

Gripping force measurement set-up. Metal mechanical linkage connected 

to a load cell measures reaction force near the actuator tip as the load cell 

is linearly displaced away from the actuator. 
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enables creation of accurate and repeatable electrodes. The 

electrode is then cured in an oven at 80°C and the process is 

repeated on the reverse side of the elastomer membrane.  

The ink used is composed of carbon black in a silicone 

elastomer matrix. The silicone used in the electrode ink is the 

same used to make the dielectric elastomer membrane, this 

helped ensure adequate bonding. The resulting electrodes were 

measured to be approximately 2 micrometers thick. The cured 

electrodes are robust providing improved longevity and 

resilience to mechanical deformation (Fig 7(b)) compared to 

methods using grease-based electrodes [12], [21].  

D. Adhering of actuator frame 

The actuator frame was made by laser cutting a 100 µm 

thick transparent polyester foil (typically used in inkjet 

printing) with a 50 µm thick transparent silicone adhesive 

layer (ARClear! 8932, Adhesives Research) adhered to its 

surface. The laser cut frame-adhesive was bonded to the 

elastomer membrane (Fig. 6(e)) and was manually aligned 

with the pad-printed electrodes. The actuator was 

subsequently released using scissors (Fig 6(f)).   

The resulting actuators (Fig. 7(a)) are light, weighing no 

more than 0.65 g (excluding electrical connections), 

demonstrating a high degree of flexibility and mechanical 

resilience (Fig. 7(b)), and conformability to objects of various 

shapes and sizes (Fig. 8).  

IV. ACTUATOR CHARACTERIZATION 

A. Measurement set-up 

The actuators were rolled up (about the width axis) 

manually into a cylinder of outer diameter between 12 and 14 

mm prior to commencing the bending and gripping force 

experiments to simulate storage on the satellite. The actuators 

were then released using a deployment mechanism similar to 

that used on SwissCube to deploy its antenna. The rolled 

actuators were secured using nylon wire, which is passed 

along a nichrome heating wire as shown in Fig. 9(a) (0.8 

gauge, RS components). The actuators were subsequently 

deployed by applying a current of 1.89 A (duration no more 

than 2 seconds) through the nichrome wire, melting the nylon 

wire and allowing the actuators to unfurl naturally as a result 

of the stored elastic energy. The actuators were allowed to 

stabilize prior to measurements being taken.  

For the bending angle measurements the actuators were 

placed on their side to minimize gravity effects. Incremental 

voltage steps were supplied to the actuator at 250 V intervals 

in the range 0 – 2 kV, and at 200 V intervals in the range 2 – 

3.8 kV, minimizing dynamic effects. The input voltages were 

supplied by an Auckland Biomimetics Lab EAP high voltage 

power supply. Still images were taken at each voltage step 

using a CMOS camera (Point Grey FMVU-13S2C) a few 

seconds after application of the voltage increment to allow the 

actuators to reach steady state. The images were subsequently 

post processed in software (ImageJ, National Institutes of 

Health). The tip angle θ and the projected linear displacement 

x of the actuator tip are defined in Fig. 9(b). Tip angles are 

taken relative to the horizontal line shown in Fig. 9(b) left, 

with clockwise angle rotations denoting negative tip angles. 

For the gripping force measurements, a load cell (FUTEK 

LRF400) was used to measure the reaction force on the 

actuator as a function of an imposed linear displacement (Fig. 

9(c)). All measurements were conducted at the actuator tip and 

displacements made normal to the actuator surface. As a 

simplification we assume securement of the capture target 

occurs in a position close to the DEMES initial (un-actuated) 

position, hence we record the forces at small deflections from 

this initial position (approximately 5 mm linear displacement).   

 

B. Experimental results 

After unrolling the actuators a small change in the initial 

position was observed compared to the state before rolling-up, 

which we attribute to creep in the actuator frame material. 

This was less noticeable in the actuator design C, which had 

an overall stiffer frame. 

Fig. 10(a) shows that all the actuators displayed a quadratic 

relationship between tip angle and actuated voltage, a behavior 

in agreement with previously reported experiments for single 

segment devices [14], [21]. Actuator design A showed the 

largest initial tip angle (comparatively low actuator curvature) 

and final angle at -43 degrees and -106 degrees, respectively. 

Conversely actuator design B showed the lowest initial tip 

angle (comparatively high curvature) and final angle. All 

 
          (a)                (b)                    (c) 

  Fig. 10.  Results of actuator characterization for a range of input voltages. (a) Actuator tip angle. (b) Projected linear displacement of actuator tip. (c) 

Gripping force. 
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actuator designs experienced a similar change in tip angle of 

between 61 - 63 degrees in the range of the applied voltage.  

Actuator design A also showed the largest projected linear 

displacement of approximately 22 mm (Fig. 10(b)), with 

design C showing the second largest displacement of 

approximately 15 mm. Actuator design B displayed a non-

quadratic, non-monotonic response on voltage: first displaying 

negative displacements (relative to convention showed in Fig. 

9(b).), finding a minimum at approximately -3.3 mm before 

experiencing positive displacements with a maximum of 

approximately 2.4 mm. This behavior is due to the initially 

high curvature of the actuator.  

