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Rolling friction of a hard cylinder on a viscous plane
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Abstract. The resistance against rolling of a rigid cylinder on a flat viscous surface is investigated. We
found that the rolling-friction coefficient reveals strongly non-linear dependence on the cylinder’s velocity.
For low velocity the rolling-friction coefficient rises with velocity due to increasing deformation rate of the
surface. For larger velocity, however, it decreases with velocity according to decreasing contact area and
deformation of the surface.

PACS. 46.55.+d Tribology and mechanical contacts – 62.40.+i Anelasticity, internal friction, stress
relaxation, and mechanical resonances – 81.40.Pq Friction, lubrication, and wear

1 Introduction

The effect of rolling friction has been investigated by many
scientists according to its great importance in engineer-
ing (e.g. [1–19]) and physical science (e.g. [20–22]). Sci-
entific publications on rolling friction range back to, at
least, 1785 when Vince described systematic experiments
to determine the nature of friction laws [23].

It is known that surface effects such as adhesion
(e.g. [24–28]), electrostatic interaction (e.g. [29–31]), and
other surface properties (e.g. [32–34]) may have strong in-
fluence on rolling friction. For viscoelastic materials, how-
ever, it was argued that rolling friction is due very little
to surface interactions, i.e. the major part is due to de-
formation losses within the bulk of the material [35–39].
Under this assumption Greenwood et al. [35] calculated
the rolling friction coefficient for a hard sphere rolling on
a soft plane. The deformation in the bulk was assumed to
be completely plastic. Then an empirical coefficient was
introduced to account for the incomplete recover of the
material. Recently a similar problem has been addressed
in [40] where the rolling friction coefficient for a soft
sphere on a hard plane has been derived as a first-principle
continuum-mechanics expression. This coefficient has been
found within a quasi-static approach [41] as a function of
the viscous and elastic constants of the sphere material
without introducing phenomenological parameters.

In the case of a soft sphere rolling on a hard plane [40]
the contact surface between the bodies is flat. This allows
for the application of Hertz’s contact theory. In the oppo-
site case of a hard sphere or cylinder on a viscous plane
which we address here, this assumption is not justified
since the plane deforms in such a way that its shape fol-
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lows the shape of the rolling body in the area of contact.
This complicated shape of the contact surface excludes
the direct application of Hertz’s contact theory and may
violate Hertz’s contact law which relates the force acting
between the interacting bodies to their deformation.

The velocity dependence of the rolling friction coeffi-
cient originates from the fact that the deformation of the
surface varies with the velocity of the rolling body. For
small velocities the viscous stress, proportional to the de-
formation rate, is small. In this case the deformation of
the plane (measured by a depth h by which the body pen-
etrates the surface, see Fig. 1) is determined mainly by the
elasticity of the plane and by the weight of the body. On
the other hand at very large velocities the viscous stress
becomes comparable to the elastic stress. As a result the
plane supports the rolling body at significantly smaller de-
formations. This leads to decreasing penetration depth h,
hence, less energy may be required to deform the surface.
In this case one observes decreasing resistance to rolling
with increasing velocity. Mainly because of the complicat-
edly shaped contact area it is not possible to treat these
effects within the first-principle continuum-mechanics de-
scription, hence a simpler model will be considered. As
shown in the following this model reflects the most im-
portant properties of the problem addressed.

2 The model

We investigate the resistance against rolling of a hard
cylinder on a soft plane. Consider a cylinder of radius
R, length L � R and mass per unit length M which
rolls along the x-axis with velocity v. We assume that the
surface may be modelled by a system of noninteracting
springs. Their elastic, damping and inertial properties are
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Fig. 1. Sketch of the system: a rigid cylinder rolls on a plane
built up of independently moving damped springs. According
to the motion of the cylinder the surface is deformed and me-
chanical energy is lost due to its damped motion. This dissi-
pation of energy can be understood as rolling friction.

