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ROLLING CONTACT BETWEEN DISSIMILAR VISCOELASTIC CYLINDERS*

L. W. MORLAND
University of East Anglia

Summary. This paper treats the plane problem of rolling contact between linear
viscoelastic cylinders with different radii and different quantitative mechanical response.
The analysis is an extension of that previously given for the simpler problem of rolling
contact between two identical cylinders (or equivalently one cylinder and a rigid half-
plane), for which a singular integral equation was derived connecting pressure and normal
displacement in the contact region. The present problem is shown to lead to an integral
equation of identical form but containing further parameters which reflect the difference
in the properties of the two cylinders. A neater construction of the closed form solution
of the integral equation is presented and the final formulae are expressed in terms of
tabulated functions. An illustration is given for a viscoelastic model with two char-
acteristic times.

1. Introduction. In many technical applications, contact between moving parts is
designed to be smooth, commonly by lubrication. The effect is to reduce the shear
traction in the contact region to a level small in comparison with the normal pressure,
so that a first approximation is the complete neglect of shear traction. In this idealised
situation the relative tangential motion of the surfaces is not restricted. The net resisting
traction and couple acting on each contact body are now resultants of the normal pressure
distribution over the contact region.

Plane surfaces and circular cylinders provide the simplest contact geometries for
an investigation of the pressure distribution and resulting resistance to motion, and
are commonly adopted in experimental testing devices. A typical situation is contact
between rotating cylinders, which is treated in this paper on the further simplifying
assumptions of plane deformation, constant angular velocity for each cylinder, and
neglect of inertia effects. The latter include both the linear acceleration and the centrifugal
force which arises with respect to axes fixed in a rotating cylinder, so that small angular
velocity in both senses is implied. The elastic analysis of the problem leads to a symmetric
contact pressure distribution and consequently no net traction or couple. Nonsymmetric
pressure and the resulting resistance to the motion are associated with inelastic behavior
of one or both contact bodies. In this paper the problem is analysed with both cylinders
exhibiting linear viscoelastic behaviour but each with a different quantitative response.
The angular velocities of the two cylinders are related by a rolling (nonslip) condition
in mean, but in view of the assumed lack of restriction on the relative tangential velocity
any prescribed angular velocities are consistent with the boundary conditions.

A detailed treatment for the case of identical viscoelastic cylinders has been given
in [1], and there the symmetry leads to a plane contact region so that the pressure
solution applies also to a viscoelastic cylinder rolling over a rigid plane, and, in fact,
is shown also to apply to a rigid cylinder rolling over a viscoelastic half-plane. The
present extension to dissimilar cylinders involves a more general contact region shape,
not prescribed but a part of the required solution. This new unknown function enters
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the individual boundary displacements of the two cylinders and therefore complicates
the separate boundary conditions for each cylinder. But the contact geometry provides
an expression for a particular additive combination of the normal displacements of
the two cylinders, independent of the contact shape, and forming the corresponding
combination of integral representations for the individual cylinder displacements,
derived in [1], leads to a singular integral equation for the contact pressure. These
integral representations and resulting integral kernel depend explicitly on the viscoelastic
model adopted, which also introduces parameters relevant to further discussion of the
equations and solution. It is therefore helpful at this point to describe the qualitative
behaviour assumed for both cylinders.

An isotropic linear viscoelastic material may be defined in terms of two creep
functions, for example a shear response J (J) and dilation response x(0- It was shown
in [1] that there is no loss in generality of the integral representations, qualitative or
mathematical, by assuming incompressibility, that is, setting x(t) = 0, and this algebraic
simplification is adopted here. The simplified stress-strain laws become

ta = 0, ef;(x, t) = JoSn(x, 0 + J J'(t - V) dt', (1.1)

where tkk is the dilatation, and s,-,-, etj are the usual physical components of the deviatoric
stress and strain tensors respectively, x denotes position with respect to fixed axes and t
is the current time. J'it), where ' denotes derivative with respect to argument, is under-
stood to be zero for t < 0. The response is now governed by the single creep function
J(<), for which a model with a finite spectrum of characteristic times rr (r = 1, • • • , N)
is assumed, namely

J(t) = J0{l + jr( 1 - exp f-//rr])W). (1.2)

H(t) is the Heaviside step function, J0 is the instantaneous (elastic) response, and
jr (r = l; • ■ • N) are the weightings associated with the characteristic times. The long
time (equilibrium) response is ./0 {1 + j,}.

