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Abstract 
 
   A study is presented to explore the performance of bearing fault diagnosis using three types of artificial neural networks 
(ANNs), namely, Multilayer Perceptron (MLP) with BP algorithm, Radial Basis Function (RBF) network, and Probabilistic 
Neural Network (PNN). The time domain vibration signals of a rotating machine with normal and defective bearings are 
preprocessed using Lapalce wavelet analysis technique for feature extraction. The extracted features are used as inputs to all 
three ANN classifiers: MLP, RBF, and PNN for four-class: Healthy, outer, inner and roller faults identification. The procedure is 
illustrated using the experimental vibration data of a rotating machine with different bearing faults. The results show the relative 
effectiveness of three classifiers in detection of the bearing condition with different learning speeds and success rates. 
 
Keywords: Bearing Fault detection, Wavelet Transform, Laplace Wavelet Kurtosis (LWK), Kurtosis Factor, Neural Networks, 
Multilayer Perceptron (MLP) , Radial Basis Function RBF, Probabilistic Neural Network (PNN). 

 
1. Introduction 
 
   The predictive maintenance philosophy of using vibration information to lower operating costs and increase machinery 
availability is gaining acceptance throughout industry. Since most of the machinery in a predictive maintenance program contains 
rolling element bearings, it is imperative to establish a suitable condition monitoring procedure to prevent malfunction and 
breakage during operation. The hertzian contact stresses between the rolling elements and the races are one of the basic 
mechanisms that initiate a localized defect. When a rolling element strikes a localized defect an impulse occurs which excites the 
resonance of the structure. Therefore, the vibration signature of the damaged bearing consists of an exponentially decaying 
sinusoid having the structure resonance frequency. The duration of the impulse is extremely short compared with the interval 
between impulses, and so its energy is distributed at a very low level over a wide range of frequency and hence can be easily 
masked by noise and low frequency effects. The periodicity and amplitude of the impulses are governed by the bearing operating 
speed, location of the defect, geometry of the bearing and the type of the bearing load.  
   The rolling elements experience some slippage as they enter and leave the bearing load zone. As a consequence, the occurrence 
of the impacts never reproduce exactly at the same position from one cycle to another, moreover when the position of the defect is 
moving with respect to the load distribution of the bearing, the series of impulses is modulated in amplitude. However, the 
periodicity and the amplitude of the impulses experience a certain degree of randomness (Kiral and Karagulle, 2003, Tandon and 
Choudhury, 1997, Antoni and Randall, 2002 and Mcfadden and Smith, 1989). In such case, the signal is not strictly periodic, but 
can be considered as cyclo-stationary (periodically time-varying statistics), then the cyclic second order statistics (such as cyclic-
autocorrelation and cyclic spectral density) are suited to demodulate the signal and extract the fault feature (Antoniadis and 
Glossiotis, 2001 and Li and Qu, 2003). All these make the bearing defects very difficult to detect by conventional FFT- spectrum 
analysis which assumes that the analyzed signal to be strictly periodic.  
   The wavelet transform provides a powerful multi-resolution analysis in both time and frequency domain and thereby becomes a 
favored tool to extract the transitory features of non-stationary vibration signals produced by the faulty bearing (Qiu et al., 2006, 
Shi et al., 2004 and Rubini and Meneghetti, 2001). The wavelet analysis results in a series of wavelet coefficients, which indicate 
how close the signal is to the particular wavelet. In order to extract the fault feature of signals more effectively an appropriate 
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wavelet base function should be selected. Morlet wavelet is mostly applied to extract the rolling element bearing fault feature 
because of the large similarity with the impulse generated by the faulty bearing (Vass and Cristalli, 2005, Lin and Qu, 2000 and 
Nikolaou and Antoniadis, 2002). The impulse response wavelet is constructed and applied to extract the feature of fault vibration 
signal in (Junsheng et al., 2007). A number of wavelet-based functions are proposed for mechanical fault detection with high 
sensitivity in (Wang, 2001).  
   The Laplace wavelet is a complex, single sided damped exponential function formulated as an impulse response of a single mode 
system to be similar to data feature commonly encountered in health monitoring tasks. It has been applied to the vibration analysis 
of an actual aircraft for aerodynamic and structural testing (Lind, and Brenner), and to diagnose the wear fault of the intake valve 
