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Deep learning (DL) has been successfully used in fault diagnosis. Training deep neural networks, such as convolutional neural
networks (CNNs), require plenty of labeled samples. However, in mechanical fault diagnosis, labeled data are costly and time-
consuming to collect. A novel method based on a deep convolutional autoencoding network (DCAEN) and adaptive nonparametric
weighted-feature extraction Gustafson–Kessel (ANW-GK) clustering algorithm was developed for the fault diagnosis of bearings.
First, the DCAEN that is pretrained layer by layer by unlabeled samples and fine-tuned by a few labeled samples is applied to learn
representative features from the vibration signals. *en, the learned representative features are reduced by t-distributed stochastic
neighbor embedding (t-SNE), and the low-dimensional main features are obtained. Finally, the low-dimensional features are input
ANW-GK clustering for fault identification. Two datasets were used to validate the effectiveness of the proposed method. *e
experimental results show that the proposed method can effectively diagnose different fault types with only a few labeled samples.

1. Introduction

Rolling bearings are crucial components widely used in
modern machines [1]. *ey often survive in harsh working
environments where they are frequently damaged. A sudden
failure of the rolling bearings may result in unexpected
downtime, significant economic losses, and casualties [2].
*erefore, it is meaningful to develop intelligent fault di-
agnosis methods for rolling bearings. In general, intelligent
fault diagnosis of the bearing comprises two parts: feature
extraction and condition identification [3, 4]. Traditional
feature extraction methods based on the EMD, entropy, and
multifractal method have been successfully used in me-
chanical fault diagnosis. Chen et al. [5] used EMD to de-
compose the bearing vibration signals and calculated the
permutation entropy (PE) of the first few IMFs as the
characteristic vector, and SVM was applied for operation
status identification. Li et al. [6] applied a multifractal
method to extract the generalized dimensional spectral

features from the vibration signals of hydropower units, and
probabilistic neural network was used for fault diagnosis.
However, these methods are largely dependent on prior
knowledge about signal processing techniques and expert
diagnosis experience.
As a rising star in the field of intelligent fault diagnosis,

deep learning has received much attention in recent years
[7–9]. Deep learning [10–13] can learn representative fea-
tures hidden in the original data and directly establish an
accurate mapping relationship between a model and the
operating state of devices. *e stacked autoencoder (SAE),
or stacked denoising auto-encoder (SDAE), and CNN are
two typical deep learning models. SDAE [14] is constructed
by stacking multilayer denoising autoencoders. *e repre-
sentative features are extracted on unlabeled samples in
a layerwise learning method. *e original signal is fed into
the first autoencoder to generate a latent representation, and
this “code” is used to reconstruct the input signal.*e output
features of the first autoencoder are input into the second

Hindawi
Shock and Vibration
Volume 2020, Article ID 8846589, 17 pages
https://doi.org/10.1155/2020/8846589

mailto:zhaorongzhen@lut.cn
https://orcid.org/0000-0003-1062-8478
https://orcid.org/0000-0001-5263-8194
https://orcid.org/0000-0002-0862-5991
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8846589


one to further extract hierarchical representative features.
*e high-level representations are generated in an un-
supervised way, which avoids the dependence on knowledge
and experience. Lu et al. [15] established an SDAE with
a transmitting rule of greedy training to learn high-order
feature representations from the input data, and a softmax
regression algorithm was employed for multiclass classifi-
cation. Chen and Li [16] proposed an SDAE to extract fea-
tures from the frequency domain information of the vibration
signal for fault detection. *ese unsupervised feature ex-
traction methods based on an SDAE have achieved re-
markable results in fault diagnosis. However, the hidden
layers in an SDAE are fully connected, whichmakes it difficult
to train a large number of parameters with limited samples.
In contrast, a CNN has the characteristics of a local

connection, weight sharing, and pooling structure, which
reduces the parameters of the model and improves the
training efficiency. *erefore, it is widely used in fault di-
agnosis. Janssens et al. [17] utilized a CNN model for the
intelligent fault diagnosis of bearings and compared the
advantages of a CNN with manually engineered features.
Zhang et al. [18] proposed a deep WDCNN model to learn
the deep representative features from the original bearing
signals and achieved a high bearing fault recognition rate
under variable loads and strong background noise. Jing et al.
[19] constructed a CNN to learn deep features from the
spectrum of vibration signals collected from a gearbox and
realized the fault diagnosis of the gearbox. Jiang et al. [20]
designed a multiscale CNN architecture for extracting
multiscale features from the vibration signals and realized
the fault diagnosis of wind turbine gearboxes. *ese CNN-
based models all exhibited an excellent performance for
learning and fault recognition. However, one problem we
must face is that plenty of labeled samples are required for
training the model. Labeling samples, however, is an ex-
pensive and time-consuming activity.
Cluster analysis is an effective method to deal with the

classification of unlabeled data [21]. GK clustering [22] is
a clustering algorithm based on the objective function,
which can identify the extracted features. Benyounes et al.
[23] applied GK clustering to identify the control parameters
in a gas turbine and developed a reliable nonlinear math-
ematical model. Hua et al. [24] introduced a method for the
driver intention classification by GK clustering. Li et al. [25]
used GK clustering as one of four main clustering algorithms
and introduced how to select the most suitable identification
method for bearing fault diagnosis. Chen et al. [26] extracted
multiscale permutation entropy and adopted GK clustering
to detect rolling bearing faults. However, the inadequacy of
the GK clustering method is that the different contributions
of the data for clusters are not considered, and the number of
cluster centers must be given in advance.
To overcome the abovementioned problems, we propose

a novel method using the DCAEN and ANW-GK clustering
for the intelligent fault diagnosis of bearings. Our contri-
butions can be summarized as follows:

(1) A DCAEN that was pretrained by unlabeled samples
and fine-tuned by a few labeled samples was

constructed to learn the representative features from
the original vibrational signals.

