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The rolling process is widely used in the metal forming
industry, and has been so for many years. However, the
process has attracted renewed interest as it recently has
been adapted to very small scales where conventional
plasticity theory cannot accurately predict the material
response. It is well-established that gradient effects play a
role at the micron scale, and the objective of this study is
to demonstrate how strain gradient hardening affects the
rolling process. Specifically, the paper addresses how the
applied roll torque, roll forces, and the contact conditions
are modified by strain gradient plasticity. Metals are known
to be stronger when large strain gradients appear over a
few microns; hence the forces involved in the rolling process
are expected to increase relatively at these smaller scales.
In the present numerical analysis, a steady-state modeling
technique that enables convergence without dealing with
the transient response period is employed. This allows
for a comprehensive parameter study. Coulomb friction,
including a stick-slip condition, is used as a first approxi-
mation. It is found that length scale effects increase both
the forces applied to the roll, the roll torque, and thus the
power input to the process. The contact traction is also
affected, particularly for sheet thicknesses on the order of
10µm and below. The influences of the length parameter
and the friction coefficient are emphasized, and results are
presented for multiple sheet reductions and roll sizes.
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Nomenclature
ȧ Sheet velocity.
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A(e) Element area.
b Sheet width in out-of-plane direction.
E Young’s modulus.
Ep, Ėp Enriched effective plastic strain and strain rate.
FPull Full force along rolling direction.
FPunch Punch force perpendicular to sheet.

F(e)
n ,F(e)

f Normal force and friction force.
h,H Deformed and undeformed sheet thickness.
L(e) Element length.
LD Dissipative length parameter.
m Strain rate hardening exponent.
Mi j Higher order tractions.
N(n) Shape function belonging to noden.
N Strain hardening exponent.
P Power input.
qi j ,qD

i j Total micro-stress, and dissipative micro-stress.
R Roll radius.
t Time.
T Roll torque.
Ti Nominal surface traction.
ui Displacements.
xi Cartesian coordinates.
∆ Punch displacement.
ε̇0 Reference strain rate.
εp

i j ,k, ε̇
p
i j ,k Plastic strain gradient and strain gradient rates.

εi j ,εe
i j ,ε

p
i j Total strain, elastic strain, and plastic strain.

Li jkl Elastic moduli.
µ Friction coefficient.
ν Poison ratio.
σC Gradient enriched effective stress.
σi j ,si j Cauchy stress and stress diviator.
σY Initial yield stress.



τi jk ,τD
i jk Total higher order stress and dissipative higher or-

der stress.
Ψ Free energy.

1 Introduction
The flat rolling process is widespread in the metal form-

ing industry, and it is applied to sheet thicknesses rang-
ing from several centimeters to fractions of millimeters (foil
rolling). The process has found multiple uses and it is un-
der constant development for new applications and new ma-
terials (see e.g. [1] for an overview). Currently, there is
a push towards down scaling the process aiming for high-
throughput of ever thinner foils. Efforts are also underway
to create very small scale features by continuous imprinting
with the rolling process (so-called roll-molding, [2]). Com-
pared to flat rolling, the deformation field developed during
roll-molding is more complex as three dimensional features
are allowed to form. However, even during flat rolling, a
non-homogeneous deformation of the sheet takes place as it
is being forced between the rolls, making the contact con-
ditions and elastic unloading essential features of the model
solution [3–6]. Thus, strain gradients must be expected to
evolve.

With large strain gradients come increased hardening at
the micron scale. The explanation for this is now generally
accepted to lie in the concept of Geometrically Necessary
Dislocations (GND’s). GND’s must necessarily be stored
when large plastic strain gradients appear [7], and this gives
rise to free energy associated with the local stress field of
the GND’s, as-well as increased dissipation when the GND’s
move in the lattice. At small scales, GND’s can become
a substantial portion of the total dislocation density, which
is normally dominated by so-called Statistically Stored Dis-
locations (SSD’s) at larger scales. Thus, a relatively larger
amount of energy is required to deform the material at small
scales in the presence of gradients, and this leads to an ap-
parent increase in yield stress and strain hardening. With
rolling at a small scale in mind, the questions to be addressed
are; when do the size effects influence the rolling process?
and; how will strain gradient hardening affect the applied
roll torque/force and the contact conditions?