described by the coefficients k, γ and m. These are defined
as follows: kdx and γdx give the elastic and viscous force
per unit length along the cylinder axis, mdx gives cor-
respondingly the linear mass density of the springs (i.e.
their mass per unit length along this axis). The viscous
plane becomes deformed in the range x− ≤ x ≤ x+ due to
the mass of the cylinder. For deformation rates small as
compared with the vertical speed of sound, Hooke’s law is
valid and one has the equation of motion which describes
the behaviour of the surface

mÿ(x) + γẏ(x) + ky(x) = f(x, t), (1)

where f is the force density (fdx gives the force per unit
length along the cylinder axis) which acts on the plane
in the region of contact. Outside of the contact area the
force density is zero. In our model we neglect lateral cou-
plings of the springs (for justification of these assumptions
see the Appendix). We also assume that no surface waves
are excited on the plane, i.e. that the condition of the
overdamped motion of the surface

m

k
<

1

4

γ2

k2
(2)

holds true [42]. Since we are interested in the steady state,
i.e. time independent behavior, we do not need to explic-
itly consider the tangential interactions between the cylin-
der and the surface. An arbitrarily small tangential force
assures that the cylinder does not slide. If one, however, is
interested in accelerated motion of the cylinder, tangential
forces need to be considered.

By geometrical considerations we find for the shape
y(x) of the surface of the deformed plane in the contact
area:

y(x) = R − h−
√
R2 − (x− xc)2, x− ≤ x ≤ x+, (3)

where xc is the x-coordinate of the center and h =
−ymin = −y(xc) is the penetration depth of the cylinder.
For R� |x− xc| we approximate (3) by

y(x) =
(x− xc)2

2R
− h. (4)

The center of the cylinder moves with constant velocity v,
i.e. xc = vt. Hence, the time derivatives of y(x) read

ẏ(x) = −ẋc
x− xc

R
= −v

x− xc

R
(5)

ÿ(x) =
v

R
ẋc =

v2

R
= const. (6)

The compression force exerted by the plane to the cylinder
is

FN = −

x+∫
x−

f(x)dx. (7)

(For simplicity of notation here and in what follows we
notate the forces, energy and torque per unit length of
the cylinder, e.g. the total force exerted by the plane to
the cylinder is LFN.)

The springs at x+ which at time t get in contact with
the cylinder need a separate discussion [43]: at time t −
δ (δ → 0) their velocity is zero while infinitesimal time
later ẏ(t + δ) is finite according to (5). This singularity
in the velocity distribution may be attributed to a force
F ′N, acting at point x+. This gives a finite contribution to
the total force which can be determined by the following
consideration:

In the time interval dt the cylinder moves by vdt. So
it accelerates springs of total mass mvdt. The total mo-
mentum received by these springs is dp = ẏ(x+)mvdt,
hence,

F ′N = −
dp

dt
= −ẏ(x+)mv =

x+ − xc

R
mv2. (8)

The total force FN + F ′N supports thus the weight of the
cylinder:

FN + F ′N = Mg. (9)

Substituting y and its time derivatives (Eqs. (4, 5, 6)) in
(1) we get an expression for the force density in the contact
area

f(x, t) =
k

2R
(x− xc)

2 −
γv

R
(x− xc) +

mv2

R
− hk (10)

which has to satisfy the contact condition

f(x, t) ≤ 0 for x− ≤ x ≤ x+ (11)

and which determines the boundaries of the contact area
x±. In comoving coordinates ξ = x − xc, equation (10)
reads

f(ξ) =
k

2R
ξ2 −

γv

R
ξ +

mv2

R
− hk. (12)

The boundary of the contact area at the front side of the
cylinder in the direction of motion is

ξ+ =
√

2Rh (13)
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according to geometry. The boundary at the back side is
determined by f(ξ−) = 0, i.e.