To distinguish quantities associated with the individual cylinders, superior ~,
respectively will be used throughout. Thus the viscoelastic response function (1.2)
for one cylinder will be defined by a set of parameters J0 ,jr , fr (r = 1, • • • , M), and
for the second cylinder by a set J0 , Jr , fr (r = 1, • • • , N). That is, models with M
and N characteristic times respectively.

Now the displacement representation for an individual cylinder is comprised of
a term associated with the instantaneous response, and a sum of similar terms each
associated with a characteristic time. On forming the additive combination of the two
displacements arising in the contact conditions a sum of similar terms is obtained
corresponding to a total of M N characteristic times. In turn the resulting integral
equation has the same form as that for an identical cylinder problem in which the
common creep function has a spectrum of M + N characteristic times. Thus the dis-
similar cylinders problem is reduced to an identical cylinders problem with a common
creep function containing the composite number of characteristic times. The actual
reduced times, their weightings, and the instantaneous response, depend generally
on the sets of parameters of both cylinders, but there is some flexibility in relating
these reduced properties to those of the two cylinders. It is found convenient for com-
parison of the two problems to match the reduced angular velocity, radius, and
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instantaneous response, with those of one cylinder, while retaining the ratios of all
M + N characteristic times to contact time and prescribing the same total normal
force (along the line of centres). Then the contact angles, contact time, and the actual
characteristic times and weightings occurring in the two problems differ in a determined
manner.

It remains to comment on the common integral equation and its solution. For
convenience the reduced creep function will be described by (1.2), the model with N
characteristic times. The solution given in [1] involved the construction of an iVth order
differential equation for the finite Hilbert transform of the pressure, but with no simple
formulae for the (constant) coefficients. A closed form inversion for the typical expo-
nential term was obtained but the N integration constants depended on integrals
requiring numerical evaluation. In the present treatment it is shown that by adopting
the known form of the Hilbert transform, its complete specification can be derived
directly from the original integral equation in terms of simple algebraic equations.
In addition, the analysis is extended to evaluate the one remaining integral in terms
of tabulated functions. A considerable shortening of the numerical calculations needed
to present a quantitative solution is thus obtained.

Effective measures of the nonsymmetry arising in the pressure distribution are
provided by two parameters. These are A, a fractional angular displacement of the
central contact radius from the line of centres, and n, a coefficient of rolling friction
defined as the ratio of transverse to normal force divided by the semicontact angle.
The latter takes into account that the transverse force is necessarily smaller than the
normal force by a factor of order the contact angle, since it is a resolution of normal
pressure only. Both A and n depend on the ratios of the characteristic times to contact
time and their weightings relative to the instantaneous response. In order to exhibit
the interplay of these variables a detailed numerical illustration is presented for a
model with two characteristic times, equivalent to dissimilar cylinders each represented
by a single-time model, for which there are four such variables.

2. Contact conditions. Figure 1 illustrates the contact geometry with the contact
boundary AB greatly enlarged; the curve AB is unknown. The superior ~ denote
quantities associated with the respective cylinders, e, e are the respective semicontact
angles, and the bisectors of the contact angles, OC, OC make angles 5, $ with the line
of centres 66; 5, 8 are to be determined in the solution. OC and OC are used as the
fixed zero lines for the polar angles 9, 9 in the cylinders of radii R, li respectively,
measured positive in the sense of the angular velocities co, &. P is a general point on
the contact boundary with polar coordinates (f, 9), (f, 9), S) respectively, d, d are non-
dimensional measures of the indentation depths. The viscoelastic stress relaxation is
responsible for the shift of the central lines OC, OC away from the line of centres 66 and
towards the leading edge A of the contact region.

Now it was shown in [1] that the semicontact angle is a measure of the maximum
strain magnitude occurring in the identical cylinders, so that within the linear theory
terms of order e are neglected in comparison with unity. If pressures and (or) materials
are such that the contact angle cannot be regarded as infinitesimal, then the above
implies that the nonlinear theory must be used. On applying this linearisation in each
cylinder, that is neglecting terms of order £, e respectively, which will be discussed in
Sec. 4, it is easily seen that

g/e = 3/5 = 6/0 = f/f = R/A = k, (2.1)
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Fig. 1. Contact geometry.

where the ratio k is a useful geometric parameter. Further, with the assumption of
rolling contact in mean, an overall nonslip condition, the mean circumferential
velocities are the same and the angular velocities satisfy

di/to = k. (2.2)

The current neglect of shear traction over the contact region allows, if required, inde-
pendent prescription of co, &.