To tackle these issues, and to develop an accurate numer-
ical framework, the material model must represent stresses
over the full range of length scales involved. For this, a
vast amount of theoretical literature seeking to encapsulate
the experimentally observed gradient effects at micron scale
has been put forward [8–20]. The higher order elastic-
viscoplastic theory by Fleck and Willis [15] is employed in
the current study, and the concept of higher order stresses,
work conjugate to the strain gradients, is adopted to widen
the range of length scales for which the model is valid. More-
over, focus is on the steady-state rolling solution. Thus, tran-
sient effects initiating the rolling process will not be con-
sidered in the present study. For an efficient modeling ap-
proach, the steady-state finite element formulation proposed
by Dean and Hutchinson [21], suitable to history dependent
material deformation, will be adapted to the rolling in the

present study (see also [6] for a similar approach in a con-
ventional plasticity context).

The paper is structured as follows. The material model
and steady-state formulation are presented in Section 2,
while the boundary value problem is outlined in Section 3. A
steady-state modeling framework that enables convergence,
without having to deal with the transient response of the
rolling process, is employed. The results are laid out in Sec-
tion 4, and a conclusion is given in Section 5.

2 Model: Constitutive Relations, Steady-State Formu-
lation, and Contact Procedure

2.1 Rate-Sensitive Constitutive Material Model
The flat rolling problem is analyzed using the gradi-

ent enhanced elastic-viscoplastic material model proposed
in [11,12,15]. Here, a small strain formulation is employed.
This is a reasonable approximation to the rolling process as
the overall straining is proportional to the sheet reduction
when limiting this to∼ 15%. For small sheet reductions, the
strains and the rotations remain small - yet large plastic strain
gradients can evolve (see e.g. Fig. 7). An additive decom-
position of the total strain is applied, so thatεi j = εe

i j + εp
i j ,

whereεe
i j is the elastic part andεp

i j is the plastic part. The to-
tal strain field is determined from the displacements, which
together with the plastic strain components are determined
based on the principle of virtual work for the current higher
order material. In Cartesian components, this reads

∫
V
(σi j δεi j +(qi j −si j )δεp

i j + τi jkδεp
i j ,k) dV

=
∫

S
(Tiδui +Mi j δεp

i j ) dS. (1)

whereqi j is the micro-stress tensor,σi j is the Cauchy stress
tensor,si j = σi j − δi j σkk/3 is the stress deviator andτi jk is
the higher order stresses, work conjugate to the plastic strain
gradients,εp

i j ,k. Here,( ),k denotes the partial derivative with
respect to the coordinatexk. The right-hand side of Eqn. (1)
includes both conventional tractions,Ti = σi j n j , and higher
order tractions,Mi j = τi jknk, with nk denoting the outward
normal to the surfaceS, which bounds the volumeV.

The mechanisms associated with dislocation move-
ment and/or storage of geometrically necessary dislocations
(GND’s) [7, 19, 22] have been incorporated into the current
higher order theory by assuming the micro-stress,qi j , and
higher order stress,τi jk , to have a dissipative part only, such
that;qi j = qD

i j , andτi jk = τD
i jk (all energetic contributions are

omitted). These dissipative stress quantities read [11,15]

qD
i j =

2
3

σC[Ėp,Ep]

Ėp
ε̇p

i j , τD
i jk =

σC[Ėp,Ep]

Ėp
(LD)

2ε̇p
i j ,k (2)

while the associated effective stress measure is

σC =

√

3
2

qD
i j q

D
i j +(LD)−2τD

i jkτD
i jk (3)



Table 1. Material properties.

Parameter Significance Value

σy/E Yield strain 0.001-0.003

ν Poisson’s ratio 0.3

N Strain hardening exponent 0.1-0.2

m Strain rate hardening exponent 0.01

ε̇0 Reference strain rate 0.002

LD/H Dissipative length parameter 0.05-1.00

Assuming the form of the free energy to be

Ψ =
1
2
(εi j − εp

i j )Li jkl (εkl − εp
kl) (4)

the conventional stresses are derived as;σi j = ∂Ψ/∂εe
i j =

Li jkl (εkl − εp
kl), whereLi jkl is the isotropic elastic stiffness

tensor. Moreover, a power-law relation for the visco-plastic
behaviour is assumed, so that

Ėp = ε̇0

(

σC

g(Ep)

)1/m

,with g(Ep) = σy

(

1+
EEp

σy

)N

(5)

whereN is the strain hardening exponent,m is the strain rate
hardening exponent, andε̇0 is the reference strain rate. Thus,
σC[Ep, Ėp] = g(Ep)

(

Ėp/ε̇0
)m

.
In this model, the visco-plastic behaviour becomes sig-

nificant for larger values of the strain rate hardening ex-
ponent, m, while the current constitutive material model
approaches the response of a gradient enhanced J2-flow
type material in the rate-independent limit (m → 0, see
e.g. [15, 23, 24]). Moreover, the response of the gradient en-
hanced model reduces to the prediction of its corresponding
conventional version as the length parameter goes to zero
(LD = 0). The numerical framework is, however, unstable
in the limit whenLD → 0, and thus a conventional material
model has been independently developed and coded for com-
parison. The material properties considered in the present
study are summarized in Tab. 1.