0 =
k

2R
ξ2
− −

γv

R
ξ− +

mv2

R
− hk (14)

ξ− =
γv

k
−

√
2hR+

(
γ2

k2
− 2

m

k

)
v2. (15)

For the self-consistency one needs the condition ξ− <√
2Rh, i.e. h(v) > m2v2/2γ2R to be fulfilled, which re-

stricts the velocity v from above [44].
Because of the dissipative properties of the plane the

motion of the cylinder corresponds to a loss of mechanical
energy per time. Another contribution originates from the
instantaneous acceleration of plane material which gets in
contact with the plane during the time dt [43]. Therefore,
we find for the energy which is transferred per time from
the cylinder to the plane

Ė = −

ξ+∫
ξ−

dξf(ξ)ẏ(ξ) −m
ẏ2(ξ+)

2
v

=
v

R

ξ+∫
ξ−

dξξf(ξ)−mv3 2h

R

= −vFR. (16)

Equation (16) defines the force FR which acts against
rolling of the cylinder

FR = −
1

R

ξ+∫
ξ−

dξξf(ξ) +mv2 2h

R
· (17)

To evaluate FR we need the force f(ξ) given by equa-
tion (12) with the penetration depth h(v) which is to be
found. The penetration h(v) results from equilibrating the
dynamical resistance of the surface with the weight of the
cylinder (9)

Mg = −

ξ+∫
ξ−

dξ

[
k

2R
ξ2 −

γv

R
ξ +

mv2

R
− hk

]
+
mv2

R

√
2hR

(18)

with the boundaries (13) and (15). Equation (18) is an
implicit equation for h.

We consider first the limit of small velocities. In this
limit equation (18) may be solved as a perturbation expan-
sion, h = h(0) +h(1)v+h(2)v2 + · · · . It is more convenient,
however, to solve (18) with respect to an expansion of ξ+:

ξ+ = ξ
(0)
+ + vξ

(1)
+ + v2ξ

(2)
+ + · · · (19)

Using equations (13, 15, 19) one can further write the
small-v expansion for ξ−:

ξ− = −ξ(0)
+ + v

(γ
k
− ξ(1)

+

)
− v2

(
λ

2
√

2hR
+ ξ

(2)
+

)
+ · · ·

(20)

where

λ ≡

(
γ2

k2
− 2

m

k

)
.

Substituting equations (19, 20) into equation (18) and us-
ing (13) one can solve it perturbatively to find the front
boundary

ξ+ =

(
3R

2k
Mg

)1/3

−
λ v2

4 ξ
(0)
+

+ · · · , (21)

where

ξ
(0)
+ =

(
3R

2k
Mg

)1/3

(22)

denotes the front boundary for the static case. Then from
(20) the rear boundary follows

ξ− = −ξ(0)
+ + v

γ

k
−

λ v2

4 ξ
(0)
+

+ · · · (23)

Correspondingly, the penetration depth reads:

h(v) = h0 −
λ v2

4R
+ · · · (24)

where

h0 ≡ h
(0) =

(
ξ

(0)
+

)2

/2R (25)

is the static penetration depth. From equations (24, 2) it
follows that the penetration depth h decreases with in-
creasing velocity.

Using the obtained expansions for ξ+ and ξ− it is
straightforward to calculate the rolling friction force. Sub-
stituting (10, 21, 23) into equation (17) one finally arrives
at an expression for the rolling friction torque,M = RFR:

M = µrollMg (26)

µroll =
γ

k
v −

3λ

4ξ
(0)
+

v2 + · · · (27)

As it follows from equation (27), in the limit of small veloc-
ities the leading linear term depends only on the viscous
and elastic constants and does not depend on the inertial
properties of the material, characterized bym. This means
that in this regime the inertial effects in the deformation
process of the plane are negligible. The second nonlinear
term takes into account via m/k in λ the inertial effects
up to O(v2). It is also interesting to note, that while the
linear term does not depend on the radius of the body,

the nonlinear term depends (via ξ
(0)
+ ) on both, the radius

of the cylinder and its mass per unit length M .
In the general case equation (18) has to be solved

numerically. The velocity dependence of the penetration
depth h and of the rolling friction coefficient µroll are
shown in Figures 2 and 3. Calculations were performed
for a steel cylinder of radius R = 0.1 m, and of mass per
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Fig. 2. The penetration depth h as a function of the velocity
v according to the numerical solution of equation (18). The
dashed line shows the approximation (24).
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Fig. 3. The rolling friction coefficient µroll over the ve-
locity v (numerical solution). The dashed line shows the
approximation (27).