(2) An improved ANW-GK clustering was proposed.
*e contribution of each sample for clusters was
redefined using nonparametric weighted-feature
extraction (NWFE) [27]. *e initial number of
clusters of the ANW-GK was adaptively determined
using the PBMF function [28].

(3) A novel bearing intelligent fault diagnosis method
using the DCAEN and ANW-GK clustering was
developed.

*e rest of the paper is organized as follows. Section 2
briefly introduces the CAE, GK clustering, and NWFE.
Section 3 describes the constructed DCAEN, improved
ANW-GK clustering, and general procedure of the proposed
method. In Section 4, the effectiveness of the proposed
method is validated on two bearing datasets: one is an open
benchmark dataset and the other is a laboratory-measured
dataset. Section 5 discusses the proposed method. Finally,
our findings and outcomes are summarized and elucidated
in Section 6.

2. Theoretical Background

Some basic theories of the CAE, GK clustering, and NWFE
are briefly introduced in Sections 2.1, 2.2, and 2.3. In Section
2.4, three kinds of clustering evaluation indexes are
introduced.

2.1. Convolutional Autoencoder (CAE). CAE [29, 30] is an
unsupervised learning model where the convolutional
structure is embedded into the basic encoder. When the
convolutional structure is used to replace the fully connected
structure of the basic encoder, the encoder has the char-
acteristics of sharing the local receptive field and the weight.
As depicted in Figure 1, the CAE consists of the encoder and
decoder network. *e encoder comprises a convolutional
layer and a pooling layer, which can transform the input data
from a high-dimensional space into a set of 1d feature maps.
*e decoder comprises an unpooling layer and a deconvo-
lutional layer, which can reconstruct the input data from the
1d feature maps. *e parameters of the encoder and decoder
are optimized by minimizing the difference between the
reconstructed data and input data. *erefore, the CAE is
a data-driven unsupervised feature extraction model.

2.1.1. Encoder. Given a high-dimensional input dataX, a set
of 1d feature maps Y � y1, y2, . . . , yH{ }, H is the number of
convolution kernels, and the encoding process can be
expressed as follows:

yk � ψ σ K(k) ∗X + bk( )( ), k � 1, 2, . . . , H, (1)

where ∗ is the convolution operation; K(k) is the kth con-
volution kernel; bk is the bias of the kth convolution kernel;
σ(·) is the exponential linear unit function (ELU); and ψ(·) is
the max pooling with step s.
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2.1.2. Decoder. *e decoder is used to reconstruct the input
data X by the 1d feature maps yk. *e reconstructed data X̂
is expressed as follows:

X̂ � σ ∑
k∈H

K̂
(k) ∗ ψ̂ yk( ) + b̂k , (2)

where ψ̂(·) is the unpooling, which is used to expand the
feature map according to the pooling step s of the encoder,

that is, insert s− 1 zeros between the elements; K̂(k)
is the kth

deconvolution kernel; and b̂k is the bias of the kth decon-
volution kernel.

2.1.3. Training. *e parameter set K, b, K̂, b̂{ } of the CAE is
optimized by minimizing the reconstruction error.*e error
is defined as follows:

L(K, b, K̂, b̂) �‖X̂ −X‖2. (3)

2.2. Gustafson–Kessel Clustering (GK Clustering). *e GK
clustering algorithm [22] obtains the fuzzy membership
matrix U � [μik]c×n and cluster center V � v1, v2, . . . , vc{ } by
minimizing the objective function. Here, c is the number of
clusters; n is the number of samples; and μik is the fuzzy
membership degree of the sample point k relative to the
cluster center i. μik ∈ [0, 1], ∑ci�1uik � 1, 1≤ i≤ c, and
1≤ k≤ n.
Given a clustering sample set Z � Z1, Z2, . . . , Zn{ }, its

objective function is defined as

J(Z,U, V) �∑c
i�1
∑n
k�1

uik( )mD2ik, (4)

D2ik � Zk − vi( )T · Ai · Zk − vi( ), (5)

Ai � det Fi( )(1/n)F−1i , (6)

Pi �
1

n
( )∑n

k�1
uik, (7)

where m is the fuzzy index, generally, m� 2; D2ik is the
distance from any sampleZk to the cluster center vi, which is
a square inner product norm; Ai is a positive definite
symmetric matrix, determined by the clustering covariance
matrix Fi; and Pi is the prior probability of the ith cluster.
*e Lagrange multiplication is used to optimize the

objective function (equation (4)), and the necessary con-
ditions for the minimum value of equation (4) are

uik �
1

∑cg�1 Dik/Dkg)
2/(m− 1),( (8)

vi �
∑nk�1 uik( )mZk∑nk�1 uik( )m , (9)

*en, the iteration algorithm of the GK clustering is
described as follows:

(1) *e number of clusters c, the fuzzy index m, and the
fuzzy membership matrix U are initialized. *e it-
eration number is set as l� 0, 1, . . ..