The respective coordinates of the point P on the contact boundary are related by
the geometric identity

f cos (0 — 8) + r cos (0 — 5) = /?(1 — d) cos 8 + ^(1 — d) cos o. (2.3)

With the definition of nondimensional angular displacements

X = 6/i = 6/i, 4 = l/i = 8/i, (2.4)
it follows from (2.3) that

+ l ~d + + |r(l + k)(x2 - 2Ax) + o(e3), |x| < 1, (2.5)
li k li k

where e represents max (e, e). Here the previous result d = 0(t2 log e) has been used.
It will be seen in Sec. 3 that it is the ^-dependent term of order e2 that is significant.

The displacement of the particle (in each cylinder) currently at the point P on the
contact boundary involves both radial and transverse components, and the contact
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geometry provides only a relation for a combination of these two components (for both
cylinders). It was shown in [1] that the transverse component term makes no first
order contribution so that within the linear theory the displacement is described by
a radial component u. Then for the two cylinders,

u/R = f/R — 1, u/R — r/R — 1, (2.6)
where u, u are the displacements at P. Thus (2.5) becomes

A *

| + 71 = -d - j + + k){x2 - 2Ax), \x\ < 1, (2.7)R k R k
anticipating the removal of the higher order terms, which gives an expression for a
combination of the individual cylinder displacements at a general contact point P.

For each cylinder the stress boundary conditions are simply zero shear traction
over the entire circumference, zero normal (radial) traction over the circumference
outside the contact region, and within the contact region normal pressures p(d), p(9).
Continuity of pressure at the point P implies

p(ix) = p(ix), |x| < 1, (2.8)
where it is assumed that the pressure is bounded at the end points x = ± 1 in view of
the smooth contact. It is convenient for subsequent application of integral representations
derived in [1] to introduce dimensionless pressures for the individual cylinders by the
relations

JoP(O) = iP(x), Jop(d) = iP(x), (2.9)
when the continuity condition (2.S) becomes

JoP(x) = U0P(x), |x| < 1. (2.10)
The result that the maximum strain in each cylinder is of the order of magnitude of the
contact angle rests on showing that P(x), P(x) are of order unity, which will be discussed
in Sec. 4.

The contact tractions on each cylinder are assumed to be balanced by line forces
on the cylinder axis, which, as shown in [1], make no first order contribution to the
boundary displacements. Using the convention that the normal pressure is applied to
the undeformed circular boundary, no balancing couple at the centre is required. Let T
denote the normal (line of centres) resultant of the pressure distribution and S the
transverse resultant (opposing the motion), respectively equal for the two cylinders.
Then in terms of the dimensionless pressures,

T = f = (' P(x) dx = -f- f P(x) dx, (2.11)
J - 1 J 0 ^ -1J

S = S == A'eT - -7- f xP(x) dx = A if - f xP{x) dx,
J 0 c' -1 J 0 ^ - 1

(2.12)

within the linear approximation. The additional contact angle factor in S is indicated
in this form. A coefficient of rolling friction is now defined as

jj. = p. = S/iT = S/'ef = A — J xP(x) dx j J P(x) dx, (2.13)
omitting the alternative expression. This provides a measure of the mechanical effect
of the nonsymmetry in the pressure distribution while A represents the nonsymmetry
of the contact boundary.
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3. An integral equation formulation. It is proposed to start from the integral repre-
sentation derived in [1] for the boundary displacement of a rotating viscoelastic cylinder.
This was obtained with the same boundary traction conditions as apply to each cylinder
here, namely zero shear traction everywhere and normal pressure over a contact region
subtending by a small contact angle, and with the assumption of steady state with
respect to the (nonrotating) polar coordinates (r, 6). Inertia terms are neglected and
all known second order terms in the contact angle are eliminated. Then for the viscoelastic
model (1.2) with N characteristic times, and in the notation defined in the last section,
this representation is

I (- tr) '; ~ 5 T-(°- - 1)F-(I" *'>.dx', \x\ < 1, (3.1)

applying only to the contact region. The parameters yr and ar are defined by

yT = «/o>r, , ar = 1 + jry2r/(e2 + 7r) (r = 1, ■■■, N), (3.2)

while the kernel functions Vr(x) are given by

Vr(x) = -exp [~yrx] f ~ ds (r = 1, • • • , N). (3.3)
J-yrx o

The yr are ratios of semicontact time to each characteristic time, and so contain the
dependence on the angular velocity co. For y, of order unity (or greater), which excludes
some range of large angular velocity, ar = 1 + jr to the first order and the factor (ar — 1)
is simply the weighting jr associated with rr . It is assumed that each weighting j, is
of order unity so that only creep terms comparable with the instantaneous response
are retained in the model.