unit length M = 250 kg m−1 rolling on the rubber surface
with the following material parameters: m = 100 kg m−2,
k = 107 kg m−2s−2, γ = 5 × 105 kg m−2s−1. These values
were obtained from density and elastic constants of rub-
ber [45]; the viscous constant was estimated from the resti-
tution coefficient for colliding rubber spheres, similarly as
in [40], where the details of this estimate are given.

As shown in the figures, at high velocities the depth
h decreases and the rolling friction coefficient reaches a
maximal value of

µ∗roll =
1

3

γ2

k2

ξ
(0)
+

λ
(28)

at

v∗ =
2

3

γ

k

ξ
(0)
+

λ
· (29)

For velocities v > v∗ the rolling friction coefficient de-
creases with increasing velocity. For particular parame-
ters used here one obtains µ∗roll = 1.125 × 10−2 m and
v∗ = 0.4500 m s−1, which are in a reasonable agreement
with the numerically obtained values (see Figs. 2 and 3).

Note that with increasing velocity the rear boundary
ξ− shifts in positive direction and approaches the front
boundary ξ+. The contact area between the surface and

the cylinder thus decreases and at some critical velocity
it shrinks to a point (a line along the cylinder axis). For
velocities larger than this critical one the weight of the
cylinder is sustained by the force F ′N, acting at a single
point at the front boundary ξ+.

3 Summary and discussion

We investigated the rolling motion of a hard cylinder on
a viscous plane. The elastic, viscous and inertial proper-
ties of the plane were modelled by a system of uncoupled
springs which are characterized by linear elastic and vis-
cous coefficients and mass density. For small velocity of
the rolling cylinder we determined the velocity expansion
of the rolling friction coefficient analytically up to second
order. For larger velocities the rolling friction was deter-
mined numerically.

In the range of low velocity our analysis shows increas-
ing rolling friction coefficient with increasing velocity. At
a certain velocity the coefficient reaches its maximal value
and decreases when the velocity is further increased.

In the low velocity regime where the rolling friction
coefficient rises linearly with the velocity of the cylinder
its value depends on the ratio of the viscous and elastic
constants. For high velocities one notes nonlinear depen-
dence on the cylinder’s mass, radius and on the material
constants of the surface.

We also analyzed the dependence of the penetration
depth (i.e. the depth at which the cylinder sinks into the
bulk of the surface) on the cylinder velocity. We found that
the penetration depth decreases with increasing velocity,
i.e. that the rolling cylinder emerges upwards when its
velocity increases.

Frank Spahn is acknowledged for discussion. This work was
supported by Deutsche Forschungsgemeinschaft (Po 472/3-2
and 472/5-1).

Appendix: Lateral couplings
In our model we assumed that the viscous surface is com-
posed of springs which are not coupled in lateral (horizon-
tal) direction. This simplification may limit the validity of
the model since we ignore lateral interactions in the plane,
which obviously exist in real systems and which cause the
tangential elasticity of the surface. In the appendix we
want to study in more detail the range of validity of our
model.

Lateral interactions of the springs may be taken into
account if instead of equation (1) one uses

mÿ(x) + γẏ(x) + ky(x)− d
∂2

∂x2
y = f(x, t), (30)

where the constant d describes the lateral coupling be-
tween the springs. With the dimensionless variables ŷ =
y/R, x̂ = x/R and t̂ = t/(R/v) the left-hand side of equa-
tion (30) reads

mv2

R

∂2

∂ t̂2
ŷ(x̂) + γv

∂

∂t̂
ŷ(x̂) + kRŷ(x̂)−

d

R

∂2

∂x̂2
ŷ(x̂). (31)
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Thus we conclude that if the radius of the cylinder satisfies
the condition

R2 �
d

k
, (32)

the term describing the lateral coupling is negligible and
our model is valid.

