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Targeting the nonstationary and non-Gaussian characteristics of vibration signal from fault rolling bearing, this paper proposes
a fault feature extraction method based on variational mode decomposition (VMD) and autoregressive (AR) model parameters.
Firstly, VMD is applied to decompose vibration signals and a series of stationary component signals can be obtained. Secondly, AR
model is established for each component mode. 
irdly, the parameters and remnant of AR model served as fault characteristic
vectors. Finally, a novel random forest (RF) classi�er is put forward for pattern recognition in the �eld of rolling bearing fault
diagnosis. 
e validity and superiority of proposed method are veri�ed by an experimental dataset. Analysis results show that this
method based onVMD-ARmodel can extract fault features accurately andRF classi�er has been proved to outperform comparative
classi�ers.

1. Introduction

Rolling bearings are widely used in industrial �eld, so the
study on the method of rolling bearing fault diagnosis has
a great signi�cance. Fault diagnosis process mainly includes
two important aspects: one is the fault feature information
extraction and the other is pattern recognition and classi�ca-
tion [1].

Nowadays, the research about fault feature extraction
of rolling bearing receives widespread attention [2]. A con-
siderable number of theoretical and experimental studies
veri�ed that autoregressive (AR) model is closely related
to the characteristics of mechanical systems and AR model
parameters are very sensitive to condition change [3–6].
Hence, the condition of system can be evaluated by the feature
vector structured by AR model parameters exactly. However,
the vibration signal of rolling bearing is typical nonstationary
and non-Gaussian signal and AR model analysis is based
on stationary random signal. Targeting this problem, some
research combined AR model with empirical mode decom-
position (EMD) [7, 8]. EMD is proposed by Huang et al.
and this method is based on the local characteristic time

scale of signal. By applying EMD method to original signal,
a series of stationary intrinsic mode functions (IMFs) can be
acquired [9].
en ARmodel is established for some selected
IMFs and the AR model parameters are treated as feature
vectors. Nevertheless, due to the defects of the algorithm,
mode mixing is an inevitable problem in EMD. When
mode mixing arises, single IMF contains widely di�erent
characteristic time scales or a similar time scale appears in
adjacent IMFs. 
e problem would cause each IMF to not
be able to re�ect the real physical meaning. To overcome
this shortcoming,Wu et al. presented the ensemble empirical
mode decomposition (EEMD) method using the statistical
properties of white noise in 2004 [10, 11]. Dragomiretskiy and
Zosso put forward variational mode decomposition (VMD)
in 2013 which is entirely nonrecursive and the modes are
extracted concurrently [12]. Recently, some researchers focus
on VMD method combining with engineering practice [13–
16]. An and Zeng analyzed the pressure �uctuation signal
from a hydroturbine by using VMD method. Compared
with EMD, the research showed that VMD could overcome
the shortcoming of mode mixing e�ectively [13]. Liu et al.
applied VMD and EEMD to detect monotonic component
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in the degradation signal from a wind turbine gearbox and
VMD method got better performance [14]. Wang et al.
proposed a method to detect multiple signatures caused by
rotor-to-stator rubbing with VMD. VMD extracts all impact
signatures successfully, which is superior to conventional
EMD, EEMD, and empirical wavelet transform (EWT) [15].


e other key aspect of rolling bearing fault diagnosis
is pattern recognition and classi�cation. 
e pattern recog-
nition method based on arti�cial neural network (ANN)
classi�er has been widely studied in mechanical fault diag-
nosis with its strong ability of self-organizing, self-learning,
and nonlinear pattern classi�cation performance [17]. While
ANN needs a lot of typical fault data samples and experience
knowledge to ensure the accuracy of the network, it brings
about great di�culties in practical engineering application
[18]. Also, with high-dimensional sample, the results are
always unsatisfactory if dimension is not reduced or features
are not preselected (e.g., with genetic algorithm (GA)) [19].
Support vector machine (SVM) has stronger generalization
ability than neural network. It can get better results when
solving the problem of high-dimensional sample classi�ca-
tion [19]. However, the problem is that classi�cation accuracy
is a�ected by structural parameters of SVM such as penalty
factor and kernel function parameter [20]. To have an ideal
e�ect, scholars studied a series of optimizationmethods. Both
the traditional optimization algorithm like cross validation
(CV) and heuristic methods, such as GA and particle swarm
optimization (PSO), can optimize the SVM parameters to
some extent, while this process requires a lot of calculation
and time [21–24].