The results of the gripping force measurements are shown 

in Fig 10(c). Force measurements were taken up to a linear 

displacement of approximately 5 mm (5% of the length of the 

actuators when flat) for all measurements. All the actuator 

designs displayed an approximately linear response on 

actuator tip displacement. Actuator design C showed the 

largest force at maximum displacement of 2.2 mN. Actuator 

designs A and B showed similar force values with design B 

having a larger maximum force of 0.94 mN, compared to the 

0.76 mN of actuator design A. 

V. DISCUSSION 

Single frame multisegment DEMES actuators utilizing 

silicone elastomers have been developed. The materials used 

were inexpensive and the resulting actuators exhibit a high 

degree of conformability and mechanical resilience. Use of 

non-grease-based, pad-printed composite electrodes and low 

creep silicone help ensure longevity and repeatability of 

operation. As a result of these features, the actuators showed 

successful operation even after being rolled into cylinders of 

diameter less than one seventh of the actuator flat length, 

proving the proposed stowage concept. To the best of the 

authors’ knowledge this is the first gripper with this capability 

developed for space applications. Additionally, the actuators 

were deployed using a mechanism similar to that used in 

previous satellite missions. This ability for rolled storage and 

deployment becomes increasingly important for future 

missions and as the size of capture targets increases beyond 

that of SwissCube. 

The actuators showed some creep behavior whilst in the 

rolled state
2
, frames made from low creep materials such as 

polyethersulfone (PES) could be employed in future designs to 

mitigate this effect. Moreover, frames made from casted 

silicone elastomers or elastomer composites [24] could also be 

used. However, these could result in increased mass and limit 

the minimal rolling diameter. It should be noted that although 

we primarily consider rolled storage here, other low volume 

storage configurations, e.g. laying flat against the exterior of 

the satellite, are possible with our multisegment DEMES 

actuators.  

Only a single equilibrium state was observed with the 

 
2
 Though once deployed no change in the shape of the actuators was 

observed during a storage period of several months. 

actuators due to the multisegment approach. This is an 

essential feature as an actuator capable of snapping between 

equilibrium states would be undesirable for our gripping 

application.  

The results of the bending angle measurements show that 

the three actuator designs display approximately the same 

change in tip angle for a given applied voltage despite their 

differing designs. This is somewhat intuitive as the actuator 

lengths are the same in each case, as is the approximate total 

volume of elastomer material suspended in the open sections. 

However, it is unclear how the bending energy correlates with 

the tip angle i.e. whether the change in tip angle is 

independent of the initial angle, for a given electric field input. 

Hence, the observed trends could be a mixture of 

electromechanical and geometric effects. 

The initial tip angle correlates with the segment aspect ratio 

i.e. the designs having a high segment aspect ratio (length to 

width) also having the lowest initial tip angle (highest 

curvature). This could be the result of bending about the 

length axis of the actuators. Actuators with low segment 

aspect ratios would experience more bending about the length 

axis, resulting in an increase in the stiffness of the frame about 

the width axis. A similar effect has also been observed in 

finite element simulations of single segment DEMES with 

high width prestretch [21]. In our work pure shear prestretched 

membranes were used exclusively, however other prestretch 

states may yield greater changes in angle for a given applied 

electric field, or the same change for a lower input voltage 

[15], [25].  

The results of the projected displacement show that though 

the actuators experience a similar change in tip angle with 

applied voltage, actuator design A, with the largest segment 

aspect ratio, showed the largest projected displacement. This 

result is most likely dominated by the actuator initial curvature 

as all the actuators displayed similar total tip angle change, but 

the designs with the largest initial tip angle (smallest 

curvature) experienced a larger projected displacement.  

The results of the gripping force measurements showed that 

actuator design C, which had the largest total width, had also a 

substantially larger (more than double) force than the other 

designs. This is an important design conclusion indicating 

that, for a given actuator length, greater force can be achieved 

simply by increasing the width of the segment and frame 

geometry proportionally, whilst retaining the same change in 

tip angle, for a given input voltage. This will be particularly 

important when the actuator is scaled up to its full 30 cm 

length, where the gripping force is expected to decrease. 

Moreover, multiple dielectric elastomer layers could be used, 

in combination with proportionally thicker actuator frames, 

and should yield similar performance in terms of change in tip 

angle, whilst increasing gripping force. The increase in force 

with linear displacement is an advantageous feature, providing 

a positive mechanical feedback loop, with the reaction force 

increasing if the gripping target begins to move away during 

capture.  
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VI. CONCLUSION 

 

We have presented proof of concept, multisegment 
dielectric elastomer minimum energy structure (DEMES) 
actuators as the fundamental component of a deployable 
microsatellite gripper. The actuators possess uniquely 
advantageous properties for this application including their 
low mass, damage resilience and mechanical flexibility, 
enabling rolled storage prior to deployment and successful 
operation. These devices can currently be made at relative low 
cost whilst maintaining good repeatability, accuracy and 
mechanical resilience. Three small-scale actuator designs were 
fabricated and characterized in terms of bending angle, for an 
applied voltage, and gripping (reaction) force. All the 
actuators were rolled prior to deployment and testing. Our 
devices, weighing less than 0.65g, produced a change in tip 
angle of approximately 60 degrees, and a maximum gripping 
force of 2.2 mN for small displacements of the actuator tip. 
This initial investigation has proved the concept of using 
rolled multisegment DEMES for volume efficient gripper 
storage, and provided a road map for future actuator 
development.  
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