Each Vr(x) has a logarithmic singularity at x = 0, while the leading term of the
kernel in (3.1) is a strong singularity with the integral interpreted as a Cauchy principal
value, requiring continuity of P(x) in |x| < 1. By introducing the new functions

g(x) = - f t ^(x) = P(x')Vr(x - x') dx', (r = 1, ■ ■ • , N)
7T J — i X — X IT J-i

(3.4)
where d(x) is the finite Hilbert transform of P(x) {see, for example, [2, p. 173]}, (3.1)
can be rewritten

d
dx = 3(x) + yMr — l)fr(.-c), \x\ < 1. (3.5)

The following properties will be used in Sec. 5. The functions 6{x), 3,(x) are defined
by (3.4) for all x, and in particular are continuous at x = ±1 for bounded P(x).
Differentiating 3r(x), and using (3.3), shows that

Sl(x) + yrSr(x) = S(x); \x\ ^ 1, (r = 1, ■ • • , N), (3.6)
where d'r(x) is not necessarily defined at x = ±1. Further from (3.4) and (3.3),

d(x),i)r(x) = 0(l/|a:|) as |x| —> °° (r = 1, , N). (3.7)
The above results may now be applied to each cylinder separately, taking viscoelastic

models with M and N characteristic times rT , fr respectively. Let J be the ratio of
the instantaneous creep responses of the two cylinders defined by

Jo = J Jo , (3.8)



1968] ROLLING CONTACT BETWEEN DISSIMILAR VISCOELASTIC CYLINDERS 369

then the continuity condition (2.10) and definition (3.4) give

kP(x) = JP(x), k${x) = J~3(x). (3.9)
Differentiating (2.7) and substituting the representations (3.5) for each cylinder, using
the second relation (3.9), yields

_ M _ N
(1 + J)9(x) + yr(5r — l)3r(x) + k yr(ar — l)dr(x) = (1 + k)(A — x),

r-1 r-1

\x\ < 1, (3.10)
where the indentation depths d, <1 are now eliminated. Using the pressure identity
in (3.9) with the definition (3.4) expresses dr(%) in terms of P(x), each r — 1, • • • , N,
so that (3.10) then constitutes an integral equation for P(x). Alternatively it may be
rewritten as an integral equation for P{x).

In fact (3.10) can be reduced to an integral equation for an identical cylinders
problem. Defining a new dimensionless pressure P(x) by

(3.1D

and a set of parameters yr , ar (r — 1, • • ■ , M + N) by

y, = y, (r = 1, • • • , M),
= (r = M+ 1, ••• ,M + N), 2)

«'-1=r--F7 (r = 1, ,M),

= J &T+~J1 (r = M + 1, • • • , M + N),

together with the associated functions 8(x), VT{x), Sr{x) (r = 1, • • ■ , M + N) as given
in (3.3), (3.4), allows (3.10) to be rewritten as

ii r + N

3(x) + yr(ar - l)dr(x) = A — x, |x| < 1. (3.13)
r = 1

Since Vr{x) is independent of ar , and depends only on yr which by (3.2) is one of the
yr oryr, each Vr(x) (r = 1, • ■ • ,M + N) is one of the Vr(x) or Vr(x) and the differential
relation (3.6) between dr(x), g(x) holds for each r = 1, • ■ • , M + N. Also the asymptotic
properties (3.7) apply. The integral equation (3.13) is that derived in [1] for the
dimensionless pressure P(x) of an identical cylinders problem with the single set of
parameters yr , a, (r = 1, • ■ • , M + A"), corresponding to a common viscoelastic creep
function with M + N characteristic times rr. The semicontact angle e, angular velocity a>,
and weightings jr (r = 1, • • • , M + N) are given by the relations (3.2). Further, the
R.H.S. of (3.13) shows that A is also the off-centre shift of the contact region in the
reduced identical cylinders problem.