In addition to ANN and SVM, random forest (RF), which
is proposed by Breiman in 2001, has an excellent performance
in �eld of pattern recognition [25]. Di�erent from structural
risk minimization principle of SVM, the learning method
of RF is ensemble learning [25]. Essentially, RF contains
multiple decision tree classi�ers and there is no connection
between any twodecision trees.When the test data is sent into
the random forest, every decision tree makes the decision of
classi�cation. 
e most popular class is voted and the �nal
result depends on the majority of trees [19]. Recently, with
the advantages of admirable generalization ability, simple
structure parameters, and high classi�cation accuracy, RF
has received increased interest of scientists in the �eld of
electronic tongue [26], digital soil mapping [27], land cover
mapping [28, 29], corrosion monitoring [30], hyperspectral
data [31], urban area classi�cation [32], and fault diagnosis in
spur gears [33].Meanwhile, in the �eld of rolling bearing fault
diagnosis, there is few research of RF classi�er.


e main contribution of this paper is listed as follows.
(1) A recently proposed method VMD is utilized for decom-
posing vibration signal from rolling bearing to obtain a
series of stationary component signals. AR model is estab-
lished for selected component signals and the parameters
and remnant of AR models served as fault characteristic
vectors. A fault feature extraction method based on VMD-
AR model is presented in this work. (2) A novel random
forest classi�er is studied in the pattern recognition and
classi�cation of rolling bearing. To validate the superiority
of RF, the comparisons between RF and some classi�cation

methods mentioned above, such as SVM, GA-SVM, and
PSO-SVM, are conducted. (3) 
e e�ectiveness of proposed
VMD-AR-RF method in this paper is con�rmed by the
experimental dataset which is from Case Western Reserve
University Bearing Data Center. 
is dataset has become a
criterion for testing algorithms in the �eld of rolling bearing
fault diagnosis [34]. 
e remaining part of this paper is
organized as follows. VMD algorithm, AR model principle,
andRF classi�er are investigated in Section 2. In Section 3, we
present the rolling bearing fault diagnosis method based on
VMD-AR-RF.
e experimental dataset validation and results
analysis are shown in Section 4. Finally the conclusions are
drawn in Section 5.

2. Theoretical Background

2.1. Variational Mode Decomposition. 
e VMD method
decomposes a real signal � into a series of modes �� which
have speci�c sparsity properties. All these modes �� can
reconstruct the original signal. It can be assumed that each
mode is compact around center pulsation �� which depends
on the decomposition. Hence, the sparsity property of each
mode is determined by its bandwidth in frequency spectrum.
To have access to the bandwidth of every mode, the following
scheme is proposed. (1) Hilbert transform �rstly is applied
to every mode �� to gain a unilateral frequency spectrum.
(2) 
en add an exponential tuned to each estimated center
frequency and shi� the frequency spectrum of every mode

to “baseband.” (3) Observe �1 Gaussian smoothness of
demodulated signal and estimate the bandwidth of each
mode. 
en the problem in the decomposition process is
de�ned as follows [12]:

min
{��},{��}

{∑
�

��������	� [(� () +
��) ∗ �� ()] �−������������

2

2
}

s.t. ∑
�
�� = �,

(1)

where � is the original signal, {��} = {�1, . . . , ��} are the
modes, and {��} = {�1, . . . , ��} are their center frequency.�() is the Dirac distribution. In order to con�rm the recon-
struction constraint, a quadratic penalty termandLagrangian
multipliers, �, are introduced. 
e problem can be rewritten
in the following format [12]:
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= �∑
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where � is the balancing parameter of the data-�delity
constraint.
en the problem in (2) can be solved bymeans of
the alternate direction method of multipliers (ADMM). 
e
ADMM algorithm is listed in the following steps [12]:

(a) ADMM optimization algorithm for VMD:

Initialize {�1�}, {�1�}, �1, � ← 0
Repeat

� ← � + 1
For  = 1 : ! do

Update ��
��+1� ←" argmin

��
� ({��+1�<� } , {���≥�} , {��� } , ��) (3)

End for

For  = 1 : ! do

Update ��
��+1� ←" argmin

��
� ({��+1� } , {���<�} , {���≥�} , ��) (4)

End for

Dual ascent

��+1 ←" �� + '(� −∑
�
��+1� ) (5)

Until convergence: ∑� ‖��+1� − ���‖22/‖���‖22 < 6.
(b) Minimization with respect to ��:
In (3), �� should be updated. And the subproblem can be

equal to the formulation below:

��+1� = argmin
��∈�

{� ��������	� [(� () +
��) ∗ �� ()] �−������������

2

2

+ ����������� () −∑
�
�� () + � ()2

����������
2

2
} .

(6)

And the solution can be drawn by using Parseval/Planch-
erel Fourier isometry under L2 norm:

�̂�+1� (�)
= (�̂ (�) −∑

� ̸=�
�̂� (�) + �̂ (�)2 ) 1

1 + 2� (� − ��)2
(7)

(c) Minimization with respect to ��:

e minimization with respect to �� can be given as

follows:

��+1�
= argmin
��

{��������	� [(� () +
��) ∗ �� ()] �−������������

2

2
} ,

��+1� = argmin
��

{∫∞
0

(� − ��)2 ????�̂� (�)????2 @�} ,

��+1� = ∫∞0 � ????�̂� (�)????2 @�
∫∞0 ????�̂� (�)????2 @� .

(8)

To summarize the above steps, the complete optimization
algorithm for VMD can be illustrated in the following steps:

Initialize {�̂1�}, {�1�}, �̂1, � ← 0
Repeat

� ← � + 1
For  = 1 : ! do

Update �� for all � ≥ 0
�̂�+1� (�)

←" �̂ (�) − ∑�<� �̂�+1� (�) − ∑�>� �̂�� (�) + �̂� (�) /2
1 + 2� (� − ���)2

(9)

Update ��
��+1� ←" ∫∞0 � ?????�̂�+1� (�)?????2 @�

∫∞0 ?????�̂�+1� (�)?????2 @�
(10)

End for

Dual ascent for all � ≥ 0
�̂�+1 (�) ←" �̂� (�) + '(�̂ (�) −∑

�
�̂�+1� (�)) (11)

Until convergence: ∑� ‖�̂�+1� − �̂��‖22/‖�̂��‖22 < 6.
Detailed theory and advantage of VMDwere given in the

literature [12]. For example, a mixed signal D() is de�ned by
the following equation:

D () = cos (2��1) + 2 cos (2��2) + noise, (12)

where �1 = 50, �2 = 15, and the noise obeys uniform distri-
bution within [0 0.1] and the mean is zero. EMD and VMD
are adopted to decompose the mixed signal, respectively.
Results are presented in Figure 1. Eight-component signal F�
and a residual are produced by EMD. In this �gure, only the
front six components are shown. Another six components
on the right side are from VMD. It is clear to observe the
severe mode mixing in EMD modes, F4, F5, F6. Compared
to EMD, VMD can handle mode mixing e�ectively. Two
real components from D() corresponding to �1, �2 can be
separated accurately.



4 Shock and Vibration

0 0.2 0.4 0.6 0.8 1

−0.2

0

0.2

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0 0.2 0.4 0.6 0.8 1
−2

0

2

0 0.2 0.4 0.6 0.8 1
−5

0

5

0 0.2 0.4 0.6 0.8 1
−5

0

5

Time (s)

c
1

c
2

c
3

c
4

c
5

c
6

(a)

0 0.2 0.4 0.6 0.8 1
−5

0

5

0 0.2 0.4 0.6 0.8 1
−2

0

2

0 0.2 0.4 0.6 0.8 1
−0.1

0

0.1

0 0.2 0.4 0.6 0.8 1
−0.1

0

0.1

0 0.2 0.4 0.6 0.8 1
−0.1

0

0.1

0 0.2 0.4 0.6 0.8 1
−0.1

0

0.1

Time (s)

u
1

u
2

u
3

u
4

u
5

u
6

(b)

Figure 1: Component signals decomposed by (a) EMD and (b) VMD.

