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Abstract: This paper presents a rolling bearing fault diagnosis approach by integrating 

wavelet packet decomposition (WPD) with multi-scale permutation entropy (MPE). The 

approach uses MPE values of the sub-frequency band signals to identify faults appearing in 

rolling bearings. Specifically, vibration signals measured from a rolling bearing test system 

with different defect conditions are decomposed into a set of sub-frequency band signals by 

means of the WPD method. Then, each sub-frequency band signal is divided into a series of 

subsequences, and MPEs of all subsequences in corresponding sub-frequency band signal 

are calculated. After that, the average MPE value of all subsequences about each  

sub-frequency band is calculated, and is considered as the fault feature of the corresponding 

sub-frequency band. Subsequently, MPE values of all sub-frequency bands are considered 

as input feature vectors, and the hidden Markov model (HMM) is used to identify the fault 

pattern of the rolling bearing. Experimental study on a data set from the Case Western 

Reserve University bearing data center has shown that the presented approach can accurately 

identify faults in rolling bearings. 

Keywords: wavelet packet decomposition; multi-scale permutation entropy;  

rolling bearings; fault diagnosis; hidden Markov model 
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1. Introduction 

It is important to detect and diagnose rolling element bearing failures in rotating machinery in real 

time to void abnormal event progression and to reduce productivity loss [1]. Among commonly used 

techniques, vibration-based analysis has been widely established to diagnose bearing faults due to the 

fact structural defects can cause changes of the bearing dynamic characteristics as manifested in 

vibrations [2]. However, some non-linear factors, such as clearance, friction, and stiffness, affect 

complexity of the vibration signals. As a result, accurate evaluation of rolling bearings becomes a very 

challenging task if only the traditional analysis in the time or frequency domain on the working condition 

is used [3]. In the past few years, various methods have been studied for detecting bearing faults in 

rotating machines, such as the stator current and vibration harmonic analysis method, the stray flux 

measurement method, the Park’s vector approach, the instantaneous power factor (IPF) monitoring 

method, and the advanced artificial-intelligence-based method [4,5]. 

Development of the wavelet transform over the past years has also provided an effective tool to extract 

features from transient, time-varying signals for machine fault diagnosis. The research in [6,7] has 

presented a comprehensive overview about the application of the wavelet in machine fault diagnosis. 

The wavelet packet decomposition (WPD) is an extension of the wavelet transform. It has attracted 

increasing attention due to its ability in providing more flexible time–frequency decomposition, 

especially in the high-frequency region. The WPD is widely used in various machine fault diagnosis 

applications because of its excellent performance [2]. For example, research in [8] used different sets of 

wavelet packet vectors to represent bearing vibration signals under different defect conditions. It was 

found that the WPD can improve the continuous wavelet transform (CWT) in terms of computational 

cost. It can also solve the frequency-band disagreement by discrete wavelet transform (DWT) only 

breaking up the approximation version [9]. For rolling bearing vibration signal analysis, the manifold 

learning and wavelet packet transform were combined to extract the weak signature from waveform 

feature space [10]. In another study, the WPD was incorporated with ensemble empirical mode 

decomposition to enable roller bearing defect detection at its incipient stage [11]. 

Generally, some features, such as energy content and Kurtosis value, are extracted from each  

sub-frequency band of the vibration signal. However, a preliminary study [12] has shown that the energy 

content is shown to have good robustness but relatively low sensitivity for incipient defects detection, 

whereas Kurtosis has high sensitivity to incipient defects but low stability. It is expected to combine 

these two parameters to enhance the defect severity assessment capability. In practice, if more 

parameters are used in feature extraction, they do not necessarily improve diagnostic performance but 

rather increase the computational cost [2,13]. New parameters that can facilitate effective feature 

extraction are needed. 