(2) *e cluster center vi is calculated according to
equation (9).

(3) *e covariance matrix Fi is calculated according to
the following equation:

Fi �
∑nk�1 uik( )m Zk − vi( ) Zk − vi( )T∑nk�1 uik( )m . (10)

(4) *e distance norm D2ik is calculated according to
equations (5) and (6).
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Figure 1: Structure of CAE.
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(5) *e fuzzy membership matrix U is updated
according to equation (8).

For any positive η, if ‖U(l+1) − U(l)‖< η, the operation is
terminated. Otherwise, the number of iterations is increased,
and l⟵ l + 1 is repeated until the condition is satisfied.

2.3. Nonparametric Weighted-Feature Extraction (NWFE).
*e NWFE [27] is used for computing different weighted
clustering centers for each sample.*e distributed weighting
matrix is defined by the Euclidean distance between the
samples and clustering centers. *e nonparametric within-
class scatter matrix Sw is defined as follows:

Sw �∑c
i�1
Pi∑ni

k�1

w
(i,j)
k

ni
Z(i)k −Mj Z

(i)
k( )( ) · Z(i)k −Mj Z

(i)
k( )( )T. (11)

*e nonparametric between-class scatter matrix Sb is
defined as follows:

Sb �∑c
i�1
Pi ∑c

j�1,j≠i
∑ni
k�1

w
(i,j)
k

ni
· Z(i)k −Mj Z

(i)
k( )( ) · Z(i)k −Mj Z

(i)
k( )( )T,
(12)

where Z(i)k is the kth sample in class i; Pi is the prior
probability of class i; ni is the number of samples in class i;
and w

(i,j)
k is the distributed weight matrix of the kth sample

in class i to the class j, which is defined as follows:

w
(i,j)
k �

dist Z(i)k ,Mj Z
(i)
k( )( )− 1

∑nt�1dist Z(i)i ,Mj Z
(i)
t( )( )−1, (13)

whereMj(Z(i)k ) is the weighted mean of the sample Z
(i)
k . *e

weighted mean is defined as follows:

Mj Z
(i)
k( ) �∑ni

t�1
λ
(i,j)
kt · Z(j)t , (14)

where λ
(i,j)
kt is the weight of local mean. *e weight of the

local mean is defined as follows:

λ
(i,j)
kt �

dist Z(i)k , Z
(j)
t( )− 1

∑nit�1dist Z(i)i , Z(j)t( )−1, (15)

where dist(a1, a2) is the Euclidean distance between vector
a1 and vector a2.
In equations (14) and (15), Z(i)k has a weighted mean

Mj(Z(i)k ), the value of Mj(Z(i)k ) is determined by each
sample Z

(j)
t in class j and λ

(i,j)
kt , and the value of λ

(i,j)
kt is in

reverse ratio to the Euclidean distance betweenZ(i)k andZ
(j)
t .

*erefore, the greater the distance between Z
(j)
t andZ(i)k , the

smaller the contribution of sample Z
(j)
t for clustering.

2.4. Evaluation Indexes of the Clustering Effect. In this sec-
tion, 3 kinds of clustering evaluation indexes are introduced:
the partition coefficient (PC), classification entropy (CE),
and clustering accuracy (Acc). *ey are defined as follows:

PC � 1

n
( )∑c

i�1
∑n
k�1
u2ik,

CE � − 1
n
( )∑c

i�1
∑n
k�1
uik ln uik,

Acc � 1

n
( )∑c

i�1
θi,

(16)

where n is the number of the sample set and θi is the number
of samples correctly partitioned into class i.
PC and Acc are closer to 1. CE is closer to 0, and so the

clustering effect will be better.

3. Proposed Fault Diagnosis Method

In this section, a novel intelligent fault diagnosis method for
bearings is discussed. *e method includes 3 parts: DCAEN
construction, improved ANW-GK clustering, and general
procedure.

3.1. DCAEN Construction. *e process of construction for
the DCAEN is shown in Figure 2. *e DCAEN is con-
structed by stacking CAE. *e output of the pooling layer of
the previous CAE serves as the input of the current CAE. At
first, unlabeled data are used for pretraining the CAE layer
by layer. *en, a full connection layer and softmax classifier
are added to the coding part of the pretrained DCAEN, and
a small number of labeled samples are used for the super-
vised fine-tuning of the network. Finally, the classification
layer is removed from the fine-tuned network, and the
trained DCAEN with better deep feature extraction capa-
bility is constructed.
In the process of pretraining the network, each layer of

the DCAE becomes a shallow neural network, which can
make use of the advantages of convex optimization of the
shallow neural network and reduce the risk of the network
falling into a local optimum. *e pretrained network is fine-
tuned by a few labeled data to achieve a better feature
learning ability. Essentially, the process of encoding layer by
layer is extracting abstract features step by step. With the
increase of the layers, the features become more abstract and
more global.