of an internal combustion engine (Yanyang et al., 2005). ANNs are proposed to solve the non-linear system identification 
problems by learning due to training samples, and have been widely used in the automated health detection and diagnosis of 
machine conditions using features extracted from vibration signals. The appropriate pre-processing of the measurement data 
enables the exclusion of the data, which are less correlated to the bearing condition. Consequently, the minimization of the training 
vector, and thus reduction of NN-training time and computation cost can be obtained. The normalized features of the vibration 
signal in frequency domain which includes the peak amplitude, peak RMS and power spectrum are used as inputs to MLP-ANN 
for bearing fault detection and classification (Liu and Mengel, 1992). Distinguishing the normal from defective bearings with 
100% success rate and classify the bearing conditions into six states with success rate of 97%  are achieved with ANN structure of 
3:12:1 (3 input nodes, 12 hidden nodes and 1 output node) .   
   The MLP-NN trained with supervised error propagation technique and an unsupervised learning NN were used by 
(Subrahmanyam and Sujatha, 1997) for rolling bearing defects classification. The optimal architectures of the network had been 
selected by trial and error process. The signals were processed to obtain various statistical parameters in time and frequency 
domains (i.e. peak value, standard deviation, autocorrelation, kurtosis). The extracted parameters are used as input vectors to train 
the NN. The networks were able to classify the ball bearing into different states with 100% reliability. The unsupervised learning 
network has been found to be extremely fast, about 100 times faster that the supervised back propagation learning network. 
   The vibration frequency spectrum features and the time domain characteristics are applied as NN input vectors for automatic 
motor bearing fault diagnosis (Li et al., 2000). The extracted features are the spectrum amplitude at bearing fault frequencies in 
frequency domain and the maximum and mean value of the vibration amplitude in time domain. The NN is with three output nodes 
representing three bearing conditions namely, bearing looseness, inner race fault, rolling element fault.  
   Until now there are two approaches to combine WA and NNs. The first is to employ wavelet analysis to provide a characteristic 
vector of input sample for NNs, i.e. to take WA as a preprocessing unit, and the second is to assemble wavelet and NNs directly, 
i.e. to apply the wavelet base function (with scale and translation) as a network neuron activation functions. The most dominant 
wavelet transform coefficients using Db4 wavelet function are applied by (Paya and Esat, 1997) as input vectors to the MLP-ANN 
rolling bearing classifier. Both single and multiple faults were successively detected and classified into distinct groups. The ANN 
and wavelet techniques are combined by (Wang. and Vachtsevanos, 2001) to prognosticate the remaining useful life time of rolling 
bearing which enhance the Condition Based Maintenance (CBM) process. The maximum time domain and power spectral of three 
dimensional vibration signals have been used as input features to the ANN. The Mexican hats wavelet has been used as hidden 
nodes activation function. The Genetic Algorithm (GA) technique is applied by (Ray and Chan, 2001) to select the relevant 
features from the processed wavelet coefficients using the complex Morlet wavelet as a mother wavelet function. Five cases of 
bearing faults and one normal bearing case have been used to evaluate the proposed technique. The wavelet contour map is used as 
input features to an ANN-MLP with 19 input nodes, 5-60 hidden nodes, and 4 output nodes to serve as automated wavelet map 
interpretation. The misclassification rate number of testing pattern was used to assess the performance of the MLP classifier 
applied for mechanical vibration signal fault features diagnosis. The misclassifications rate reduces significantly when the number 
of hidden nodes increases from 5 to 20 and above 20 the improvement slows down (Chen and Wang, 2002).  
   The characteristic features of time domain vibration signals of rotating machinery with normal and defective bearings have been 
used by (Samanta and Al-Balushi, 2003) as input vectors to the MLP-ANN. The input layer consists of 15 nodes for time domain 
vibration signal (RMS, variance, skewness, kurtosis, normalizes sixth central moment). The output layer consists of 2 binary nodes 
indicating the status of the machine (normal or defective bearings). Two hidden layers with different number of neurons are 
investigated. The effect of some pre-processing techniques) high pass, band pass filters, envelope detection, and wavelet transform 