4. Comparison of equations for dissimilar and identical cylinders. The introduction
of new quantities by (3.11), (3.12) reduces the dissimilar cylinders problem to the integral
equation (3.13) for an identical cylinders problem, and (3.13) can now be regarded as
the standard equation for all cases. A corresponding standard solution will be obtained
in closed form in Sec. 5, but first we will examine the class of dissimilar cylinder solutions
generated b}r a solution of (3.13), that is for specified values of 7r, ar (r = 1, • • • , M + N).
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Recall that the contact region shift A is not prescribed, but is part of the solution, and
being unchanged in the reduction is therefore determined before the parameters reflecting
the different properties of the two cylinders are chosen. By (3.12) the fr , yT are fixed,
which, from (3.2), determines the ratios of the fr and of the tr , but not their magnitudes
until i/u (= e/oi) is chosen. Also the ar and dr are not fixed until J is chosen. The actual
contact pressure distribution p(6) in the two problems depends, through (2.9), on the
respective dimensionless pressure, contact angle, and instantaneous response of the
material, and the corresponding resultant normal forces, from (2.11) and (3.11), satisfy

r = f = iTT7'l Tj- «•»
where e, R, J0, T refer to the reduced identical cylinders problem. Similarly, from (2.13)
and (3.11), the reduced coefficient of rolling friction, n, satisfies

P = A = (4.2)
and so is unchanged in the reduction.

For a comparison of the two problems it is convenient to identify the reduced common
cylinder properties with the ~ cylinder (say) properties to the extent

Jq ~ Jq , R ~ Ro , co — co, (4.3)
when (3.12) further implies

(r = 1, ■■■ ,M) (44)

(r = M + 1, ,M + N).
Now, either the normal forces or semicontact angles may be matched, with the implications

T = f => r = y~ 62, e = e =* T = [-±-| T. (4.5)

In both cases the characteristic times r, , fr are then related to the rr by (4.4). If the
two cylinders are in fact identical, when k = 1, e = t, J = 1, M = N, fr = fr , ar = &r
(r = 1, ■ • • , iV), it follows trivially that T = T and ar — 1 = aN+r — 1 = 5(5, — 1),
rr = rN+r = fr (r = 1, • • ■ , N). That is, the 2N characteristic times reduce to the N
distinct fT each with a total weighting ar — 1 which gives the required identical cylinders
integral equation.

It remains to discuss the validity of the integral equation (3.13) as the exact (linear)
formulation of the dissimilar cylinders problem. Recall that the single cylinder results
taken from [1] neglect terms, in comparison with unity, which have the same magnitude
as the contact angle. The justification rested on showing P(x) is of order unity, so that
by (2.9) £ and Jop(0), a measure of the strain in the contact region, are of the same order
of magnitude. In application to the separate cylinders terms of order i, e respectively
are neglected, and we have yet to examine the respective magnitudes of strain. Since
the solution of (3.13) shows that P(x) is of order unity, the magnitudes of P(x) and
P(x) are given in terms of k and J by (3.11), and hence the magnitudes of J0p(d) and
j0p(d), the respective strain-measures, follow from (2.9). Clearly if k and J are separately
of order unity, which is the typical case in practice, or, less restrictive, the ratio k/J is
of order unity, then P(x) and P(x) are of order unity and give the respective strain measures
as required. In particular the limiting case of viscoelastic cylinder and rigid half-plane
(equivalent to an identical cylinders problem) is given by k/J = 1.

In general, the identification of contact angle with strain measure in each cylinder
devolves on the dimensionless pressures P(x), P{x) both being order unity, which in turn,



1968] ROLLING CONTACT BETWEEN DISSIMILAR VISCOELASTIC CYLINDERS 371

from (3.11), requires both (1 + k)/(l + ,/) and J( 1 + k)/k( 1 + J) to be of order unity.
But the validity of neglecting terms of order e, e within the linear theory requires only
that €, e are not greater in magnitude than the respective strain measures. Hence the
less restrictive condition is that P(x) and P{x) have magnitudes of order unity or greater,
corresponding to the same condition for the factors (1 + k)/(1 + J) and J{I + k)/k{ 1 + J).
In more detail, specifying the magnitudes of k and J separately, these validity conditions
are easily shown to be equivalent to

k = 0(em), J = 0(e); m>l> 0 or 0 > I > m. (4.6)
Thus, although the ratio of the radii and the ratio of the instantaneous responses of the
two cylinders may separately have any magnitude, these magnitudes must satisfy the
restrictions (4.6). If the magnitudes of k and J lie outside the ranges (4.6), then at least
one of i, e is greater than the strain magnitude in the respective cylinder. Provided
that e, e « 1, the appropriate higher order terms can be retained in both the displacement
boundary conditions and integral kernels, but the resulting equations are considerably
more complicated. An iteration in powers of e, e may be feasible. As remarked earlier,
if e or e is not small then finite deformation occurs in the appropriate cylinder and the
linear theory is not applicable.