2.2 Steady-State Formulation
The steady-state finite element (FE) formulation pro-

posed by Dean and Hutchinson [21] is chosen over a classi-
cal transient Lagrangian modeling approach since it directly
brings out the steady-state field that appears stationary rela-
tive to the rolls. Thus, convergence issues of any transient
behaviour are avoided, making the steady-state formulation
more precise and less demanding in terms of calculation time
(see also [6] for a similar approach). Moreover, the model-
ing approach directly accommodates elastic-plastic unload-
ing, and can be adapted to a wide range of constitutive mod-
els.

Dean and Hutchinson [21] originally define steady-state
in the context of crack propagation as the condition at which
the stress/strain field surrounding an advancing crack tip re-
mains unchanged to an observer moving with the tip. A sim-
ilar approach can be adopted for the rolling process, where
stationarity of the stress/strain field must exist for a contin-
uous feed of a homogeneous sheet. Thus, the stress/strain
field remains unchanged to an observer at the rolls seeing the
material pass by. Any time derived quantity,ḟ , in the con-
stitutive model can thereby be related to the spatial deriva-
tive through the sheet velocity, ˙a, along thex1-direction, ac-
cording to ḟ = −ȧ ∂ f

∂x1
. An incremental quantity, at a given

material point(x∗1,x
∗
2), can thereby be evaluated by a stream-

line integration along the negativex1-direction (see Fig. 1),
which starts well in front of the active plastic zone (upstream,
x1 = x0

1 >> 0, x2 = x∗2) and ends at the point of interest
(x1 = x∗1, x2 = x∗2). E.g. the plastic strains are determined
as;

εp
i j (x

∗
1,x

∗
2) =

∫ x∗1

x0
1

∂εp
i j

∂x1
dx1, with

∂εp
i j

∂x1
=−

1
ȧ

ε̇p
i j (6)

and ε̇p
i j being the plastic strain rates. The spatial streamline

integration is carried out using a standard forward Euler time
integration, with the point of interest holding the historyof
all upstream material points.

In the chosen model formulation, the conventional prin-
ciple of virtual work for quasi-static problems can be use to
determine the displacement field,ui (which corresponds to
Minimum Principle II in [15]),

∫
V

Li jkl εklδεi j dV =
∫

S
TiδuidS+

∫
V

Li jkl ε
p
klδεi j dV (7)

whereas a corresponding minimum principle can be formu-
lated for the plastic strain rate field (which corresponds to
Minimum Principle I in [15]),

∫
V

(

qD
i j δε̇p

i j + τD
i jkδε̇p

i j ,k

)

dV

=
∫

V
si j δε̇p

i j dV +
∫

S
Mi j δε̇p

i j dS. (8)

The displacement field, and the related plastic strain rate field
can thereby be iterated upon in a “staggered” approach.

The numerical implementation follows that of Niordson
and Hutchinson [25]. Thus, based on the Minimum Princi-
ples in Eqns. (7)-(8), a standard finite element interpolation
of the form

u̇i =
8

∑
n=1

N(n)u̇(n)i and ε̇p
i j =

4

∑
n=1

N(n)ε̇p(n)
i j (9)

can be introduced for the displacement increments and the
plastic strain rate field, respectively. Here, 8-node isopara-
metric plane strain elements are used for the discretization



Fig. 1. Parametrization of the rolling process under steady-state conditions, with symmetry applied at x2 = 0. Throughout, ȧ/(ε̇0H) = 50,

L/H = 10, with the domain discretized by equal sized squared elements of side length; L(e)/H = 20, and unit thickness. Not shown is the

width of the sheet in the out-of-plane direction, b.

of the displacement field, and corresponding 4-node ele-
ments are used for the plastic strain rate field. Both el-
ement types are integrated using Gauss quadrature, with
2×2 Gauss points. The nodal solution is iterated upon fol-
lowing a steady-state integration procedure similar to that
in [21, 26–28]. A detailed overview of the algorithm can be
found in [29].