3.2. Improved ANW-GK Clustering. *e membership de-
grees of the samples are used to calculate the corresponding
cluster centers in the GK clustering algorithm. *e different
contributions of the samples, however, are not considered.
Different samples should be given different feature weights,
which can make the sample near the cluster center more
typical. *ereby, the contribution of the typical sample
which should play a leading role in the clustering process is
increased. *at is to say, when calculating the membership
degree of sample Zi belonging to class i, the samples near Zi
should belong to the same class and be given larger weights,
while those farther away from Zi should be given smaller
weights.

4 Shock and Vibration



Different weights of samples can be assigned in the
NWFE. *e importance of local information is emphasized.
*erefore, in our method, the NWFE algorithm is integrated
into GK clustering, and its new weighted clustering center ṽi
is defined as follows:

ṽi �
∑nik�1λikumikZk∑nit�1λitumit . (17)

When Zi � Zk, λik � 1; when Zi ≠Zk, λik � ‖Zi − Zk‖− 1.
*e objective function of NW-GK clustering is defined

as follows:

JNW(Z, Ũ, Ṽ) �∑c
i�1
∑ni
k�1
umik · D̃

2

ik, (18)

where D̃
2

ik � (Zk − ṽi)
T · Ai · (Zk − ṽi).

According to the Lagrange multiplier method, the
weighted membership matrix can be updated as follows:

ũik �
1

∑cg�1 D̃ik/D̃kg)
2/(m− 1)

,( (19)

until

Ũ
(l+1) − Ũ(l)

 ≤ η. (20)

*e cluster number c must be given in advance for the
traditional GK clustering algorithm. It mainly depends on
the experts’ experience or relevant background knowledge.
To enhance the adaptivity, the clustering evaluation PBMF
function [28] is integrated into the NW-GK algorithm.
According to the change of the PBMF function’s value with
the cluster number c, the optimal c can be selected. *e
PBMF function is defined as follows:

PBMF(c) � 1

c
( ) · E1

JNW
( ) ·maxci,j�1 ṽi − ṽj ( )2, (21)

where E1 is the value of JNW when c� 1.

As can be seen from equation (21), the bigger the PBMF
value, the better the clustering effect, and the value of the
corresponding c is closer to the real number of clusters.
Generally, c ∈ [2, �

n
√

], where n is the number of samples.
Based on the above analysis, an ANW-GK clustering

algorithm was developed, and its flowchart is shown in
Figure 3.

(1) *e clustering parameters of c, cmax, m, and η are
initialized.

(2) *e fuzzy membership matrix U is initialized and
satisfied μik ∈ [0, 1], ∑ci�1uik � 1.

(3) *e weight matrix Λ � λik{ } is calculated according
to equation (15), and the cluster center ṽi is updated
according to equation (17).

(4) *e fuzzy membership matrix Ũ is updated
according to equation (19).

(5) If ΔJNW > η, go to Step 2, and until the clustering
information is converged. Otherwise, the next step is
performed.

(6) Calculate PBMF (c) according to equation (21), let
c� c+ 1, and go to Step 2. If c> cmax, then a set of the
PBMF values is obtained. Otherwise, return to Step 3.

(7) *e maximum value of PBMF (c) is found from the
set of the PBMF values, and the corresponding c is
the optimal cluster number. Its corresponding Ũ and
cluster centers ṽ are the best clustering results.

3.3. Fault Diagnosis Procedure. According to the above-
mentioned discussion, the proposed fault diagnosis method
based on the DCAEN and ANW-GK is shown in Figure 4.
*e general procedure of the fault diagnosis method can be
summarized as follows:

(i) Step 1: the vibration signals are collected by a data
acquisition system, and the collected signals are
divided into training and test samples.
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(ii) Step 2: the parameters of CAE1-CAEn are initial-
ized, such as the convolution kernel size, pooling
size, batch size, and learning rate.

(iii) Step 3: CAE1-CAEn are unsupervised and pretrained
by training samples, and the parameters are saved.

(iv) Step 4: the encoders of the pretrained CAE1-CAEn
are stacked, and a full-connection layer and
a softmax classifier are added to the top. A small
number of labeled training samples are used to fine-
tune the pretrained network, and the parameters of
the network are saved.

(v) Step 5: the classifier is removed, and the trained
DCAEN is constructed.

(vi) Step 6: test samples are fed into the trained
DCAEN, and the representative features are
extracted. *e main low-dimensional features of
the representative features after the dimension
reduction by t-SNE [31] are input into the ANW-
GK algorithm for unsupervised fault recognition.

(vii) Step 7: clustering accuracy, PC, and CE are
employed to evaluate the clustering performance.

4. Experiment Verification and Analysis

Two cases of rolling bearing datasets are discussed in this
section. *ey were used to validate the availability and
superiority of the proposed fault diagnosis method.