2.2. ARModel and Parameters. For system�(G), assume �(�)
is a white noise sequence to motivate the system and D(�) is
output. Equation (13) can be established:

D (�) = − �∑
�=1

H�D (� −  ) + �∑
�=0

I�� (� −  ) , (13)

where H� ( = 1, 2, . . . , J) and I� ( = 1, 2, . . . , J) are the
model parameters of this system, I0 = 1, and J is model
order. If all I� ( = 1, 2, . . . , J) are zero, the model is called
AR model. And it can be illustrated by the identity below:

D (�) = − �∑
�=1

H�D (� −  ) + � (�) , (14)

�(G) = 1K (G) = 1
1 + ∑�1 H�G−� . (15)

Multiply D(� + L) on both sides of (14) and get average.

e result can be expressed as follows:

M� (L) = N {D (�) D (� + L)}
= N{[− �∑

�=1
H�D (� + L −  ) + � (� + L)]D (�)}

= − �∑
�=1

H�N {D (� + L −  ) D (�)}
+ N {� (� + L) D (�)} ,

(16)

where M�(L) is autocorrelation function of D(�). According to
the properties of white noise, (17) can be proved:

N {� (�) D (� − L)} = {{{
0, L ̸= 0,
U2, L = 0, (17)

where U2 is the variance of input �(�). 
e relation between
AR model parameters and the autocorrelation function ofD(�) can be established. Equation (14) can be transformed
into the following form:

M� (L) =
{{{{{{{{{{{

− �∑
�=1

H�M� (L −  ) , L ≥ 0,
− �∑
�=1

H�M� ( ) + U2, L = 0,
(18)
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where �(L) is the Kronecker delta function. Rewrite (18) into
matrix form as follows:

[[[[[[[[[
[

M� (0) M� (1) M� (2) ⋅ ⋅ ⋅ M� (J)M� (1) M� (0) M� (1) ⋅ ⋅ ⋅ M� (J − 1)
M� (2) M� (1) M� (0) ⋅ ⋅ ⋅ M� (J − 2)
... ... ... ... ...

M� (J) M� (J − 1) M� (J − 2) ⋅ ⋅ ⋅ M� (0)

]]]]]]]]]
]

[[[[[[[[[
[

1
H1H2...
H�

]]]]]]]]]
]

=
[[[[[[[[[
[

U2
0
0
...
0

]]]]]]]]]
]

.

(19)

In the process of formula reasoning, the even symmetry
property of autocorrelation function is used: M�(L) = M�(−L).
Equations (18) and (19) are called Yule-Walker equations of
ARmodel. It can be seen that ARmodel with J order consists

ofJ+1 parameters, H1, H2, . . . , H�, U2.Whenwe know theJ+1
autocorrelation functions, M�(0), M�(1), . . . , M�(J), the J + 1
parameters of ARmodel can be calculated.
ese parameters
can re�ect the system condition sensitively [3]. So the AR

model parameters can be adopted to structure the feature
vector of rolling bearing system. As for the order J for an AR
model, we can get a best value based on Akaike information
criterion (AIC).
e AIC value of a model is given as follows:

AIC = � ln (U2) + 2!, (20)

where U2 is the variance of the residuals of themodel,! is the
number of model parameters, and � is the length of signal.

e best model order J is that with the lowest AIC value.
e
detailed theory of AIC is explained in the literature [6].

2.3. Random Forest (RF) Classi	er. RF is an ensemble learn-
ing algorithm, which was proposed by Breiman in 2001.
Before RF, decision tree method and bagging method are
also based on this idea [25]. In fact, RF is an ensemble
of unpruned decision trees and the growing algorithm is
the same as decision trees. Also, RF selects the best split
mode in a randomly chosen feature subset on the basis of
bagging idea. RF consists of ^ trees {1(D), 2(D), . . . , �(D)},
where D ∈ {D1, D2, . . . , D�}. D is L-dimensional feature
vector composed of feature parameters of signal. 
e outputs{̂̀1 = 1(D), ̂̀2 = 2(D), . . . , ̂̀� = �(D)}, where ̂̀�, ∈ {1, 2, . . . , ^}, is the prediction for a classi�ed object by
the  th tree, and a collection of all individuals make a �nal
classi�cation decision. Figure 2 illustrates the work�ow of RF
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Figure 3: Procedures of rolling bearing diagnosis method based on VMD-AR model and RF classi�er.

algorithm and the algorithm process is interpreted as follows
[19, 25]:

(1) From a training dataset of � samples and L features,
draw a bootstrap sample. Sampling method is ran-
domly sampling with replacement. Each bootstrap
also has � samples.