Permutation Entropy (PE), a parameter of average entropy, can describe the complexity of a time 

series. It is robust under non-linear distortion of the signal and is also computationally efficient. PE has 

been used for online chatter detection in turning processes [14], tool flute breakage detection in end 

milling [15], and status characterization of rotary machines [16]. Multi-scale permutation entropy 

(MPE), which is based on PE, can measure the complexity of time series in different scales. A diagnosis 

method based on multi-scale permutation entropy and support vector machine (SVM) has been used to 
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monitor and diagnose the rolling bearings working conditions [17]. It has also been combined with a 

Laplacian score to refine features for bearing fault classification with the SVM [18]. 

In this paper, by taking advantages of the WPD and the MPE, an enhanced method for rolling bearing 

fault diagnosis is presented. The WPD is used as the pretreatment to decompose a vibration signal into 

a set of sub-frequency band signals, and the MPE value of each sub-frequency band signal is calculated. 

All MPE values of each vibration signal are used as a feature vector to a classifier, where the hidden 

Markov model (HMM) is used to identify the fault pattern of the rolling bearing. The rest of this paper 

is organized as follows. In Section 2, the review of the fault diagnosis method based on WPD and MPE 

is presented, and the proposed method for rolling bearing fault diagnosis is discussed. The evaluation 

and experiments are presented in Section 3. Finally, concluding remarks are drawn in Section 4. 

2. Theoretical Framework  

2.1. Wavelet Packet Decomposition 

The principle of the WPD can be described as follows [9,19]. Mathematically, a wavelet packet 

consists of a set of linearly combined wavelet functions, which are generated using the following 

recursive relationship: 

2 ( ) 2 ( ) (2 )k k

n

t h n t nφ φ= −  
(1)

2 1( ) 2 ( ) (2 )k k

n

t g n t nφ φ+
= −  

(2)

where )()(0 tt φϕ =  is the scaling function, and )()(1 tt ϕϕ =  is the wavelet function. The symbols )(nh  

and )(ng  represent coefficients of a pair of Quadrature Mirror Filters associated with the scaling 

function and wavelet function. Furthermore, )(nh  and )(ng  are related to each other by 

)1()1()( nhng n −−= . For each step of the decomposition, the input discrete signal is decomposed into a 

rough approximation in low frequency and a detailed part in high frequency. The time-domain signal 

)(tx  can be decomposed recursively as: 
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m

x t h m n x t+ = −  
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where )(, tx kj  denotes the wavelet coefficients at the j-th level, k-th sub-frequency band. 

Therefore, the signal )(tx  can be expressed as: 


−

=

=
12

0

, )()(

j

k

kj txtx  (5)

where the symbols j and k denote the decomposition level and sub-frequency band, respectively. 

An example of a 3-level decomposition of the signal )(tx  using the wavelet packet decomposition is 

shown in Figure 1. 
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Figure 1. Three level wavelet packet decomposition diagram. 

Given a signal’s decomposition as represented in Equation (5), the energy content 
k

jE  in each  

sub-frequency band is defined as: 

2
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j

k

j 
=

=  (6)

where N is the number of the wavelet packet coefficients in each sub-frequency band, and )(ixk

j  is the 

wavelet coefficient.  

In most cases, the energy content values can be treated as features to construct a feature vector for 

defect classification. However, a preliminary study has verified that the energy content has low 

sensitivity for incipient defects detection [12]. In the following, the MPE technique can be integrated 

with the WPD to achieve more accurate fault classification results. 

2.2. Multi-Scale Permutation Entropy 

The mathematical theorem of the PE and MPE was described in detail in [16–18]. According to the 

Takens–Maine theorem, the phase space of a time series },,2,1),({ Niix =  can be reconstructed as: 














−−−−=−−

−++=

−++=

)(,),)2((),)1(({))1((

))1((,),(),({)(

))1(1(,),1(),1({)1(

NxmNxmNxmNX

mixixixiX

mxxxX









τττ

ττ

ττ

 (7)

where m is the embedded dimension and τ is the time delay. The m number of real values contained in 

each )(iX  can be arranged in an increasing order as: 

)})1(())1(())1(({ 21 τττ −+≤≤−+≤−+ mjixjixjix   (8)

If there exist two or more elements in )(iX  that have the same value, e.g., 

))1(())1(( 21 ττ −+=−+ jixjix , their original positions can be sorted such that for 1 2j j≤ ,