4.1.Case1:BearingDataset ofCaseWesternReserveUniversity
(CWRU)

4.1.1. Data Description. *e data used for the verification of
the proposed method were from the Case Western Reserve
University (CWRU) bearing data center [32]. *e data were
collected by accelerometers from a motor driving mechanical
system at a sampling frequency of 12 kHz.*emotor bearings
were seeded with faults using electrodischarge machining as
shown in Figure 5. *e system was able to bear 4 kinds of
loads: 0–3 hp. Besides the normal (NR) operating status,
single point fault with fault diameters of 0.007 in, 0.014 in, and
0.021 in were separately introduced at rolling element (BF),
inner raceway (IF), and outer raceway (OF). *erefore, there
were 10 categories of health conditions under a load in total.
In this experiment, data with a load of 1 hp were used tomake
a sample set, each state included 100 samples, and each
sample contained 1024 data points. For each fault category, 80
samples were randomly selected as training samples, and 20
samples were selected as test samples. *e details of all the
datasets are described in Table 1.

4.1.2. Parameters of the Model. We used the parameters of the
DCAEN from several studies [18, 19]. *e specific structural
parameters were as follows: Conv6416⟶ max pool2⟶
Conv332⟶ max pool2⟶ Conv364⟶ max pool2⟶
Conv364 ⟶ max pool2⟶ Conv364⟶ max pool2⟶
FC200, where Conv

k
n denotes a convolutional layer with n

convolution kernel of size k× 1, and the default step size is 1;
max pool2 denotes a pooling layer with 2×1 size, and the default
step size was 1. When pretraining, the minibatch was set to 80,
the learning rate was set to 0.001, the epochs were set to 200, and
the optimization algorithm was the Adam algorithm. When
fine-tuning, the learning rate was set to 0.005 for improving the
efficiency. *e fuzzy weighted exponentm was set to 2, and the
iteration termination tolerance η was set to 0.0001.
To determine the appropriate proportion of fine-tuned

samples, 10%, 30%, 50%, and 70% of the training samples were
used for fine-tuning, and each experiment was repeated 20
times. *e statistical results are shown in Table 2. *e per-
formance indexes of each experiment are shown in Figure 6.
As can be seen from Table 2 and Figure 6, when the

proportion of fine-tuned samples is 10%, the test accuracy of the
model is up to 97.5%, the lowest is 88.5%; the maximum PC
value is 0.875, and theminimum is 0.75; theminimumCE value
is 0.32, and the maximum is 0.51. *is indicates that the
clustering evaluation index has large fluctuations, and themodel
stability is poor. As the proportion of fine-tuning samples in-
creases, the stability of themodel is increased, and the clustering
indexes are improved gradually, but the improved magnitude is
decreased gradually. So, under the premise of ensuring the
performance of the model, the proportion of fine-tuning
samples used in this paper was selected as 30%.
*e cluster number was set to be c ∈ [2, 14]

(cmax �
���
200

√
), and the change of PBMF with c is shown in

Figure 7. *erefore, the optimal number of clusters is c� 10,
which encompasses the data of the actual situation.
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Figure 3: *e flowchart of ANW-GK clustering.
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Figure 5: *e faults of bearing in three locations: (a) inner fault; (b) outer fault; (c) ball fault.

Table 1: Description of rolling element bearing datasets.

Fault location None Ball Inner race Outer race Load

Category label 1 2 3 4 5 6 7 8 9 10

0, 1, 2, 3
Fault diameter (in) 0 0.007 0.014 0.021 0.007 0.014 0.021 0.007 0.014 0.021
Dataset Train 80 80 80 80 80 80 80 80 80 80
Size Test 20 20 20 20 20 20 20 20 20 20
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4.1.3. Results and Analysis. *e established DCAEN was
first pretrained layer by layer, and the pretrained DCAEN
was fine-tuned by 30% of the labeled training
samples. Test samples were input into the fine-tuned

DCAEN, and the 200 × 200 high-dimensional feature set
was obtained. For visualization, the t-SNE was used to
reduce the 200 × 200 feature set to a 200 × 2 feature set,
which was used as the input of the ANW-GK clustering

Table 2: Statistics of test results under different proportion fine-tuning samples.

Fine-tuning sample ratio (%)
Evaluating index

Acc PC CE

10 0.94± 0.055 0.83± 0.05 0.41± 0.101
30 0.96± 0.015 0.88± 0.05 0.30± 0.10
50 0.97± 0.01 0.90± 0.012 0.26± 0.02
70 0.98± 0.01 0.90± 0.023 0.25± 0.031
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Figure 6: Test results with different proportions of fine-tuned samples.
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algorithm. *e results of clustering are shown in
Figure 8.
In Figure 8, V1 to V10 correspond to the cluster centers

of 10 bearing states, and their specific coordinate values are
shown in Table 3. It can be seen from Figure 8 that 10
bearing states are clearly separated and gathered in the
vicinity of the cluster centers. Each group of samples is
packed tight, and the spaces between the classes are large,
and no aliasing occurs. *e average memberships of each
group of samples are shown in Table 4. It can be seen that
the average membership of the NR group samples for V3 is
0.982, which is much larger than the other 9 cluster centers.
*erefore, the NR group samples belong to the V3 class.
Similarly, the NR-OF3 samples belong to V9, V1, V4, V6,
V7, V5, V8, V10, and V2, respectively. *erefore, the
proposed method has obvious fault identification effects. It
should be noted that the membership degree of the BF3
group belonging to the V4 class is 0.735, and memberships
belonging to V5, V9, and V7 are 0.094, 0.074, and 0.047,
respectively, which are significantly higher than the
membership degrees of other cluster centers. *erefore, the
BF3 group samples are mainly affected by the IF1, BF1, and
IF2 samples when clustering. Similarly, it can be seen from
the memberships of the OF3 group samples that this group
of samples is greatly affected by the OF1 group. *is is
consistent with the conclusion of Figure 8.