(2) For each bootstrap sample, grow a tree with the
following modi�cation: �rstly, select a subset of Ltry

fromL features randomly at each node. 
en choose
the best split mode. In the process of growing, no
pruning is conducted. Finally, the tree is grown to the
maximum size.

(3) Repeat the steps above until the number of grown
trees reaches ^.

(4) Send the testing dataset into RF and aggregate the
outputs from ^ trees. And the classi�cation result is
determined by the majority vote.

Beyond the steps mentioned above, actually, in a boot-
strap sample, some samples from training dataset are le� out,
while some others are repeated. It can be calculated that only
2/3 of the training molecules are applied to build the tree for
each bootstrap, which is InBag data. 
e remaining 1/3 are
called Out-of-Bag (OOB) samples. For the le� 1/3 samples
which have not been used to train tree, the classi�cation
error rate of corresponding tree can be estimated with these
independent ones [19, 25].

Generally speaking, there are only two variables in RF.
One is the number of trees in the forest (^) and the other one
is the random subset of each node (Ltry). Furthermore, some
researches have shown that the sensitivity of the parameters is
weak [26]. 
is is a signi�cant advantage to dealing with the
engineering practice. Another point of concern is the random
selected subset of features,Ltry. It makes the structure of the
tree less complete and greedy and increases the possibility
that some weak features can have access to the tree and
combine with other features. 
us, the local characteristics
of each sample can bemagni�ed and the probability of wrong
judgement caused by information loss can be reduced. All the
votes by trees have a comprehensive assessment for a sample

[30]. RF is a novel and powerful statistical classi�er that is well
used in other domains but is relatively unknown in the �eld
of rolling bearing fault diagnosis [35].

3. Rolling Bearing Fault Diagnosis Method
Based on VMD-AR Model and RF Classifier

Summarizing the method and theory mentioned above, a
novel rolling bearing fault diagnosis method based on VMD-
AR and RF classi�er is proposed. 
e working process is
shown in Figure 3. 
e main steps are given as follows:

(1) Acquire the vibration signal of rolling bearing under
di�erent conditions. For fault location problem, con-
ditions include normal, inner race fault, outer race
fault, and ball fault. For problem of fault severity
degree, the conditions are concerned with the crack
width or depth. Divide data of each condition into
2 groups randomly. One is training dataset and the
other is testing dataset.

(2) Decompose the vibration signal into several station-
ary component modes, ��. 
e exact number of�� depends on the speci�c characteristics of signal.
Usually, the mode mixing problem will arise when
the number of decomposed modes by VMD is too
small. Also, too large number ofmodeswill costmuch
computing time.

(3) Establish AR model for each component mode. 
e
order J can be determined by AIC. 
e parametersH1, H2, . . . , H� and remnant variance U2 served as the
variable of feature vector:

K � = [H�1, H�2, . . . , H��, U2� ] (c = 1, 2, . . . , !) , (21)

where! is the number of component modes.

(4) 
e feature vector K for a sample is constructed as
follows:

K = [K1, K2, . . . , K�] . (22)
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Table 1: Classi�cation results for fault location problem using VMD-AR model and RF classi�er.