))1(())1(( 21 ττ −+≤−+ jixjix  can be written. Accordingly, any vector )(iX  can be mapped onto a 

group of symbols as: 

),,,()( 21 mjjjlS =  (9)



Entropy 2015, 17 6451 

 

 

where kl ,,2,1 =  and !mk ≤  ( !m  is the largest number of distinct symbols). )(lS  is one of the !m  

symbol permutations, which is mapped onto the m number symbols ),,,( 21 mjjj   in m-dimensional 

embedding space. If kPPP ,,, 21   are used to denote the probability distribution of each symbol 

sequences, respectively, and  =
=

k

l lP
1

1, then the PE of order m for the time series },,2,1),({ Niix =  

can be defined as the Shannon entropy for the k symbol sequences as: 

−=
k

l llP PPmH ln)(  (10)

The maximum value of )(mH P  can be obtained as )!ln(m  when all the symbol sequences have the same 

probability distribution as !/1 mPl = . Therefore, the PE of order m can be normalized as: 

1)!ln(/0 ≤=≤ mHH PP  (11)

The size of PH  value indicates the degree of randomness of time series. The greater PH  is, the more 

random the time series indicates. Contrarily, it indicates that the time series are more regular. 

The MPE is employed for estimation of complexity parameters. The MPE calculates PE over multiple 

scales to avoid contradictory results by single scale entropy. In the case of Shannon entropy, the 

sequential relation between values of the time series is neglected. This is more useful for a linear system 

while MPE employs the comparison of neighboring values for analysis of complex time domain data. 

This property of the MPE makes it more useful for analysis of non-stationary signals. 

Based on the multi-scale technique, the main step for calculating MPE is to construct the consecutive 

coarse-grained time series. This can be done by taking the average of the data inside non-overlapping 

windows of length l  which is called the scale factor, and the sequence is processed as coarse-grained 

time series. The coarse-grained time series can be expressed by: 

( 1) 1

1
( ) ( ), 1, 2, , /

ill

j i l
y i x j i N l

l = − +
= =  , (12)

where )(iy l  denotes coarse-grained time series on different scales, and when the scale factor is equal to 

one, the sequence is original time series },,2,1),({ Niix = . 

2.3. Fault Diagnosis Based on WPD and MPE 

The WPD has been widely applied in the field of signal feature extraction; this is because the WPD 

has a strong ability of analysis in the time-frequency domain. Combined with the property of the MPE 

which is useful for the analysis of non-stationary signals, a hybrid rolling bearing fault diagnosis 

approach can be designed as shown in Figure 2. 

The main steps are as follows: 

Step 1: The rolling bearing vibration signal is sampled and then processed by WPD with a three-level 

decomposition as shown in Figure 1. 

Step 2: Each time series data, corresponding to each sub-frequency band signal, is divided into several 

subsequences of length w , and the data length 256=w . The subsequence is obtained by using 

the maximum overlap, that is to say, each subsequence backward one data point to get the next 

sequence. Then, MPE values of all subsequences from one sub-frequency band signal are 

calculated using Equation (10). 



Entropy 2015, 17 6452 

 

 

Step 3: The average of MPE values for each sub-frequency band is calculated, and the average value is 

considered as the fault feature vector of each sub-frequency band signal. Then, fault feature 

vectors of each rolling bearing vibration signal can be calculated. 

Step 4: After scalar quantization by index calculation formula of Lloyds algorithm in Equation (13) [20], 

the feature vectors of different conditions are used to train the HMM with each working 

condition: 









<−

+≤<+

≤

=

xNpartitionN

ipartitionxipartitioni

ipartitionx

xindx

)1(

)1()(1

)(1

)(  (13)

where N  is the length of the codebook vector, )(ipartition  is the partition vector with the 

length of N − 1, x  is the feature vector for scalar quantization. 

Step 5: A test vibration signal can then be acquired for diagnosis, and the feature vector is first extracted. 