prior to feature extraction are also evaluated.  The reduced number of inputs leads to faster training requiring less iteration making 
the procedure suitable for on-line machines condition monitoring and diagnosis. The statistical parameters which include variance, 
skewness and normalized moment of sixth order generated of a 100% fault classification success rate. The uses of central moments 
higher than sixth order have not produce any significant effect on the diagnosis results. The training and test success rates are 
improved with the application of the high and band pass filter for the acquired signals. The DWT with Db4 as a base function 
produced 100 % training success in all cases and the ANN test success rate varied from 100% to 83.33%. The features extracted 
from high frequency signal (second and third WT level) produced high success rates. However, the DWT has not offered any 
substantial advantage over that of simple high pass or band pass filtrations. The signal envelope analysis using Hilbert transform 
gave training success rate of 100%.  
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   The Genetic Algorithm (GA) is used by (Jack and Nandi, 2002) to automatically determine the features which provide the most 
significant information to the NN classifiers, whilst reducing the number of inputs required. The extracted features are 18 different 
moments and cumulate from the resultant of two dimensional vibration data and high order spectra. The ANN performance is 
measured in terms of the network’s classification success on unseen data in the test set. Fitness function of GA returns the number 
of correct classifications mode over the training and validation features sets. ANN achieves a success rate of 98.9% on the training 
set and 97.6% on the test set, and SVM achieves only 81.8 on the training set and 80.4 % on the test set without application of GA 
feature selection. With GA feature selection, the success rates are increased for both ANN and SVM with less numbers of input 
features. The ANN with GA gave a success rate of 99.8% and 100% on the training and test sets, respectively, with 12 inputs out 
of the possible 90 in the feature set. While the SVM with GA feature selection produced 99.5% and 98.1 % success rates on the 
training and test sets, respectively, with 6 input features. The results show that the ANN is faster to train and slightly more robust 
than SVM.  
   A modified Morlet Wavelet combined with Neural Networks (WNNs) is presented by (Guo et al., 2005) for rolling bearing fault 
detection. The modified Morlet wavelet function is used as activation functions of the wavelet nodes in the hidden layer. Time-
frequency spectrum of data is computed and fed into a training stage, in which 6 faults and 7 frequency bands are selected to form 
a feature vector. The WNN approaches were tested on the rotating machinery and compared with BP techniques. The test results 
show that the proposed modified Morlet WNN approach needs much less training epochs and has higher convergence rate and 
diagnosis accuracy than the BP method. 
   The performance of three approaches of neural network classifiers namely, MLP, Radial Basis Function (RBF), and parabolistics 
(PNN) for bearing fault detection are investigated by (Samanta et al., 2006). The input features are extracted from time domain 
vibration signals, without and with pre-processing. The extracted features are used as inputs to all three ANN classifiers for two 
classes (normal / faulty) recognition. GA has been used to select the characteristic parameters of the classifier and the NN input 
features. The RBF with one hidden node of non-linear Gaussian activation function is faster training than a MLP of similar 
structure. The major drawback of PNN which used a pattern layer, was the more computation cost for the potentially large number 
of hidden layers which might be equal to the input nodes number. The use of GAs with only three selected features produced 
approximately 100% success rate with MLPs and PNNs for most of the test cases. The use of six selected features with MLPs and 
PNNs resulted in 100% test success whereas with RBF, test success was 99.31% for eight features. The training time with feature 
selection is quite reasonable for PNNs compared to the other two approaches. The results show the potential application of GAs 
for selection of input features and classifier parameters in ANN based condition monitoring systems. 
   In this paper, the Laplace wavelet has been used as a wavelet-based function. The most dominant Laplace-wavelet transform 
coefficients based on scale-kurtosis level, which represent the most correlated features to the bearing condition, are selected for 
feature extraction. The extracted features in time and frequency domain are used as input vectors to the ANN classifiers for the 
rolling bearing condition classification. The performance of three different NN classification approaches is investigated for rolling 
bearing fault identification. 
 