Number of modes Number of training samples Number of testing samples
Classi�cation accuracy (%)

Total accuracy (%)
Normal IR fault B fault OR fault

4

80 320 100 100 100 100 100

160 240 100 100 100 100 100

240 160 100 100 100 100 100

320 80 100 100 100 100 100

5

80 320 100 100 100 98.25 99.56

160 240 100 100 100 98.83 99.71

240 160 100 100 100 100 100

320 80 100 100 100 100 100

6

80 320 100 100 100 100 100

160 240 100 100 100 100 100

240 160 100 100 100 100 100

320 80 100 100 100 100 100

7

80 320 100 100 100 99.5 99.88

160 240 100 100 100 99.83 99.96

240 160 100 100 100 100 100

320 80 100 100 100 100 100

(5) Train RF classi�er by means of feature vectors cor-
responding to all conditions. According to literature
[25], ^, which is the number of trees in forest, is
set to 500. Another parameter, Ltry, in RF classi�er
which means the number of random subsets from
all features can be set to the recommended value in
literature [19, 25]:

Ltry = ⌊√L⌋ , (23)

where L is the number of total features. And check
out the performance of trained RF classi�er with the
testing dataset.

4. Experimental Analysis

To validate the e�ectiveness of the proposed approach, the
experimental dataset from Case Western Reserve University
Bearing Data Center (CWRU) is analyzed. 
is dataset is
extensively adopted to test algorithms. 
e sampling fre-
quency is 48 kHz and rotational speed of rotor is 1772 rpm.

e bearing type is deep groove ball bearing (6205-2RS JEM
SKF) and single point faults were introduced to test bearings
[34].

4.1. Case 1: Results for Fault Location Problem. Firstly, the
study to distinguish di�erent fault locations is performed.

e dataset contains 4 di�erent conditions (normal, inner
race fault, outer race fault, and ball fault). 
e fault diameter
of each fault type is 0.18mm. 
ere are 100 samples under
each condition and 400 samples are acquired totally. In
every condition, some samples selected randomly served as
training data. 
e remaining samples are testing data. All the
sample signals are decomposed by VMD algorithm.
enAR
model is established for every component mode. In fact, the

system condition is mainly decided by the �rst several AR
parameters and the remnant variance. In this paper, we select
the �rst 6 ones and remnant variance to construct feature
vector. All training feature vectors are adopted to train RF
classi�er. In this work, we test di�erent numbers of modes
decomposed by VMD, respectively. Di�erent proportions of
the training samples to testing samples are also taken into
account. 
e numbers of modes and the proportions of the
training samples to testing samples are listed. Meanwhile, we
performed 10 times for each test and the average accuracy can
be achieved.

From Table 1, we can see the diagnostic accuracies are
almost close to 100%.
e results show that the method based
on VMD-AR model and RF classi�er has a high accuracy
in the classi�cation problem of fault location. We can also
observe that the number of component modes has almost
no e�ect on the classi�cation rates. It is worth mentioning
that high diagnostic accuracies can be acquired when only
80 training samples are applied to train the RF classi�er. It
indicates that RF classi�er has an excellent generalization
ability and self-learning ability.

Furthermore, to verify the superiority of RF classi�er,
the diagnosis results of SVM classi�er using the same fault
feature extraction method and calculating process are pre-
sented in Table 2. In this step, the state-of-the-art so�ware
LibSVM is adopted and all the default structural parameters
are used [36]. One can see that both the amount of the
training samples and the number of modes have an obvious
in�uence on the diagnostic results. For 4 component modes,
the recognition rates are relatively low. All the rates are
smaller than 94%. 
e diagnostic accuracy can only reach
88.03% when the number of training sets is 80. Nevertheless,
the accuracy will increase to 93.13% when the amount of
training samples is 320. From another aspect, the diagnostic
accuracies have marked improvement when using 5, 6, or 7
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Table 2: Classi�cation result for fault location problem using VMD-AR model and SVM classi�er.

Number of modes Number of training samples Number of testing samples
Classi�cation accuracy (%)

Total accuracy (%)
Normal IR fault B fault OR fault

4

80 320 99 100 100 53.13 88.03

160 240 100 100 100 50.83 87.71

240 160 100 100 100 53.25 88.31

320 80 100 100 100 72.5 93.13

5

80 320 100 87 98.25 95 95.06

160 240 100 86.5 98.83 100 96.33

240 160 100 88.25 99.25 100 96.88

320 80 100 89.5 99 100 97.13

6

80 320 100 100 88.88 100 97.22

160 240 100 98 99.17 100 99.29

240 160 100 100 100 100 100

320 80 100 100 100 100 100

7

80 320 99.63 96.75 92.13 91 94.88

160 240 99.67 99.83 97.67 93.5 97.67

240 160 100 100 100 95.75 98.94

320 80 100 100 100 94.5 98.63

Table 3: Classi�cation results for fault severity level problem using VMD-AR model and RF classi�er.