Then, the feature vector is put into the well trained HMMs, and the corresponding HMM which 

has the maximum probability is regarded as the classification result [21,22]. 

 

Figure 2. The flow chart of proposed Fault Diagnosis method. 
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3. Simulations and Experiments Evaluation 

3.1. Evaluation Using the Simulated Signal 

Three signals x1(t), x2(t), and x3(t) are simulated as shown in Figure 3. The signal x1(t), x2(t), and x3(t) 

are all consist of a set of Gaussian-type impulses with different amplitudes and white noises. The relative 

band width of Gaussian-type impulses in the signal x1(t) is 0.5, and the center frequency is 100 Hz. The 

relative band width of Gaussian-type impulses in the signal x2(t) is 0.4, and the center frequency is  

50 Hz. The relative band width of Gaussian-type impulses in the signal x3(t) is 0.3, and the center 

frequency is 150 Hz. Since the characteristics of the new signals are very similar to those of the real fault 

signals, the simulation experiment result can verify the validity of the proposed method to a certain extent.  

(a) x1(t) (b) x2(t) 

(c) x3(t) 

Figure 3. Signal waveforms of (a) x1(t), (b) x2(t), and (c) x3(t). 

Considering the effectiveness of the decomposition level as well as the computational complexity,  

a three-level WPD is adopted for data processing, which decomposes each simulated signal into eight  

sub-frequency band signals. The reverse biorthogonal wavelet 5.5 is chosen as the base wavelet of the 

decomposition. Figure 4 shows each sub-frequency band signal of x1(t), x2(t), and x3(t). PE values of all 

sub-frequency bands are illustrated in Table 1, and corresponding MPE values are illustrated in Table 2. 

Table 1. Permutation entropy (PE) of each sub-frequency band. 

Signal 
PE value 

Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8 

x1(t) 0.9318 0.9396 0.9396 0.8900 0.9396 0.8900 0.8900 0.9479 

x2(t) 0.9199 0.9516 0.9516 0.8883 0.9516 0.8883 0.8883 0.9494 

x3(t) 0.9182 0.9105 0.9150 0.9237 0.9150 0.9237 0.9237 0.9475 
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Table 2. Multi-scale permutation entropy (MPE) of each sub-frequency band. 

Signal 
MPE value 

Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8 

x1(t) 0.9083 0.9283 0.9283 0.9301 0.9283 0.9301 0.9301 0.9348 

x2(t) 0.8890 0.9196 0.9196 0.9196 0.9283 0.9283 0.9283 0.9196 

x3(t) 0.8676 0.8701 0.8701 0.9077 0.9019 0.8992 0.9192 0.9192 

(a) x1(t) (b) x2(t) 

(c) x3(t) 

Figure 4. The decomposition results by wavelet packet decomposition (WPD). (a) x1(t), (b) 

x2(t), and (c) x3(t). 
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Table 1 shows the PE of each sub-frequency band signal after using a moving average computation. 

It can be seen that there is relatively little difference between the PE of each sub-frequency band signal, 

and no obvious change trend is identified. Table 2 shows the MPE of each sub-frequency band signal 

after using moving average computation. Comparing the MPE values of 1( )x t  with those of 2 ( )x t , and 

3( )x t , it can be seen that the three groups of MPE values are clearly distributed in different ranges. After 

scalar quantization, the feature vectors are used to train the HMM for signal classification. 

A total of 120 feature vectors were collected from three groups of signals using the proposed 

approach. One-third of the feature vectors in each condition were used for training the classifier and 

others were used for testing. The results of the signal classification are listed in Table 3. 

Table 3. Signal classification results. 

Signal type Test sample 
Classification results 

Classification rate (%) Overall classificationrate (%) 
x1(t) x2(t) x3(t) 

x1(t) 30 30 0 1 100 

95.6 x2(t) 30 0 29 1 96.7 

x3(t) 30 0 2 28 93.3 

Results in Table 3 indicate that the presented method based on the WPD and the MPE can effectively 

identify different signals, and the overall classification rate is 95.6%. For the purposes of comparison, 

the signal classification rates using the MPE alone is calculated and 90% classification rate is obtained. 