4.1.4. Generalization Performance under Different Loads.
In practical applications of mechanical equipment, the loads
of bearings are often variable. In this section, we discuss the
generalization performance of the proposed method under
different loads. *e model was trained and fine-tuned using
the training set of 1 hp load. *e test sets were under the
loads of 0 hp, 2 hp, and 3 hp. *e experimental results are
shown in Figure 9. Under 3 different loads, the clustering
accuracies are 96%, 97%, and 95.5%; the PC values are 0.811,
0.853, and 0.879, respectively; and the CE values are 0.473,
0.399, and 0.312, respectively. *e clustering results still
maintained a high precision. For the stability of the model,

each experiment was repeated 20 times, and the statistical
results are shown in Figure 10. Under different loads, the
clustering accuracy rate is above 96%, the PC value is above
0.8, and the CE value is within 0.5. *ese results show that
the proposed method has a certain generalization when the
load changes.

4.1.5. Comparative Experiment. To illustrate the superiority
of the proposed method, the following comparative ex-
periments were conducted. (1) We compared our proposed
method with traditional signal processing and handcraft
feature methods. *e original vibration signals were
decomposed into several IMF components using the EMD,
and permutation entropy (PE, m� 2, r� 0.1 SD) was
employed to calculate the entropy value of each IMF
component as feature vectors. For visualization, t-SNE was
used for the dimension reduction. *e 2-dimensional IMF-
PE vectors were input into the ANW-GK cluster for fault
identification. *e multifractal method was used to extract
the features of the original vibration signals, and the q-D (q)
parameters (q� 10) of the signal were used as the feature
vectors. For visualization, t-SNE was used for the dimension
reduction. *e 2-dimensional q-D (q) feature vectors were
input into the ANW-GK cluster for fault identification. (2)
We compared our proposed method with the SDAE. *e
SDAE was used to extract the features from the original
vibration signal, and the input ANW-GK clustering was for
fault identification. To maintain consistency, the network
structure of the SDAE was 1024-1024-96-192-192-192-200.
(3) We compared our proposed method with the GK
clustering algorithm. *e DCAEN was used to extract the
features of the original vibration signal, and the extracted
features were input into the GK clustering algorithm for fault
identification. *e comparison results are shown in Table 5,
Figure 8, and Figure 11.
In comparison to the manual feature extraction methods

of the EMD+FE and multifractal methods, features learned
by the DCAEN have a better cluster recognition effect, as
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Table 4: Membership degrees of 10 types of signals.

Sample group
Membership degree

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

NR 0.008 0.001 0.982 0.003 0.001 0.000 0.001 0.001 0.001 0.002
BF1 0.010 0.006 0.003 0.017 0.005 0.004 0.012 0.002 0.938 0.003
BF2 0.884 0.005 0.030 0.036 0.005 0.003 0.009 0.003 0.017 0.008
BF3 0.012 0.009 0.005 0.735 0.094 0.005 0.047 0.003 0.074 0.016
IF1 0.001 0.008 0.001 0.002 0.003 0.973 0.003 0.003 0.004 0.002
IF2 0.007 0.015 0.005 0.121 0.003 0.006 0.761 0.006 0.023 0.053
IF3 0.004 0.002 0.001 0.002 0.978 0.003 0.002 0.001 0.006 0.001
OF1 0.001 0.010 0.001 0.002 0.001 0.004 0.002 0.975 0.002 0.002
OF2 0.004 0.002 0.004 0.011 0.001 0.001 0.012 0.002 0.003 0.960

OF3 0.006 0.724 0.005 0.023 0.007 0.057 0.032 0.097 0.025 0.024

Table 3: Cluster centers of 10 types of signals.

Sample group NR BF1 BF2 BF3 IF1 IF2 IF3 OF1 OF2 OF3

Cluster x 0.976 0.674 0.85 0.63 0.385 0.485 0.851 0.289 0.576 0.294
Centers y 0.975 0.419 0.679 0.635 0.132 0.65 0.034 0.38 0.895 0.413
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Figure 9: Continued.
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shown in Table 5. For features extracted using the
EMD+PE, “OF1” and “OF3” are seriously aliased and “BF2”
and “BF3” are seriously aliased, as shown in Figure 11(a); for
features extracted using the multifractal method, “IF3” and
“OF3” are seriously aliased and “BF1” and “IF2” are seriously
aliased, as shown in Figure 11(b). *is is mainly because the

features extracted manually are not comprehensive, and
important sensitive features may be lost, which results in
identification difficulties.
As shown in Table 5, compared with SDAE, the cluster

recognition effect of the features learned using the DCAEN
is also better. For features learned by SDAE, “BF1” and
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Figure 9: Recognition results under different loads. (a) 0 hp; (b) 2 hp; (c) 3 hp.
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Table 5: *e recognition results of different methods.