2 Wavelet Transform (WT) 
 
2.1 Laplace Wavelet Function 
The Laplace wavelet is a complex, analytical and single-sided damped exponential, and it is given by, 
 

 

 

 

   Where β is the damping factor that controls the decay rate of the exponential envelope in the time domain and hence regulates 
the resolution of the wavelet, and it simultaneously corresponds to the frequency bandwidth of the wavelet in the frequency 
domain. The frequency ωc determines the number of significant oscillations of the wavelet in the time domain and corresponds to 
the wavelet centre frequency in the frequency domain, and A is an arbitrary scaling factor. Figure 1 shows the Laplace wavelet, its 
real part, imaginary part, and spectrum. 
   It is possible to find optimal values of β and ωc for a given vibration signal by adjusting the time-frequency resolution of the 
Laplace wavelet to the decay rate and frequency of impulses to be extracted. Kurtosis is an indicator that reflects the "peakiness" 
of a signal, which is a property of the impulses and also it measures the divergence from a fundamental Gaussian distribution. A 
high kurtosis value indicates a high impulsive content of the signal with more sharpness in the signal intensity distribution. 

)1(00)(
0)(

21

<=Ψ
≥=Ψ

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

−
−

twhent
twheneAt

tj cω
β

β



Al-Raheem and Abdul-Karem / International Journal of Engineering, Science and Technology,  
Vol. 2, No. 6, 2010, pp. 278-290 

 

281

 

 

 

 

 

 

 

 

                                                            

                                        (a)                                                                                     (b) 
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Figure 1 (a) the complex Laplace wavelet, (b) real part, (c) imaginary part, and (d) its FFT spectrum. 

 

Let x (t) be a real discrete time random process, and WT its Laplace wavelet transform.  The objective of the Laplace wavelet 
shape optimization process is to identify the wavelet shape parameters (β and ωc) which maximize the kurtosis of the wavelet 
transform output which can be given by: 
 
 
 
 
 
 
2.2 Envelope Wavelet Power Spectrum 
   The vibration signal of a faulty rolling bearing can be viewed as a carrier signal at a resonant frequency of the bearing housing 
(high frequency) modulated by the decaying envelope. The frequency of interest in the detection of bearing defects is the 
modulating frequency (low frequency). The goal of the enveloping approach is to replace the oscillation caused by each impact 
with a single pulse over the entire period of the impact.  
   The wavelet transform (WT) of a finite energy signal x(t), with the mother wavelet ψ(t), is the inner product of x(t) with a scaled 
and conjugate wavelet ψ*a,b , since the analytical and complex wavelet is employed to calculate the wavelet transform. The result 
of the WT is also an analytical signal, 
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Where ψa,b is a family of daughter wavelets, defined by the dilation parameter a and the translation parameter b, the factor 1/√a is 
used to ensure energy preservation. The time-varying function A(t) is the instantaneous envelope of the resulting wavelet transform 
(EWT) which extracts the slow time variation of the signal, and is given by, 
   For each wavelet, the inner product results in a series of coefficients which indicate how close the signal is to that particular 
wavelet.  To extract the frequency content of the enveloped correlation coefficients, the Wavelet-scale Power Spectrum (WPS) 
(energy per unit scale) is given by, 
 
 
 
 
 
 
where SEWT (a, ω) is the Fourier Transform of EWT(a,b) .  
 
2.3 Feature Extraction Using Laplace Wavelet Analysis 
   The predominant Laplace wavelet transform scales (most informative levels) based on the scale-kurtosis value have been 
selected for features extraction. Figure 2 shows the scale-kurtosis distribution for different bearing conditions with the 
corresponding wavelet scale threshold. By using the maximum kurtosis for normal bearing as a threshold level (the dotted line in 
Figure 2) for the wavelet scales, it could be seen that the scales range of 15-20 are the mostly dominant scales , which can reveal 
the rolling bearing condition sufficiently. The extracted features for the dominant scales are: Root Mean Square RMS, Standard 
Deviation (SD), Kurtosis in the time domain and, the (WPS) peak frequency to the shaft rotational frequency, (WPS) maximum 
amplitude to the overall amplitude ratio in the frequency domain. The extracted features were linearly normalized in between [0, 
1], and used as input vectors to the neural network.  
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  Figure (2): The Laplace Wavelet Kurtosis (LWK) for simulated vibration signals of bearing   with different fault condition. 
 
3. The ANN Scheme for Rolling Bearing Fault Classification 
 
A feed-forward multi-layer perceptron (MLP), Radial Base Function (RBN) and Probabilistic Neural Networks have been 
developed for rolling bearing fault classification as follows: 
 
3.1 BP-ANN  
   A feed-forward multi-layer perceptron (MLP) which consists of three layers. The input layer of five source nodes represents the 
normalized features extracted from the predominant Laplace wavelet transform scales. A hidden layer with four computation 
nodes has been used, Figure 3. The number of the hidden nodes is optimized using a genetic algorithm with parameters shown in 
Table 1, with minimization of Mean Square Error (MSE) between the actual network outputs and the corresponding target values 
as evaluation function. The output layer with four nodes which represent the different bearing working conditions to be identified 
by the neural network has been developed. 
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Figure 3: the applied diagnosis system. 
 