It verifies that efficiency of the signal classification method proposed in this paper is improved in a 

certain extent than the MPE alone method. 

3.2. Evaluation Using Experimental Data 

In order to illustrate the practicability and effectiveness of the proposed method, a bearing fault data 

set from the Case Western Reserve University bearing data center is analyzed [23]. The data set are 

acquired from the test stand shown in Figure 5, where it consists of a 2 hp motor, a torque transducer,  

a dynamometer, and control electronics. The test bearings support the motor shaft which is the deep 

grove ball bearings with the type of 6205-2RS JEMSKF. Single point faults were introduced to the inner 

raceway, outer raceway and ball of test bearings using electro-discharge machining with fault diameters 

of 0.18 mm. Vibration data was collected at 12,000 samples per second using accelerometers, which 

were attached to the housing with magnetic bases. Accelerometers were placed at the 12 o’clock position 

at both the drive end and fan end of the motor housing. The motor load level was controlled by the fan 

in the right side of Figure 5.  
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Figure 5. Bearing test stand. 

Figures 6 and 7 illustrate representative waveforms of the sample vibration signals measured from 

the test bearings under four initial conditions: (a) signal from a healthy bearing, (b) signal from a bearing 

with inner ring defect, (c) signal from a bearing with rolling element defect, and (d) signal from a bearing 

with outer ring defect. Signals in Figure 6 are measured under 0 hp motor load with the motor speed of 

1797 rpm, and signals in Figure 7 are measured under 2 hp motor load with the motor speed of  

1750 rpm.  

(a)
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Figure 6. Vibration signal waveforms of different conditions (0 hp motor load). (a) healthy 

bearing, (b) a bearing with inner ring defect, (c) a bearing with rolling element defect and 

(d) a bearing with outer ring defect. 
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Figure 7. Vibration signal waveforms of different conditions (2 hp motor load). (a) healthy 

bearing, (b) a bearing with inner ring defect, (c) a bearing with rolling element defect and 

(d) a bearing with outer ring defect. 

For performance comparison between the MPE and the PE, sample vibration signals of bearings 

shown in Figure 6 are used for analysis, and the corresponding single factor analysis result is shown in 

Figure 8. In the processing, the scale of the MPE is selected as 4, by referring to research in [17] and the 

experiments. From Figure 8, it can be seen that the differentiation performance of the MPE is higher 

than that of the PE. 

(a) PE (b) MPE 

Figure 8. Boxplot of (a) permutation entropy (PE) and (b) multi-scale permutation entropy 

(MPE) values on normal condition (NC), inner ring defect condition (IC), rolling element 

defect condition (RC) and outer ring defect condition (OC). 
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Each signal shown in Figure 6 is decomposed into eight sub-frequency band signals firstly. Then, the 

PE and MPE value of each sub-frequency band signal are calculated. The results of the PE and the MPE 

are shown in Table 4 and Table 5, respectively. 

Table 4. Permutation entropy (PE) value of each sub-frequency band. 

Signal 
PE value 

Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8 

(a) 0.7260 0.7223 0.7113 0.7502 0.7113 0.7502 0.7502 0.7693 

(b) 0.7989 0.8042 0.8042 0.7923 0.8062 0.8023 0.8023 0.7887 

(c) 0.8976 0.8276 0.8276 0.7742 0.8276 0.7742 0.7742 0.7138 

(d) 0.8849 0.8526 0.8526 0.8189 0.8526 0.8189 0.8189 0.8130 

Table 5. Multi-scale permutation entropy (MPE) value of each sub-frequency band. 

Signal 
MPE value 

Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8 

(a) 0.6609 0.6709 0.6047 0.5942 0.6037 0.6011 0.6011 0.6256 

(b) 0.7491 0.7341 0.7341 0.7530 0.7655 0.7530 0.7530 0.7631 

(c) 0.8636 0.8541 0.8541 0.8302 0.8541 0.8302 0.8302 0.8069 

(d) 0.7565 0.7042 0.7242 0.7299 0.7042 0.7099 0.7099 0.7102 

The parameters in Tables 4 and 5 were quantified by Lloyds algorithm in Equation (13) as feature 

vectors for training the HMMs of different conditions. 