5. Solution of the integral equation. The two-cylinder problem is now reduced to
the standard singular integral equation (3.13), which describes an identical cylinders
problem for a finite spectrum model with the composite number of characteristic times;
for convenience this is now defined as N. A closed form solution has been constructed
in [1] by showing that d(x), which is the finite Hilbert transform of P(x) {[2, p. 173]},
satisfies an iVth order differential equation with constant coefficients. This is solved
for g(x) and the N integration constants determined by evaluating (3.13) and its first
(N — 1) derivatives at x = 0. Inverting the transform gives P(x). It will now be shown
that the construction of the differential equation coefficients and subsequent evaluation
of the (N — 1) equation derivatives can be replaced by a neat algebraic procedure if
we start from the predicted general form of solution for $(x). Thus, calling on results
from [1], 8(x) takes the form

3{x) = B0 - BlX + Z Ame~XmX, \x\ <1, (5.1)
m = 1

where it is assumed that the roots of the auxiliary equation, Xm , are distinct. Coincident
roots give rise to terms x' exp [ —Xmx] for which the present method, as that in [1], can
be trivially extended. Inversion of the finite Hilbert transform (5.1), defined by (3.4),
was shown to give

,v
P{x) = £,(] - x2)W2 + Mm exp [ —X,„.r]

in = 1

[f/o(xm) - 71(XJ](1 - fyU2 exp [X,/] dt, |*| < 1, (5.2)

already bounded (in fact zero) at x = 1, together with the condition for bounded (zero)
P(-D,

B0+ Z AJ0(\m) = 0. (5.3)
m = 1

J0(XJ, Ix{\m) are modified Bessel functions of the first kind {see, for example, [3, p. 77]}.
We must now determine the N exponents X,„ , N nonzero coefficients A m (giving B0),
Bi and A.

7'** X
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Integrating (3.6) with 9 (x) in the form (5.1) gives for each r = 1, ■ ■ • , N,

4,(x) = 'yrP>n t Bl ~—x+ Z Amx exP [-^] + Dr exp [—yrx], |z| < 1
yr Tr m = l 7r

(5.4)
where Dr is an arbitrary constant of integration. Note that yr 9^ X„ (r, m = 1, • • • N)
since otherwise 0r(x) would include a term x exp [—yrx] with no balance term in (3.13)
under the present assumption of distinct Xm . Substituting (5.1) and (5.4) in (3.13) and
balancing the respective constant, linear, exp [—Xma;]) exp [ — yrx] terms, produces the
identities

Ba{\ + Z (a, - 1)} + = A, (5.5)
V r = 1 J r = lTr

Bill + Z («, - 1)1 = 1, (5-6)
N

Am ̂  0, (rn = 1, •••, N), (5.7)
7 rr = 1

Dr = 0 (r = 1, • • • , N). (5.8)
B1 is determined directly by (5.6) whence (5.5) and (5.3) express A in terms of Bl and
the Am . Rewriting (5.7) shows that Xm (rn = !,•■■, N) are roots of the 2Vth order poly-
nomial equation

n (7, ~ x) + Z 7r(«, - 1) fl (7. - X) = 0, (5.9)
r-1 r*=l a-1

and since yr and (ar — 1) are strictly positive it follows directly from (5.7) that all the
roots are real and

X„ > min (yr), >0, (m, r = 1, • • • , N). (5.10)
Finally, combining (5.8) and (5.4) and evaluating at x = — 1 gives the N relations

fTr(—1) = y'Bo + + Bt + E A"^ (r = 1, ••• ,N). (5-11)
"yr m = l 7r

where it remains only to evaluate the dr(— 1) from the Eqs. (3.4).
In choosing the contact boundary x = — 1 {instead of x — 0 as chosen in [1] for the

numerical evaluation} we are following the analytic approach adopted in [4] for a single
time model. There the displacement on the half-space boundary outside the contact
region was considered, which, together with continuity at the contact boundary and
known asymptotic behaviour at infinity, sufficed to determine the integration constant.
In this cylinder problem, with no physical infinity, we could interpret similarly for the
stretched coordinate x, but more directly, bounded P(x) in |.t| < 1 ensures that S(x),
8r(x), defined in (3.4), are continuous at x = ±1 {hence the strain function defined
in (3.5) J while (3.6), (3.7) provide the differential relations and asymptotic behavior.
Thus performing the integration and using the behavior of dT(x) as x —> — °°, recalling
that each yr > 0,