3 Problem Formulation
In steady-state plane strain rolling the translational dis-

placement of the sheet is large, but the strains remain small
for moderate thickness reductions. E.g. let the position of
a material point at timet = 0 be (x1,x2) in the coordinate
system defined in Fig. 1, and denote the position of this
same material point at timet by (X1,X2). The displacements,
ui(x1,x2), used in the formulation are defined by the relation
of these two positions of the same material point:

X1 = x1− ȧt+u1, X2 = x2+u2 (10)

whereȧ is the constant velocity in the negativex1-direction
of the undeformed sheet feeding into the rolls. The dis-
placements,ui(x1,x2), are relative to a frame translating
with the feed velocity of the sheet, so that the strains are:
εi j = (ui, j +u j,i)/2. Each iteration in the process to solve for
the displacements, strains and plastic strains in the current
model set-up involves two sequential steps: i) solving for
the distribution of plastic strain rates,ε̇p

i j , using Minimum
Principle I in Eqn. (8) and obtaining the plastic strains by in-
tegrating along the streamlines as in Eqn. (6); and ii) using
Minimum Principle II in Eqn. (7) to obtain the displacements
and strains.

The thickness of the undeformed sheet feeding into the
rolls is 2H. The two circular cylindrical rolls of radius,R, are
considered to be rigid and the downward displacement,∆, of
the upper roll is the depth of the minimum point on the roll
surface belowx2 = H (see Fig. 1). The lower roll is assumed

to be displaced upward by the same amount, thus symmetry
conditions are enforced alongx2 = 0 with u2(x1,0) = 0 and
ε̇p

12(x1,0) = 0, such that only the upper half of the sheet is
meshed. The prescribed punch displacement is∆/H, which
is the thickness reduction,(H − h)/H, plus a small elastic
spring-back, c.f., Fig. 1. In addition to the material proper-
ties and the parameters controlling the rolling configuration
(R/H, ∆/H), a dimensionless feed velocity of ˙a/(H ε̇0) = 50
is also prescribed. For the small values of the strain rate hard-
ening exponent,m, used to obtain the results in this study,
there is virtually no dependence on the feed velocity, i.e. the
rolling process is essentially modeled rate-independent (for
a rate-dependent study see e.g. [30]).

As will become evident in the discussion to follow, some
load cases require an added pull force,Fpull/Hbσy, to ensure
equilibrium. The pull force and the dimensionless torque ap-
plied to the roll,T/(HbσyR), are evaluated using the trac-
tions at the interface between the roll and the sheet, as-well
as those at the end of the sheet (atx1 = −L). The model is
formulated so that the prescribed pull force is overruled ifit,
combined with the roll torque, is insufficient to make the pre-
scribed sheet reduction (the plate stops), or if it violatesequi-
librium (the plate accelerates). In both cases, the pull force
is set to obey equilibrium in order to achieve the prescribed
(constant) sheet velocity, ˙a. No force acts on the sheet in
front of the roll. To enforce this condition, a displacementat
the right end of the sheet,u1(L,0) =∆A, is prescribed and ad-
justed each iteration such that the reaction force at this point
is nearly zero (on the order of 10−6 of the pull force) in the
converged solution. This constraint is enforced solely fornu-
merical reasons and prevents free body motions.

To initiate the iterative steady-state procedure, the rollis
first punched into the plate while restricting the movement
of all nodes that interact with its surface, so that these can
only slide along the circular path outlined by the rigid roll.
For this, a linear constraint is readily derived, and enforced
by a penalty approach. In this way a stress/strain field is cre-
ated, where after the streamline integration of the constitutive
equations can be carried out. In the subsequent iterations,



the reaction forces on the roll are continuously checked, and
nodes are left free to move in the case a negative pressure on
the roll develops.

A “Stick-Slip” condition is employed at the contact in-
terface so that the friction forces obey Coulomb friction,
whenever slipping occurs, while the material is allowed to
stick to the roll whereby the friction forces are set by static
equilibrium. Thus, the maximum friction forces that can be
transferred between the surfaces are;Ff ,max= µFn, with µbe-
ing the friction coefficient. To ease the numerical analysis,
all calculations are started by letting the algorithm converge
without any sticking, whereafter this additional constraint is
taken into account. Under full slipping (free sliding), the
friction forces are introduced by first calculating the abso-
lute sum of all nodal friction forces based on a kinematic
Coulomb model (Ff = µFn), whereafter the direction of the
individual nodal friction forces are determined from static
equilibrium. Doing so, a discontinuous jump in the friction
forces will occur at the neutral point. Once the algorithm has
converged, the “Stick-Slip” condition is turned on, and stick-
ing is indirectly accounted for by imposing the constraint
that the straining in the rolling direction (alongx1), at the
top surface, has to increase monotonically during contact.In
case a decrease in straining occurs, the applied nodal friction
force will be down-scaled to mimic static friction conditions
(with Ff ,max= µFn). The down-scaling and adjustment of the
friction forces are made continuously during the iterativeso-
lution procedure, and allows for a “Stick” region to evolve
(where the friction force gradually change direction, see e.g.
Figs. 5-6).