Number of modes Number of training samples Number of testing samples
Classi�cation accuracy (%)

Total accuracy (%)
Normal 0.18mm 0.36mm 0.53mm

4

80 320 100 97.63 98.38 91.25 96.81

160 240 100 99.67 98.83 95.83 98.58

240 160 100 99.5 98.5 96 98.5

320 80 100 99 98.5 97 98.63

5

80 320 100 99.63 97 98.25 98.72

160 240 100 100 99.17 99.83 99.75

240 160 100 100 99 99.5 99.63

320 80 100 100 100 100 100

6

80 320 100 100 99.5 98.13 99.41

160 240 100 100 100 98.67 99.67

240 160 100 100 100 99 99.75

320 80 100 100 99.5 97.5 99.25

7

80 320 100 100 95.75 94.25 97.5

160 240 100 100 96.17 97.33 98.38

240 160 100 99.25 96.5 97.75 98.38

320 80 100 100 97.5 100 99.38

component modes. Compared with Table 1, the classi�cation
rates of RF are considerably higher than SVM.

4.2. Case 2: Results for Fault Severity Level Problem. 
e
second case study is the fault severity level problem. In the
dataset from CWRU, the inner race fault data is selected.

e fault diameters are 0.18mm, 0.36mm, and 0.53mm,
respectively. Following the same procedure above, the diag-
nostic results are shown in Table 3. From Table 3, we can
observe that the classi�cation rates are still high. 
e diag-
nostic accuracies are more than 98% in most cases. 
e
results prove that the proposed fault diagnosis method can

also handle the rolling bearing severity level classi�cation
e�ectively. Similarly, the accuracies have no evident changes
with di�erent numbers of componentmodes and proportions
of the training samples to testing samples.

Similar tests are carried out on the SVM classi�er and the
results are given in Table 4. 
e diagnostic accuracies change
with the number of modes. In particular, when the signal
is decomposed into 4 component modes, the classi�cation
rates are low. When the training samples are 80, we can only
acquire a diagnostic accuracy of 81.96%. Also, the amount
of training samples has a strong in�uence on the diagnostic
accuracy. Certainly, the superiority of RF is con�rmed again.



Shock and Vibration 9

Table 4: Classi�cation results for fault severity level problem using VMD-AR model and SVM classi�er.

Number of modes Number of training samples Number of testing samples
Classi�cation accuracy (%)

Total accuracy (%)
Normal 0.18mm 0.36mm 0.53mm

4

80 320 97.25 94.75 47.88 88 81.97

160 240 96.5 100 56.5 94.83 86.96

240 160 98.25 100 63.25 95 89.13

320 80 100 100 66 95.5 91

5

80 320 100 89.5 88.88 75.63 88.5

160 240 100 91.83 89.5 85 91.58

240 160 100 92.75 90 91.2 93.56

320 80 100 100 90.5 93 95.88

6

80 320 100 99.13 92 85.38 94.13

160 240 100 100 94 89.17 95.79

240 160 100 100 92 91.25 95.81

320 80 100 100 94.5 89.5 96

7

80 320 98.13 100 89 83.63 92.69

160 240 99.33 100 93.5 87 94.96

240 160 98.75 100 94.25 87.25 95.06

320 80 99.5 100 95 86.5 95.25

0 50 100 150 200 250 300 350
Normal

IR fault

B fault

OR fault

Sample number

Target output

Real output

Figure 4: Real output for fault location problemwith SVM classi�er
under 4 modes.