A total of 160 feature vectors were collected from the four conditions, one-fourth of the feature 

vectors were used for training the classifier and others for signal classification, and the classification 

results are listed in Table 6. Out of 120 test feature vectors, only seven cases were not correctly classified, 

and the overall classification rate is 94.2%. 

Table 6. Classification results of the method based on wavelet packet decomposition (WPD) 

and multi-scale permutation entropy (MPE). 

Fault type 
Test 

sample 

Classification results 
Classification 

rate (%) 

Overall 

classification 

rate (%) 

no 

defect 

inner ring 

defect 

rolling element 

defect 

outer ring 

defect 

no defect 30 29 0 1 0 96.7 

94.2 
inner ring defect 30 1 28 0 1 93.3 

rolling element defect 30 0 1 28 1 93.3 

outer ring defect 30 1 1 0 28 93.3 

For comparison, Table 7 list classification results of the WPD-PE method, and Table 8 lists 

classification results of the MPE alone method. From the comparison results, the proposed method is 

efficient for rolling bearing fault diagnosis, and the overall classification rate of the proposed method is 

higher, to a certain extent, than the MPE method and the WPD-PE method. 
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Table 7. Classification results of the wavelet packet decomposition multi-scale permutation 

entropy (WPD-PE) method. 

Fault type 
Test 

sample 

Classification results 
Classification 

rate (%) 

Overall 

classification 

rate (%) 

no 

defect 

inner ring 

defect 

rolling element 

defect 

outer ring 

defect 

no defect 30 27 1 1 1 90 

88.3 
inner ring defect 30 1 26 2 1 86.7 

rolling element defect 30 1 2 26 1 86.7 

outer ring defect 30 1 2 0 27 90 

Table 8. Classification results of the MPE method. 

In order to further verify the applicability of the proposed method, signals measured under 2 hp motor 

load which are shown in Figure 7 are processed. The classification result is listed in Table 9. The overall 

classification rate of the proposed fault detection method under 2 hp motor load condition is 93.3%. 

However, the classification rate of the MPE method, alone, under this condition is only 84.2%. That is 

to say, the proposed fault detection method has good applicability. 

Table 9. Classification results of signals shown in Figure 7 with proposed method. 

4. Conclusions 

Aiming at diagnosing rolling bearing faults, a hybrid approach that integrates the WPD with the MPE 

is proposed in this paper. The WPD is used as the pretreatment to decompose a vibration signal into a 

set of sub-frequency band signals, and the MPE value of each sub-frequency band signal is calculated. 

All MPE values of each vibration signal are formed as a feature vector and used as an input to a classifier, 

Fault type 
Test 

sample 

Classification results 
Classification 

rate (%) 

Overall 

classification 

rate (%] 

no 

defect 

inner ring 

defect 

rolling element 

defect 

outer ring 

defect 

no defect 30 28 0 1 1 93.3 

89.2 
inner ring defect 30 1 27 1 1 90 

rolling element defect 30 1 2 25 2 83.3 

outer ring defect 30 1 2 0 27 90 

Fault type 
Test 

sample 

Classification results 
Classification 

rate (%) 

Overall 

classification 

rate (%) 

no 

defect 

inner ring 

defect 

rolling element 

defect 

outer ring 

defect 

no defect 30 29 0 0 1 96.7 

93.3 
inner ring defect 30 0 28 1 0 93.3 

rolling element defect 30 1 1 27 1 90 

outer ring defect 30 1 1 0 28 93.3 
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where the HMM is chosen to characterize the bearing faults. As compared to the WPD-PE approach, a 

higher classification rate has shown to be achieved by using the proposed approach (e.g., 95.6% for 

simulated signals, and 94.2% for experimental data). Since the approach presented in this study is generic 

in nature, it can be readily adapted to a broad range of applications for machine fault diagnosis. 
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