4 Results
To demonstrate the behavior and capability of the

steady-state model, a first comparison between the gradient
enriched material model (described in Section 2.1), and the
independently formulated conventional J2-flow model is laid
out in Fig. 2 for a case with low friction (µ= 0.005). The
results in this figure are a subset of the full set of possible so-
lutions associated with the prescribed punch displacement,
∆/H. The solution in Fig. 2 is that corresponding to the min-
imum possible pull force for which a solution exists. Fig-
ure 2a is a plot of the dimensionless torque applied to the
roll, and Fig. 2b gives the associated minimum dimension-
less pull force. The gradient enhanced results were com-
puted with a small material length parameter,LD/H = 0.05,
such that gradient effects are also expected to be small. The
close agreement with the prediction computed using a dif-
ferent code designed for conventional J2 plasticity theoryis
notable, giving confidence in the code for the strain gradient
plasticity formulation. In Fig. 2 it is seen that the torque is
positive and thus, at the minimum pull force, the roll torque
and the pull force both do positive work on the sheet.

The full set of solutions for the same set of parameters
as those in Fig. 2 is presented in Fig. 3. To understand the
plots in Fig. 3, first note that the results for the minimum
pull force constitute the lower curve for the pull force and
the upper curve for the roll torque. The other limit, corre-
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Fig. 2. Rolling at large scales (LD/H = 0.05) with low friction (µ=
0.005), and minimum prescribed pull force. Here, showing a) applied

torque, and b) applied pull force for various punch displacements,

∆/H (N = 0.1, m= 0.01, σy/E = 0.003, R/H = 100, and

stick-slip condition active). The width of the out-of-plane direction is

denoted b.

sponding to the maximum allowable pull force for any pre-
scribed∆/H is given by the upper curve for the pull force
and the lower curve for the roll torque. Note that the roll
torque corresponding to the maximum pull force is negative,
resisting the motion of the sheet. The dimensionless punch
force, being the required loading on the roll perpendicular
to the sheet top surface, is plotted in Fig. 3c and is seen to
be almost independent of the applied pull force. The dimen-
sionless power expended by the combined pull force and the
roll torque is plotted in Fig. 3d with the upper curve corre-
sponding to the maximum pull force, implying a negative roll
torque(T < 0), whereas the lower curve corresponding to a
positive roll torque(T > 0). The solutions corresponding to
the minimum pull force, and thus minimum power require-
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Fig. 3. Rolling at large scales (LD/H = 0.05) with low friction (µ= 0.005), and minimum prescribed pull force. Here, showing a) applied

torque, b) applied pull force, c) applied punch force, and d) input power determined as P= (Fpull +T/R)ȧ for T > 0 or P= Fpull ȧ for

T ≤ 0 for various punch displacements, ∆/H (N = 0.1, m= 0.01, σy/E = 0.003, R/H = 100, and stick-slip condition active). The

width of the out-of-plane direction is denoted b.

ment, will have much of our attention.
For a prescribed punch displacement of∆/H, solutions

exist for all pull forces lying between the lower and upper
limits in Fig. 3. A selection of these intermediate solutions
are plotted in each part of Fig. 3 associated with the curves
connecting the minimum pull force limit to the maximum
pull force limit, as will be discussed below in more detail.

Following the path “A-B-C-D” indicated in Fig. 3, for a
prescribed pull force ofFpull = Hbσy/10, the model goes
through three different stages as the punch displacement,
∆/H, gradually increases; From “A” to “B”, the prescribed
pull force is too large for the combination of punch displace-
ment and friction that has been specified, and thus the sheet
would accelerate if the pull force were to be kept at its current
level. This in spite the roll acts as to brake the sheet (T < 0).
The prescribed pull force is therefore overruled to limit the
power input (see Fig. 3b), and ensure equilibrium. At point

“B”, the specified combination of punch displacement and
friction gives rise to a braking torque coming from the roll
that exactly matches the prescribed pull force, and equilib-
rium can be fulfilled without having to make additional ad-
justments. Seen form an energy point of view, this is the
most inefficient way of producing the specified sheet reduc-
tion as the rolls counteracts the power input coming from the
pull force (see Fig. 3d). From “B” to “C”, the punch dis-
placement has increased to a level where the roll torque is
large enough to overcome the pull, and hence the prescribed
pull force can be maintained (constant plateau in Fig. 3b).
During this stage, the roll torque goes from braking the sheet
(T < 0), through being allowed to spin freely1 (T = 0), and
to dragging the sheet between the rolls (T > 0). Thus, the