Methods
Accuracy (%) Evaluating index

NR BF1 BF2 BF3 IF1 IF2 IF3 OF1 OF2 OF3 AVG PC CE

EMD+PE+ANW-GK 100 100 15 60 100 80 0 90 90 100 73.5 0.733 0.535
Multifractal +ANW-GK 100 70 90 100 100 50 10 100 90 100 81 0.760 0.526
SDAE+ANW-GK 100 100 65 80 95 100 100 100 85 55 88 0.775 0.54
DCAEN+GK 100 100 100 80 100 95 100 100 100 80 95.5 0.836 0.413
Proposed method 100 100 100 80 100 95 100 100 100 90 96.5 0.848 0.399
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“OF2” are aliased, and “OF3” and “IF3” are aliased, as shown
in Figure 11(c). *e full connection between each network
layer was used in the SDAE, which results in a large amount
of redundancy in the network’s structural parameters. *is
makes the features learned by the network more global,
while the locality of the features may be ignored. *e
structure of the convolution and pooling plus full connec-
tion layer is used in the DCAEN. *e convolution pooling
layer learns the local features from the input data, and the
full connection layer learns the global features. *us, the
features extracted by our method are more distinguishable.

Compared with GK clustering, the fault recognition
effect of the ANW-GK clustering is much better, as shown in
Table 5. When GK clustering was used to identify the fault
types of features learned by the DCAEN, “OF1,” “IF1,” and
“OF3” are slightly aliased, as shown in Figure 11(d); when
our method is used to identify the fault types of features
learned by the DCAEN, no aliasing between the various
types occurs, as shown in Figure 8. *is is mainly
because different weights are given to each sample in our
method, which enhances the role of typical samples. *e
different importance of samples for each type is more
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Figure 11: *e results of the contrast tests. (a) EMD+FE+AWN-GK; (b) Multifractal +ANW-GK; (c) SDAE+AWN-GK; (d)
DCAEN+GK.
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effectively characterized, so that the clustering accuracy is
improved.

4.2. Case 2: Laboratory-Simulated Bearing Fault Dataset.
To further verify the effectiveness of the proposed method,
the proposed method was applied to analyze the laboratory-
simulated bearing faults dataset.

4.2.1. Experimental Setup. *e laboratory-simulated bearing
fault data were collected from a rotor test bench and shown
in Figure 12. *e rotor test bench was used to simulate
different operating states of the ball bearings. A three-phase
inverter motor, a shaft, and a speed controller were used to
vary speeds of the test bearings. *e single point fault is
arranged on the bearings (NSK6308) using a wire electrical
discharge machine and a file as shown in Figure 13. A couple
of accelerometers (HD-YD232) were placed vertically on the
bearing seat to collect the vibration signals of the test
bearings.
*e dataset included five different operating states of the

bearings: normal (NR), outer ring fault (OF), inner ring fault
(IF), rolling element fault (BF), and fix fault (FF). In the
experiment, the rotating speed of the shaft was 2600 rpm, the
sampling frequency was 8 kHz, and 200 samples were col-
lected in each operating state. For each operating condition,
160 samples were randomly selected as training samples, and
40 samples were selected as test samples. *e samples used
for training a deep network must contain at least one
complete signal period; otherwise, fault features cannot be
effectively learned. To meet this requirement, the sample
length must be longer than the number of points contained
in a complete period, and the latter can be calculated by the
sampling frequency and bearing speed. Since the number of
data points in the collected raw data is constant, the sample
length is inversely proportional to the number. If the sample
length is too long, on the one hand, the number of samples
may be too small and affect the training of the model; on the
other hand, it may increase the cost of computation and
affect the training speed. On the premise of ensuring the
training effect, for the convenience of storage and calcula-
tion, the length of the sample is 2048. *e details of all the
datasets are described in Table 6.

4.2.2. Parameters of the Model. *e parameters of the model
in Case 1 were used.*e cluster number was set to c ∈ [2, 14]
(cmax �

���
200

√
), and the change of PBMF with c is shown in

Figure 14. *erefore, the optimal cluster number is c� 5.

4.2.3. Results and Analysis. *e training samples were
input into the established DCAEN for unsupervised
pretraining, and 30% of the labeled training samples were
used for fine-tuning. We input 200 (5 × 40 � 200) test
samples into the trained DCAEN and obtained the
200 × 200 dimensional features. For visualization, t-SNE
was used to reduce the 200-dimensional features to 2
dimensions. *e two-dimensional features were input
into ANW-GK clustering for fault identification. *e

clustering accuracy, PC value, and CE value are 97.5%,
0.915, and 0.186, respectively. *e results of clustering are
shown in Figure 15.
In Figure 15, V1, V2, V3, V4, and V5 are the cluster

centers of FF, NR, BF, IF, and OF, respectively, and their
specific coordinate values are shown in Table 7. As can be
seen from Table 7 and Figure 15, five kinds of samples are
clearly separated and clustered near their cluster centers.
Different types of samples are gathered closely, no aliasing
occurs and the distances between classes are large. *e
average membership degrees of each group of samples are
shown in Table 8. *e membership of the first group of
samples for V2 is much larger than that of the other four
groups, which indicates that the first group of samples
belongs to V2. Similarly, the other groups of samples belong
to different classes. *erefore, the excellent fault identifi-
cation effect of the proposed method is verified again.