4.3. Discussion. From Table 2, it is clear to �nd that the
classi�cation rates of outer race fault can only be about
53% when using 4 component modes and fewer training
samples. Figure 4 is the real output with 320 testing samples
in one time test. A considerable amount of outer race fault
testing samples is classi�ed into inner race fault incorrectly.
From Table 4, we can also observe the classi�cation rates
of fault diameters of 0.36mm are unsatisfactory with 4
component modes and fewer training samples. A real output
in one time test is displayed in Figure 5. On one hand, it
is plausible that there is mode mixing problem when the
signal is decomposed into 4 modes. 
is defect will bring
more di�culties of classi�cation for SVM.On the other hand,
the classi�cation success rate of SVM classi�er is a�ected by
structural parameters severely. In the further work, we use
two optimization algorithms (GA and PSO) to select optimal
penalty factor and kernel function parameter for SVM.
Referring to literature [22, 23], the maximum generation is

0 50 100 150 200 250 300 350
Normal

Sample number

Target output

Real output

0.53mm

0.36mm

0.18mm

Figure 5: Real output for fault severity level problem with SVM
classi�er under 4 modes.

50 and the number of populations is 20 inGA-SVM. For PSO,
themaximum generation count is 50, the number of particles
is set to 20, acceleration constants F1 = 1.5 and F2 = 1.7, and
inertia weightj = 1. 
e diagnostic accuracies are relatively
low when using 4 component modes. Hence, the datasets
with 4 modes are still adopted for further comparative study.

e diagnostic accuracies and consuming time under di�er-
ent classi�ers are expressed in Tables 5 and 6. Obviously, the
classi�cation performance and generalization ability of SVM
can be signi�cantly promoted by GA and PSO optimization
algorithms. Nevertheless, the optimization procedure needs
a mass of calculation and time. RF classi�er has obvious
advantages both in computation time and in accuracy. It
is worth mentioning that RF is insensitive to the classi�er
parameters. A quite satisfactory result can be obtained when
we select the recommended parameter value.

In general, the fault diagnosis success rates are all over
95% when the fault feature extraction method based on
VMD-AR model is combined with di�erent classi�ers (RF,
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Table 5: 
e performance for fault location problem using di�erent classi�ers under 4 modes.

Number of training samples Number of testing samples
Total accuracy (%) Cost time (s)

RF SVM GA-SVM PSO-SVM RF SVM GA-SVM PSO-SVM

80 320 100 88.03 99.06 98.97 0.0771 0.009 1.719 4.108

160 240 100 87.71 99.67 99.96 0.1153 0.0104 3.349 9.274

240 160 100 88.31 99.75 99.88 0.1511 0.0107 6.026 16.89

320 80 100 93.13 100 99.88 0.187 0.011 9.266 27.36

Table 6: 
e performance for fault severity level problem using di�erent classi�ers under 4 modes.

Number of training samples Number of testing samples
Total accuracy (%) Cost time (s)

RF SVM GA-SVM PSO-SVM RF SVM GA-SVM PSO-SVM

80 320 96.81 81.97 95.47 95.69 0.0859 0.0093 2.06 4.041

160 240 98.58 86.96 97.29 96.58 0.1377 0.0103 4.79 9.640

240 160 98.50 89.13 98.06 96.81 0.1822 0.0115 7.77 18.04

320 80 98.63 91.00 98.38 97.63 0.2356 0.0119 11.53 28.34

GA-SVM, or PSO-SVM). It proves that the VMD-AR model
method is suitable for extracting feature of rolling bearing
vibration signal which is always nonstationary. 
e compar-
ative analysis indicates that the RF has a better classi�cation
capacity compared with the SVM at the time of handling the
rolling bearing fault diagnosis problem while costing little
time.
e training strategy based on ensemble learning of RF
is superior to the structural risk minimization principle of
SVM in this �eld.

5. Conclusion

In this paper, a rolling bearing fault diagnosis method
based on VMD-AR model and RF classi�er is put forward.
Firstly, the VMD-AR model method is developed for feature
extraction. Secondly, a novel RF classi�er is applied to pattern
recognition. Finally, the validity of this method is validated
by an experimental dataset.
e analysis result shows that the
VMD-AR model method has a good performance in feature
extraction of rolling bearing. Furthermore, the comparative
analysis shows that the RF classi�er combined with VMD-
AR model has a higher diagnosis success rate compared with
SVM, GA-SVM, and PSO-SVM, while the time consumption
is little.
is classi�er is pretty suitable to deal with the rolling
bearing fault classi�cation problem.

In summary, the novelmethod based onVMD-ARmodel
andRF classi�er is valid for rolling bearing fault diagnosis and
has a wide application prospect in engineering practice.
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