1This condition essentially corresponds to the so-called “English Wheel”
used in metal forming, where the user exerts the pull force while the rolls
spin freely.
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Fig. 4. Effect of friction on rolling at different scales with minimum prescribed pull force. Here, showing a) applied torque, b) applied pull

force, c) applied punch force, and d) input power determined as P= (Fpull +T/R)ȧ for T > 0 or P= Fpull ȧ for T ≤ 0 for a fixed punch

displacement of ∆/H = 0.1. Results are shown for various length scales, and with the stick-slip condition active (N = 0.1, m= 0.01,

σy/E = 0.003, and R/H = 100). The width of the out-of-plane direction is denoted b.

model essentially shifts from the most inefficient branch and
to the most efficient branch in the power input diagram in
Fig. 3d. At point “C”, the combined maximum torque trans-
ferred by the roll and the prescribed pull force act together,
and match the forces needed to produce the specified sheet
reduction - making this an energy efficient configuration (see
Fig. 3d). However, any additional increase in punch dis-
placement cannot be accommodated. This is also reflected
in the final stage from “C” to “D”, where an additional pull
force is required to produced the specified sheet reduction.
Due to the very low friction, the roll simply cannot deliver a
sufficient torque (and power input), thus the pull force has to
be increased to ensure a constant feed of the sheet.

It is worth noticing that the configuration of torque and
pull belonging to a point in the upper half-space of Fig. 3a
is tied to the lower branch of the power input (Fig. 3d) -
and hence to the most energy efficient way of producing a

specific sheet reduction. This includes the upper branch for
the torque (Fig. 3a), and the lower branch for the pull force
(Fig. 3b). Moreover, solutions for constant sheet velocity
only exist inside the branches brought out by Figs. 3a, b and
d, whereas the sheet either accelerates or decelerates for con-
figurations above and below the branches, respectively.

The above example is an extreme case, and the friction
level is typically much higher thanµ= 0.005 in reality. Dur-
ing large scale cold rolling, Richelsen [5] estimates the fric-
tion coefficient to be on the order ofµ ≈ 0.1− 0.2, for a
Wanheim-Bay type friction model [31, 32], and similar val-
ues are expected for the Coulomb friction model. For a suf-
ficient friction level, the roll torque increases, and hencethe
pull force can be completely omitted in most cases. Model
predictions for increasing friction is shown in Fig. 4 in or-
der to illustrate this transition. Results are shown for a
range of length parameters, and for a fixed punch displace-



−1 0 1 2 3 4 5
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5
0.20

0.20

0.10

0.10

µ = 0.05

0.05

x/H

 

 

F
(e)
f /(A(e)

σy)

F
(e)
n /(A(e)

σy)

(a)

−1 0 1 2 3 4 5
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5
0.20

0.20

0.10

0.10

µ = 0.05

0.05

x/H

 

 

F
(e)
f /(A(e)

σy)

F
(e)
n /(A(e)

σy)

(b)

Fig. 5. Contact condition at the roll/sheet interface during rolling; a)

at large scales (LD/H = 0.05), and b) at small scales (LD/H =
0.50). Here, showing the normalized friction forces (tangential trac-

tion) and normal forces (normal traction) for various friction levels

(N = 0.1, m= 0.01, σy/E = 0.003, R/H = 100, ∆/H = 0.1,

and stick-slip condition active). Zero pull force is applied.

ment of∆/H = 0.1. The smallest possible pull force is ap-
plied throughout these calculations. By increasing the fric-
tion from zero, it is seen that a pull force initially is needed
to accommodate the specified sheet reduction since the roll
cannot transfer sufficient torque to keep the rolling process
going. However, the need for additional pull gradually di-
minishes as the level of friction increases (see Fig. 4b), and
at µ ≈ 0.02, sufficient torque can be generated by the roll
to maintain a constant velocity of the sheet. From here on,
the pull force remains zero, while the roll torque increases
(somewhat linearly) with the friction (compare Figs. 4a-b).

Figure 4 includes results for the effect of the length pa-
rameter, and clearly demonstrates the influence of size on
the rolling process. As the length parameter increase (cor-
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Fig. 6. Contact condition at the roll/sheet interface during rolling at

different scales. Here, showing the normalized friction forces (tan-

gential traction) and normal forces (normal traction) for various dissi-

pative length parameters (N = 0.1, m= 0.01, µ= 0.1, σy/E =
0.003, R/H = 100, ∆/H = 0.1, and stick-slip condition active).