4.2.4. Generalization Performance under the Different Ro-
tating Speeds. In actual mechanical equipment, the rotating
speeds of bearings are often variable. Consequently, the
generalization performances of the proposed method at
different rotating speeds were tested. *e model was trained
with the training set of 2600 rpm. *e test sets were at
rotating speeds of 2800 rpm, 3000 rpm, and 3200 rpm. *e
fault diagnosis results are shown in Figure 16. At three
different speeds, the clustering accuracies are 97%, 96.5%,
and 98.5%; the PC values are 0.912, 0.901, and 0.922, re-
spectively; the CE values are 0.194, 0.215, and 0.14, re-
spectively. It can be seen that the proposed method still
maintains higher fault diagnosis accuracy at variable rotating
speeds. *erefore, our method has certain generalization
performances at different rotating speeds.
To avoid a contingency, the experiments at different

rotating speeds were performed 20 times. *e final results
are the average of clustering evaluation indexes for the 20
experiments, as shown in Figure 17. At different rotating
speeds, the clustering accuracy was maintained above 96%,
the PC value was above 0.85, and the CE value was below
0.25. *ere results show that the proposed method has
a good fault identification ability at different rotating speeds.

5. Results and Discussion

As mentioned above, we know that it is difficult and
sometimes impossible to obtain a large number of labeled
samples in the process of fault diagnosis. *e insufficiency of
labeled samples easily leads to lower diagnostic accuracy.

Sha�
Accelerometer

Three-phase inverter motor
Bearing

Figure 12: *e test bench of the bearings.
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Figure 13: *e faults of bearing in four locations: (a) inner fault; (b) outer fault; (c) fix fault; (d) ball fault.
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Table 6: Description of the measured datasets.

Fault type NR Ball Cage Inner Outer
Speed

Category label 1 2 3 4 5

Fault diameter (mm) 0 0.5 3 0.2 0.2 2600
2800
3000
3200

Dataset Train 160 160 160 160 160

Size Test 40 40 40 40 40
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Table 7: *e cluster centers for five types of signals.

Sample group NR BF FF IF OF

Cluster x 0.046 0.756 0.585 0.423 0.953
Center y 0.139 0.216 0.348 0.946 0.043
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Figure 16: Recognition results at different rotating speeds. (a) 2800 rpm; (b) 3000 rpm; (c) 3200 rpm.

Table 8: *e membership degree of five types of signals.

Sample group
Membership degree

V1 V2 V3 V4 V5

NR 0.001 0.997 0.001 0.000 0.001
BF 0.066 0.002 0.868 0.003 0.061
FF 0.855 0.002 0.123 0.004 0.016
IF 0.001 0.000 0.001 0.996 0.002
OF 0.012 0.001 0.045 0.002 0.94
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*erefore, it is important to explore fault diagnosis methods
that use fewer labeled samples to achieve higher accuracy. In
this paper, an intelligent fault diagnosis method using
DCAEN and ANW-GK clustering is proposed. *e method
can identify fault types with a few labeled samples. *e
performance of the method is validated on two bearing
datasets. However, there are still some potential problems
and research directions remained to be improved and
studied.
To effectively use a small number of labeled samples to

improve the feature extraction capability of the model,
a labeled sample fine-tuning technique is used during the
construction of DCAEN. *rough experiments, 30% of the
training samples are used to fine-tune DCAEN and the
model can obtain better diagnostic performance. But, this is
only tested on two datasets with single fault, which has
certain limitations.
*e parameters optimization of DCAEN needs to be

considered. *e number of convolutional layers, the size of
the convolution kernel, the pooling size, and the activation
function have an important impact on the performance of
model. Based on the empirical values in the references, there
are many shortcomings for model performance. *erefore,
the issue of how to choose parameters of DCAEN should be
considered.
ANW-GK clustering has certain advantages compared to

the existing method (i.e., GK clustering). *e integration of
NWFE and PBMF into GK clustering improves the algo-
rithm’s fault identification ability and also increases its
complexity. Whether it affects the real-time performance of
fault diagnosis method is required be studied lately.

6. Conclusions

A method based on the DCAEN and ANW-GK clustering
for rolling bearing fault diagnosis is proposed in this paper.
In our method, the fine-tuned DCAEN with a few labeled
samples was used to extract high-level features of the input
signals, and the extracted features reduced in dimension by
t-SNE were input into the improved ANW-GK clustering

algorithm for fault identification. Our method was validated
on a benchmark bearing dataset and a laboratory-measured
bearing dataset. *e diagnostic accuracies are 96.5% and
97.5%, the PC values are 0.848 and 0.915, and the CE values
are 0.399 and 0.186. *e experimental results show that the
feature extraction is better than that of other models, such as
the EMD+PE/multifractal/SDAE model. *e classification
accuracies also show that the ANW-GK clustering can
identify the bearing faults effectively under various
conditions.
In the future, we will focus on deep embedded clustering

that directly adds a clustering layer to the top of the DCAEN.
*e deep embedded clustering will iteratively improve the
weight parameters and clustering goals of the joint opti-
mization network through soft allocation. *us, the model
will not need to be fine-tuned, and the operation efficiency
can also be improved.
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