&r{— 1) = exp [-yr] J exp [7,s]0(s) ds (r = 1, AO, (5.12)

which requires $(x) in a; < —1. From the definition (3.4) with P(x) given by (5.2), and
using some elementary Hilbert transforms,

S(x) = -BAx + (.r2 - 1),/2} + Z Amgm(x), x < -I, (5.13)
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where
_ Xj, f1 exp [~X„y] f f1 [//q(XJ

(1 - O'
(m = 1, • ■ • , N). (5.14)

Integration by parts, noting that the inner integral vanishes at y — — 1, shows that
g'm(x) + \mgm(x) = K(x2 — l)~I/2[/i(Xj — z/0(Xm)] — XmI0(X„). (5.15)

By (5.14), gm(x) = 0(1/\x\) as x —* — <», and by (5.10), Xm > 0, so on further integration

gm(x) = X„ exp [-Xmz] J fh(\m) - tI0(Xm)](t2 ~ l)~u3 exp [X„J] dt — 70(Xm). (5.16)

Using this result to evaluate £T (— 1) verifies continuity with the (5.1) expression once
the Am are determined.

Substitution for 6(x) in (5.12), and using some Bessel function integral representa-
tions [3, p. 185], gives

*,(-1) = -2 {fr + 1 - 7, exp fovjff.fr,)} - E AJo(Xm) + £ XmAm exp [yr]Gmr
7r m-r 7r m-1

(r = 1, ••• , N), (5.17)
where

Gmr = J exp [7rS]|j [h(K) - tl0(\m)](t2 - 1)'1/2 exp [-Xm(s - t)] cftj ds

(m, r = 1, • • • , N), (5.18)
and after further integration by parts and use of a Bessel function identity [3, p. 80],

(Xm - 7r)Gmr = h(K)K0(yr) + /0(Xm)Z1(7r) ~ ~ exp [Xm - yr]

(m,r = 1, • ■ • , N). (5.19)
K0(7r), Kx(yT) are modified Bessel functions of the second kind [3, p. 78]. Hence
substituting (5.17)-(5.19) in (5.11) and eliminating B0 by (5.3) gives finally the N sim-
ultaneous equations for the Am ,

Z r^2- [IdK)KSr) + Io(K)Ki(yr)] = B, (r = 1, • • • , N). (5.20)
K — 7r 7r

The normal and transverse forces, and rolling friction coefficient, defined in (2.11)-
(2.13), are now obtained from the appropriate integrals of P(x) given by (5.2). If this
is expressed in the form

P(x) = 5,(1 - x2)l/2 + Z AmPm(x), \x\ < 1, (5.21)
m = 1

then simple integration by parts shows that

- r PJx) dx = J,(Xm), - f xPJx) dx = ~ h(\m) - |70(XJ, (5.22)
7T J — i 7T J_i Am

whence

T = ~ + E ^m/:(X„)} , (5.23)Jo I

= 1 L_

For completeness, by (5.5) and (5.3),

|/o(Xm) - f- /,(Xm)
^ in

JB.+ zu./xoo). (5.:
m-1 /

24)

A=Ut t     - ,7 E i4.7o(Xj, (5.25)
r-l 7 r -£>1 oj~1
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where B, is defined by (5.6), and the Xra , Am (m = 1, ■ • ■ , N) respectively are determined
from (5.9), (5.20). In the simplest case of a single-time model (N = 1), necessarily an
identical cylinders problem, the above equations reduce to the formulae given in [4]
after modification to the different notation, and it is easily shown that A1 > 0 ; PX(x) > 0,
P(x) > 0 (|x| < 1), A > 0. Further, the limiting cases 7i —> 0 (fast rolling), 7i —>
(slow rolling) lead to symmetric elastic pressure distributions with the instantaneous
response and long time response respectively as modulus, and A = 0. For the iV-time
model, with the X„ roots of a polynomial and the Am solutions of simultaneous equations,
the lack of explicit formulae prohibits such straightforward deductions analytically.

6. Illustration for a viscoelastic model with two characteristic times. Setting N — 2
in the results of Sec. 5 gives an identical cylinders solution for a common creep function
with two characteristic times. In turn a class of solutions for dissimilar cylinders is gen-
erated, as described in Sec. 4, with each cylinder represented by a creep function with a
single characteristic time. The case N = 2 will now be examined in detail.