Zero pull force is applied.

responding to rolling thinner sheets), the relative forcesin-
crease, and so does the stresses involved in the deformation
process. This essentially means that the required power input
increases relatively at small scale, which is also evident from
Fig. 4d. This has to do with the increased yield resistance
and hardening associated with GND’s storage and movement
in the lattice, and that the development of large strain gradi-
ents require additional energy. From Fig. 4b it is noticed that
the elevated forces at small scale leads to the requirement of
higher friction before the pull force can be omitted, however
in most practical settings this difference will be too smallto
be detected.

The contact conditions, at the interface between the rolls
and sheet, is illustrated in Figs. 5-6 for various levels of fric-
tion and length parameters. The figures show the normalized

contact forces (the traction) as function of position, withF(e)
f

being the friction force,F(e)
n being the normal force,A(e) the

element area, andσy the yield stress2. Figure 5 compares
rolling at a large scale (LD/H = 0.05, see Fig. 5a) to rolling
at a small scale (LD/H = 0.5, see Fig. 5b) for different fric-
tion coefficients. Taking as off-set the large scale rolling,
the predicted contact conditions compare well to previously
published results (see e.g. [5]), both with respect to the level
and distribution of the surface traction. In particularly,it is
noticed that the steep peak in the normal force at first contact
is captured, and so is the secondary, much smoother, peak
near the stick region, where also the neutral point exists (and
where the friction forces change direction). Moreover, a sim-
ilar distribution for the absolute values of the friction forces

2The chosen configuration of the figures yield the cleanest representation
of results, and a comparison with the stress level close to thetop surface of
the sheet shows good agreement.
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is predicted, since;Ff = µFn during slipping, whereas their
gradual shift in direction within the sticking region demon-
strates a close match with the more computational demand-
ing model by Richelsen [5]. Bear in mind that the current
steady-state model provides the solution without having to
deal with the transient behavior.

The distribution of tractions found under small scale
rolling displays close similarities to those at larger scales
(compare Fig. 5a-b). It is, however, noticed that the stick-
ing region becomes comparably more narrow for rolling at
small scale, and thus the change in direction for the friction
forces is more abrupt. Moreover, it is clear that the con-
tact forces evolving at small scale are relative higher, anda
somewhat smoother peak is observed at the point of first con-
tact. This is due to the increased hardening associated with
the development of strain gradients, and thus the strain gra-
dient effect tends to smear out the plastic strain field. The
gradual change in the contact conditions when going from
large to small scale is evident from Fig. 6. Results are, here,
shown for a specified friction coefficient ofµ = 0.1 and a
fixed punch displacement of∆/H = 0.1. The steep peak oc-
curring at large scale (LD/H = 0.05) gradually smoothens
and increases as the length parameter increases (correspond-
ing to rolling thinner sheets). This smoothening effect can
also be seen directly from the plastic strain field. Figures 7a-
b show the gradient enhanced effective plastic strain for the
rolling process at large and small scale, respectively. Where
the large scale rolling displays close lying contours near the
first point of contact (hence large gradients), much more uni-
formly spaced strain contours are capture for rolling at small
scale.

From geometrical arguments one can realize that the
strain gradients become larger near the point of first contact
in case the roll size decreases (keeping all other parameters
fixed). This simply has to do with the sheet reduction tak-
ing place over a shorter distance. Thus, the size of the roll
becomes important when accounting for length scale effects
as large strain gradients significantly influence the material

response. This is also clear from Figs. 8-9, where rolling
at different scales and different roll sizes is demonstrated.
Figure 8 shows the roll torque vs. the punch displacement
for three different roll radii (R/H ∈ [50,100,200]) and two
different scales. At large scale (LD/H = 0.05), the model
response is nearly independent of the size of the roll, and
the prediction based on the gradient enriched model falls on
top of that of the conventional model (employing a J2-flow
material). On the contrary, the roll size does influence the
response at the small scale (LD/H = 0.5), and an relative in-
crease in the required torque is observed when the roll radius
becomes smaller (zero pull force is applied throughout). The
results in Fig. 9 shows a similar trend. However, here show-
ing the roll torque vs. the roll size for a fixed punch displace-
ment of ∆/H = 0.1. As the roll size decreases the torque
increases, especially at the very small scale (LD/H = 1),
whereas the response is nearly constant in the conventional
limit. The associated punch forces are displayed in Fig. 9b.