Table 1 the applied GA parameters 

Population size 10 

Number of generation 20 

Termination function Maximum generation 

Selection function Roulette wheel 

Cross-over function Arith-crossover 

Mutation function Uniform mutation 

 
  The four-digit output target nodes that need to be mapped by the ANN are distinguished as:  (1, 0, 0, 0) for a new bearing (NB), 
(0, 1, 0, 0) for a bearing with outer race fault (ORF), (0, 0, 1, 0) for an inner race fault (IRF), and (0, 0, 0, 1) for a rolling element 
fault (REF). Figure 4a depicts the overall architecture of the proposed diagnostic system. The training sample vector comprises the 
extracted features and the ideal target outputs expressed by [x1, x2, x3, x4, x5, T ] T,  where x1-x5 represent the input extracted 
features, and T is the four-digit target output. The input vector is transformed to an intermediate vector of hidden variables h using 
the activation function φ1. The output hj of the jth node in the hidden layer is obtained as follows 
 
 
 
Where bj and w i,j represent the bias and the weight of the connection between the jth node in the hidden layer and the ith input node 
respectively.  
 
The output vector O = (o1 o2…oM) of the network is obtained from the vector of the intermediate variable h through a similar 
transformation using activation function φ2 at the output layer. For example, the output of neuron k can be expressed as follows: 
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   The training of an MLP network is achieved by modifying the connection weights and biases iteratively to optimize a 
performance criterion. One of the widely used performance criterion is the minimization of the mean square error (MSE) between 
the actual network output (Ok) and the corresponding target values (T) in the training set. The most commonly used training 
algorithms for MLP are based on back-propagation (BP). The BP adapts a gradient-descent approach by adjusting the ANN 
connection weights. The MSE is propagated backward through the network and is used to adjust the connection weights between 
the layers, thus improving the network classification performance. The process is repeated until the overall MSE value drops 
below some pre-determined threshold (stopping criterion). After the training process, the ANN weights are fixed and the system is 
deployed to solve the bearing condition identification problem using unseen vibration data. The ANN was created, trained and 
tested using Matlab Neural Network Toolbox with Levenberg-Marquarat Back-propagation (LMBP) training algorithm. In this 
work, A MSE of 10E-15, a minimum gradient of 10E-10 and maximum iteration (epochs) of 1000 were used. The training process 
would stop if any of these conditions were met. The initial weights and biases of the network were generated automatically by the 
program. 
 

3.2 Radial Basis Function (RBF) Networks 
 
The RBF uses local hyper-sphere surfaces (non –linear mapping) to separate the classes in the input space as a response to cluster, 
rather than the global hyper-planes (lines) used in MLP networks. RBF networks typically have three layers: an input, a single 
hidden layer with Gaussian activation function and a linear output layer. The activation function )x(ϕ of the hidden layer is 
Gaussian spheroid function as follows: 
 
 
 
 
 
During the learning process the RBF networks parameters are adjusted based on the distribution of input features, xi in the input 
space, in two steps. In first step the non-linearity weights of the hidden layer represent by the centre of Gaussian (cluster)  ci , and 
the width (spread) of Gaussian function σ with the number of the hidden nodes are manipulated. While, in the second step the 
linearly trained output layer weights are updated. The RBFs were created, trained, and tested using Matlab through a simple 
iterative algorithm of adding more neurons in the hidden layer till the performance goal is reached. This procedure could produce a 
larger number of hidden neurons accompanied with longer computation time. 
 
3.3 Probabilistic Neural Networks (PNN) 
 
   Probabilistic neural networks are a special type of radial basis network suitable for classification problems. When input features 
are presented, the first layer (pattern layer) computes the Gaussians for each class in the input space. The second layer (category 
layer) computes the approximation of the class probability function through combination. Finally, a compete transfer function on 
the output of the second layer picks the maximum of these probabilities, and produces a 1 for that class and a 0 for the other 
classes.  
 