The two characteristic times tx , r2 enter through their ratios with the semi-contact
time, 7! and y2 , defined by (3.2). Since fast rolling has been excluded from the present
treatment it is reasonable to consider 7j , y2 of order e1/2 or greater, when from (3.2)
the factors a, — 1 and a2 — 1 are replaced by the weightings j, , j2 respectively. In the
excluded range it is necessary to specify and a2 , determine e in the solution, and
recover jx and j2 from (3.2). It is convenient to prescribe the weightings through their
ratio and sum, where the latter measures the total creep relative to the instantaneous
response, that is through the parameters

h = j2/ji , / = ji + j2 ■ (6.1)
Similarly, for the two time ratios 7i , 72 define

7 = 7i . f = 72/71 • (6.2)
The instantaneous response Ja, radius R, and normal force T affect only the determina-

tion of e, by (5.23), once (3.13) is solved, and then occur only in the combination TJJR
which can be regarded as the one prescribed quantity. A single solution then applies
to the consistent sets of ,70 , R, T. Further, explicit dependence on TJ0/R may be elim-
inated by introducing an appropriate reference magnitude for the contact angle, namely
the contact angle 2e, when the cylinders are stationary and in equilibrium under the
same normal force. The latter is obtained by setting each yr = <» and each Am = 0
in (5.23) and (5.6), when, on using (6.1),

e? = 2(1 + 1)TJa/wR. (6.3)
Then by (5.23), (5.6), and (6.1),

1 + 2(1 + /) ^2 AmI1(\m), (6.4)«»
2

t

where Xj , X2 are roots of the quadratic (5.9). Now we can define a coefficient of rolling
friction n r which is independent of the actual contact angle, a more useful measure of
the transverse force arising from a given normal force, by

= S/e/T = 6mA, • (6.5)
An Atlas programme for the above system of equations has been constructed with

h, /, 7, f as variable parameters, and run with data in the following ranges:

7 = 1, 0.5 < h < 2, 0.5 < / < 5, 0.1 < f < 10.
The choice 7 = 1, which equates one characteristic time with the semi-contact time,
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ensures that the corresponding creep contribution is effective during contact. Varying f
over a wide range from small to large values takes the second characteristic time between
comparatively large and comparatively small values, and hence its creep contribution
during contact varies over the full range. With a narrow range for the weighting ratio,
h, the maximum creep contributions associated with the two characteristic times are
kept at similar levels. Clearly the viscoelastic memory effects, and resulting nonsym-
metry, increase as the maximum total creep / increases, but in view of the present in-
finitesimal strain assumption it is appropriate that creep and instantaneous (elastic)
response remain the same order of magnitude.

The variation of A and ixT with f is shown in Figs. 2 and 3 for given values of h and
/ in plots against log f which is a more natural scaling for the time ratio. Since it is found
that changing h within the above range has less significance than changing /, the illustra-
tions are restricted to the case h = 1. When f = 1 (ti = 72 = 1) the two characteristic
times coincide and the solution is that for a single-time model with the same total creep
/, independent of the weighting ratio h. It is seen for h = 1, with both characteristic
times equally weighted, that the maximum values of both A and /xT occur at decreasing
values of f as the total creep / increases, and for / > 0.5 the peaks occur in f < 1. Thus
the nonsymmetry effects from a two-time model, with the second characteristic time
in some range of values greater than the semi-contact time, are greater than those for
the single-time (equal to semi-contact time) model, f = 1, with the same total creep.

-1-0 -8-0 -6 0 -i-'O -2-0 0 0-2 O'lj. 0-& C-S hO

Fig. 2. Variation of A with s" for h = 1 and specified values of /.
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-1-0 -O-S -0-6 -0-4- -0-2 O O'Z O-b- O-b OS

Fig. 3. Variation of Mr with f for h = 1 and specified values of /.

We can infer that the maximum effect will occur for an overall characteristic time of
the material somewhat greater than the semi-contact time, particularly as / increases.
The semi-contact angle, as described by e/ e, , is found in each case to increase monoton-
ically with f, and the following table indicates its range of values over 0.1 < f < 10
for different values of /, with h = 1.

/

e/e

0.5

0.851-0.93,':

1.0

0.769-0.902

2.0

0.680-0.869

5.0

0.590-0.838

Conclusion. A closed form solution has been obtained for rolling contact between
dissimilar viscoelastic cylinders, but it should be noted that its construction depends
explicitly on the viscoelastic model adopted. That is, the derivation of the integral equa-
tion kernel and the crucial differential relations between its parts hinge on the finite
spectrum of characteristic times. For a general creep function, or even a continuous
spectrum model, the analogous steps do not follow.
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