The influence of conventional strain hardening is
brought out in Fig. 10. Here, showing the torque transferred
to the sheet, as-well as the punch force, for various length pa-
rameters, and two levels of strain hardening. Obviously, an
increase in strain hardening leads to an increase in the forces
involved in the rolling process. It is, however, seen that simi-
lar trends for the length scale parameter are obtained for both
strain hardening values considered. Moreover, coincidingre-
sults with the corresponding J2-flow model are found in the
conventional limit (LD/H → 0).

A similar study has been carried out for the effect of
the yield strain (/stress), and the results are collected inAp-
pendix A.

5 Conclusion
Rolling at small scale is subject to the well-known size ef-
fects owing to strain gradient hardening as the deformation
that takes place is non-homogeneous. Thus, a non-local ma-
terial model has been adopted to accurately predict the ma-
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Here, showing the applied torque with zero pull force prescribed. Re-

sults are shown for various dissipative length parameters, and with

the stick-slip condition active (N = 0.1, m= 0.01, σy = 0.003,

and µ = 0.1). Zero pull force is applied. The width of the out-of-

plane direction is denoted b.

terial response over a range of length scales in order to bring
out size effects. For a comprehensive study, the gradient
enhanced elastic-viscoplastic material model by Fleck and
Willis [15] has been employed, together with a steady-state
technique, suitable for history dependent materials within
the framework of finite element analysis. The developed
modeling framework allows for an accurate representation of
the material response over multiple length scales, including
the prediction of elastic-plastic unloading and thus residual
stresses and strains. The key findings of the study are;

i) Rolling at small scale require a relative larger power
input, as additional energy is needed to develop strain gra-
dients (see e.g. Figs. 3a and 4). Thus, for a given punch
displacement,∆/H, a higher torque has to be generated at
small scale to deform the sheet.

ii) The importance of sufficient friction, and the level
required to reach a given sheet reduction has been demon-
strated (see Fig. 4). As a specific case, the level of friction
required to reach a sheet reduction of∼ 10%, without hav-
ing to include additional pull to the sheet, is estimate to be
µ ≈ 0.02, (for a strain hardening ofN = 0.1). This value,
however, slightly increases as strain gradient becomes im-
portant.

iii) Down-scaling the rolling process influences the con-
tact conditions. By adding strain gradient hardening a
smoothed distribution of the interface traction is obtained,
e.g. the peak at first contact becomes less sharp. Moreover,
the level of both the normal and tangential (friction) traction
increase at small scale - which relates directly to the relative
larger forces involved (see Figs. 5-6).

iv) The roll size (i.e. the radius) becomes somewhat
more important at small scales, and a detailed analysis shows
strain gradient hardening to increase as the role size de-
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Fig. 9. Effect of roll size for a fixed punch displacement of ∆/H =
0.1, showing a) applied torque, and b) applied punch force. Results

are shown for various dissipative length parameters, and with the

stick-slip condition active (N= 0.1, m= 0.01, σy/E = 0.003, and

µ= 0.1). Zero pull force is applied. The width of the out-of-plane

direction is denoted b.

creases (see Figs. 8-9). On the contrary, a negligible influ-
ence of the roll size is found for rolling at larger scale.

In summary, the present study has found that gradient
effects begin to become noticeable whenLD/H becomes
roughly 0.25. For many metal alloys, experimentally mea-
sured values ofLD usually fall in the range from 1 to 5µm.
For metals withLD = 5µm, this implies that gradient ef-
fect should come into play when the sheet thickness (2H)
is roughly 10µm. It is also worth noting that the gradient ef-
fects lead to gradual modification of the predictions of con-
ventional plasticity and atLD/H = 1, the modifications are
significant but not dominating.
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ous punch displacements, ∆/H . Results are shown for various

dissipative length parameters, and for two levels strain hardening
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Appendix A: Effect of Yield Strain at Different Scales
The flat rolling process is adopted to a wide range of ma-

terials, and thus it is important to analyze the influence of the
material parameter specifying first yield. Below is included
a collection of results for the effect of the yield strain. The
results are obtained by keeping Young’s modulus fixed and
altering the yield stress. By adopting the normalization used
in the remaining figures, only a fairly limited influence of the
yield strain is observed, and the effect is nearly identicalat
all scales (see Fig. 11).
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Fig. 11. Rolling at different scales with zero pull force. Here, show-

ing a) applied torque, and b) applied punch force for various punch

displacements, ∆/H . Results are shown for three levels of initial

yield strain (σy/E = [0.001,0.002,0.003]), with the stick-slip con-

dition active (N = 0.1, m= 0.01, µ= 0.1, and R/H = 100). The

width of the out-of-plane direction is denoted b.