The value of
√
d/k is a characteristic length of influ-

ence of lateral couplings. If the above condition (32) is
satisfied, one can apply equation (1) for almost the entire
contact region, except for the (small) region around ξ+.
In these region the deformation of the surface may dif-
fer from the idealized shape which, as we assumed, results
from pure geometrical considerations. Instead the range of
deformation of the surface is slightly enhanced by a char-
acteristic size ∼ r0 due to lateral couplings between the
springs. If the cylinder is at rest or if it moves very slowly,
similar discussion applies to the small region ∼ r0 around
the rear point ξ−. Consider first the motion of the surface
in a region around ξ+.

Since ξ+ � r0 the region of the characteristic size ∼ r0
may be considered as a point, so that the total force acting
on this region may be attributed to the single point ξ+.
The dissipation in this region (which is finite) is, therefore,
attributed to the point ξ+ too. Coarse-graining, therefore,
results in the force F ′N (ξ+) acting at the point ξ+.

We will estimate the characteristic size r0: if we take
into account lateral couplings in the region r0 around ξ+
there is no contact between the surface and the cylin-
der (free surface condition). The derivative y′ ≡ ∂y/∂x
changes from zero (condition of the undisturbed plane) to
y′ ≈ y′(ξ+) ≈ ξ+/R at the point of contact, which fol-
lows from the geometry of the system (see Fig. 1). Thus,
in this region one estimates y′′ ≡ ∂2y/∂x2 ∼ ξ+/R r0.
Similarly, the characteristic value of y in this region reads
y ∼ r0y

′ ∼ r0ξ+/R and, correspondingly, the characteris-
tic values ẏ = ẏ(ξ+) = −vξ+/R and ÿ = v2/R follow from
equations (5, 6). Then we write the condition of the free
surface in this transient region,

mv2/R− γvξ+/R+ kr0ξ+/R− dξ+/R r0 = 0, (33)

to estimate the size of the region:

r0 =

√
d

k
+

(
mv2

2kξ+
−
γv

2k

)2

−

(
mv2

2kξ+
−
γv

2k

)
(34)

which yields r0 =
√
d/k for the static case. Hence, the

condition for coarse-graining, r0 � ξ+, reads

d

k
� ξ2

+ +
m

k
v2 −

γ

k
vξ+. (35)

We want to discuss the consequences of the assumption
(35) or of the assumption ξ2

+ � d/k (the later condition
follows from the former one, unless the velocity is too high,
i.e. unless v � ξ+

√
k/m). In this case the force F ′N(ξ+)

which acts at the point ξ+ reads

F ′N(ξ+) =

∫ ξ++δ

ξ+−δ
f(ξ, t)dξ, (36)

where δ is of the order (say somewhat larger) than r0, and
we can write for the different terms in the left-hand side
of equation (30):∫ ξ++δ

ξ+−δ
mÿdx = m

∫ ξ++δ

ξ+−δ

dẏ

dt
dx = m

∫ ξ++δ

ξ+−δ
dẏ

dx

dt

= mv

∫ ξ++δ

ξ+−δ
dẏ = mv [ẏ(ξ+ + δ)− ẏ(ξ+ − δ)]

= −mvẏ(ξ+) = mv2 ξ+/R (37)

where we take into account that ẏ(ξ+ +δ) = 0 (the surface
is at rest) and that ẏ(ξ+−δ) = ẏ(ξ+) on the coarse-grained
scale. Similarly, using the above estimate of y(x) in the
transient region, we obtain the coarse-grained estimates:

γ

∫ ξ++δ

ξ+−δ
ẏdx = γv [y(ξ+ + δ)− y(ξ+ − δ)] ∼ −γvr0ξ+/R

(38)

and

k

∫ ξ++δ

ξ+−δ
ydx ≈ k

∫ ξ++δ

ξ+−δ
y′(ξ+)xdx ∼ 2kr0ξ

2
+/R. (39)