4. Implementation of WPS –ANN for Bearing Fault Classification 
 
   The bearing vibration data for rolling bearing with different faults were obtained from the Case Western Reserve University 
(CWRU, Bearing Data Center). The experiments were conducted using a 3 HP electric motor and the acceleration data was 
collected at locations near to and remote from the motor bearings The deep groove ball bearing faults were created using Electric 
Discharge Machining (EDM). The faults ranging from 0.007 inches to 0.40 inches in diameter and 0.011 inches in depth were 
introduced separately at the outer-raceway (with centered position @ 6:00 relative to the load zone), inner-raceway, and the rolling 
element. The vibration data have been collected using an accelerometer mounted on the bearing housing with a sampling rate of 12 
KHz and 10 seconds duration. The smallest fault diameter has been selected for this study with shaft rotational speed of 1797 rpm 
(with no motor load condition) for training data, and rotational speed of 1772 (with 1 HP motor load) for the test data.  
   The neural network input feature vectors consists of five groups represent the different bearing conditions, a total of 3856 
segments of 1000 sample each. The data sets were split in training and test (unseen) sets of size 1928 samples each. The 
distribution of the extracted features using the most dominant scales of the Laplace wavelet transform for different rolling bearing 
fault conditions is shown in Figure 4.  
 
4.1 MLP-BP Neural Network 
   The result of the learning process of the proposed MLP-BP neural network and the classification MSE, are depicted in Figure 5a 
and 5b, respectively, which shows that the training with 45 epochs met the MSE stopping criteria (MSE less than 10E-15) with 
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training time of 3.4 sec. The NN test process for unseen vibration data of the trained ANN combined with the ideal output target 
values are presented in Figure 5c, which indicates the high success rate of 100% for rolling bearing fault classification. The 
success rate is equal to the percentage ratio of the total numbers of input data to NN to the number of success classification of the 
NN output. 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 4:  The extracted features distribution 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: (a) The Training process of the proposed MLP-NN, (b) the MSE of the NN test, (c) the NN training and test results. 

4.2 RBF Neural Network 
   The result of the learning process and classification MSE of the RBF NN is depicted in Figure 6a and the classification MS error 
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criteria. The NN test process for unseen vibration data of the trained RBFNN combined with the ideal output target values are 
presented in Figure 7, which indicates the success rate of 72.1% for rolling bearing fault detection and classification. The first 
column in Fig.7 shows the training patterns which are 1000 for healthy, 0100 for outer race fault, 0010 for inner race fault and 
0001 for rolling element fault, and the second column shows the NN classification outputs. 
 

 
                                              (a)                                                                                                                         (b) 

Figure 6: (a) The Training process of the proposed RBF-NN, (b) the MSE of the NN test. 

Figure 7: The training and testing pattern for RBF-NN for different bearing condition classes: (a) Healthy, (b) Outer race fault, (c) 
Inner-race fault, and (d) Rolling element fault. 
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4.3 Probabilistic Neural Network 
   The results of the learning process and the classification MSE of the PNN are with the training time of 0.5 sec to meet the MSE 
stopping criteria (MSE less than 10E-15), the training MSE is shown in Fig. 8. The NN test process for unseen vibration data of 
the trained PNN combined with the ideal output target values are presented in Figure 8, which indicates the high success rate of 
97.5% and training time of 0.5 sec, for rolling bearing fault detection and classification. Table 2 shows the NN classification 
success rate and the required training time for the three different applied NNs. 
 

Table 2: The success rate and training time for different neural networks 
NN type Success Rate Training Time (sec) 

MLP- BP with LM algorithm 100% 3.4 (45 epochs) 

PNN 97.5% 0.5 

RBF 72.1% 121.2 (475 epochs) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8: the MSE for PNN classification. 

 
 
5. Conclusions 
 
   Based on the obtained results, the following conclusions can be extracted: 

• The RBF NN is not suitable for multi-classes classification problem, as the number of hidden nodes would be more and 
the computation time is high. Moreover, the success rate is less compared with BP and PNN approaches. 

• The training time of PNN is less compare with BP and RBN networks with high classification success rate. However, 
more classification error can be seen for rolling element fault identification, as the extracted features are with low 
magnitude compared with the outer and inner race fault conditions.  

• The BP network generates a classification success rate of 100% for all the bearing fault conditions but with more training 
time than PNN. 
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Figure 9: The training and testing pattern for PNN for different bearing condition classes: : (a) Healthy, (b) Outer race fault, (c) 
Inner-race fault, and (d) Rolling element fault. 
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