Finally, the last term reads

−d

∫ ξ++δ

ξ+−δ
y′′dx = −d [y′(ξ+ + δ)− y′(ξ+ − δ)]

= dy′(ξ+) = dξ+/R. (40)

As it follows from equations (37–40) the second and third
terms, proportional to r0, vanish on the coarse-grained
scale. The fourth term does contribute to F ′N(ξ+) on the
coarse-grained level, but it does not depend on the velocity
v. It may be taken into account within the general scheme
of calculation of the rolling friction given above. Namely,
with this term included, one obtains, e.g. for the front
boundary

ξ
(0)
+ =

3RMg

2k

1 +
3

2

(d/k)(
ξ

(0)
+

)2




1/3

≈

(
3RMg

2k

)1/3

,

(41)

where the condition ξ2
+ � d/k was used. Similarly, the im-

pact of this term on the other expressions obtained previ-

ously is negligible, i.e. it is of the order (d/k)/
(
ξ

(0)
+

)2

� 1

under the coarse-grained condition. Thus, we conclude
that the fourth term in F ′N(ξ+), which accounts for the
lateral interactions may be also neglected. This gives the
result

F ′N(ξ+) = mv2 ξ+/R. (42)

Similar considerations may be performed for the dis-
sipation in the transient region. Skipping the details
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of the analysis (very similar to that for F ′N(ξ+)), we give
the final result:∫ ξ++δ

ξ+−δ
f(ξ, t)ẏ(ξ)dξ = −m

ẏ2(ξ+)

2
v (43)

which describes the energy loss in the point ξ+ on the
coarse-grained scale.

Using the same reasoning one can consider the region
∼ r0 around the rear point ξ− to conclude that under the
condition ξ2

+ � d/k its contribution to the total force and
to the dissipation is negligible: Indeed, the region ∼ r0
in the rear part of the contact area may influence the
motion of the cylinder only for very small velocities v when
|ξ+| − |ξ−| ∼ r0. However, contribution to the force and
dissipation from this rear region is proportional to r0 and
therefore may be neglected.

Thus, we conclude that our simplified model of the
viscous surface as a system of linear uncoupled springs
may be adequate for real systems and it may be used to
model the rolling friction phenomenon.
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Phys. Rev. E 53, 5382 (1996).
42. For the case of lower damping the situation appears to be

more complicated: surface waves of the plane are excited
and it may happen that the area of contact is not con-
tinuous, i.e. the sphere and the surface touch in multiple

regions x
(1)
− ≤ x ≤ x

(1)
+ and x

(2)
− ≤ x ≤ x

(2)
+ < x

(1)
− , etc.

This complicated behaviour which resembles Schallamach
waves is excluded if we require overdamped motion of the
plane. Actually, it may be shown that more weak than
equation (2) condition, m/k < γ2/2k2, should be satisfied
to exclude the multiple contact areas. This corresponds to
surface waves appearing in the rear part of the plane which
has been already passed by the rolling cylinder. Such kind
of waves will not affect our calculations.

43. In real systems where the surface also has a tangential
elasticity, which may be modelled by the lateral coupling
between the springs, one should consider a transient region
of the plane of some finite extent. For the case of large ra-
dius of the cylinder, compared to the penetration depth,
and for large vertical elasticity, compared to the tangential
elasticity, the transient region is small. One can then at-
tribute the force and dissipation occuring in this region to
a single point. Since the region is small, the viscous losses
are negligible compared to the energy required to acceler-
ate this part of the surface material. More details are given
in the Appendix.

44. If this condition does not hold the cylinder is sustained
only by the singular force F ′N. This situation reminds to
water skiing, when all the weight of the skier is sustained
by the inertia of the water. In this case the lateral coupling
of springs ignored in the present model is important.

45. Landolt-Börnstein. New Series, Vol. V/1b (Springer,
Berlin, 1982).


