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Abstract

The rolling friction of adhesive microspheres is an important quantity as it determines the

strength and stability of larger aggregates. Current models predict rolling forces that are 1 to 2

orders of magnitude smaller than observed experimentally. Starting from the well-known

Johnson–Kendall–Roberts (JKR) contact description, we derive an analytical theory for the

rolling friction based on the concept of adhesion hysteresis, e.g. a difference in apparent

surface energies for opening/closing cracks. We show how adhesion hysteresis causes the

pressure distribution within the contact to become asymmetrical, leading to an opposing

torque. Analytical expressions are derived relating the size of the hysteresis, the rolling torque,

and the rolling displacement, ξ . We confirm the existence of a critical rolling displacement for

the onset of rolling, the size of which is set by the amount of adhesion hysteresis and the size

of the contact area. We demonstrate how the developed theory is able to explain the large

rolling forces and particle-size dependence observed experimentally. Good agreement with

experimental results is achieved for adhesion hysteresis values of ("γ /γ ) ≃ 3 for

polystyrene, and ("γ /γ ) ≃ 0.5 for silicates, at crack propagation rates of 0.1 µm s−1 and

1–10 µm s−1, respectively.

Keywords: rolling friction, adhesion hysteresis, contact mechanics, viscoelasticity,

microspheres

(Some figures may appear in colour only in the online journal)

1. Introduction

The forces between contacting micrometre-sized particles

are an important ingredient in scientific studies in many

different fields. Some applications include industrial issues

as the transportation of powders and sands, the coagulation

of aerosols in the Earth’s atmosphere, and the initial steps of

planet formation in proto-planetary discs around newly born

stars.

As a result of the small surface-to-mass ratio of

micrometre-sized bodies, attractive van der Waals forces have

an important effect on the interparticle forces [1, 2]. For

the normal (i.e. radial) motion, the surface forces can cause

the particles to adhere together and coagulate, the details of

which have been studied extensively both theoretically [3, 4]

and experimentally [5]. Lateral forces experienced during

rolling or sliding have received somewhat less attention, but

are equally crucial when studying the structure and strength

of larger aggregates [3]. Except for very compact aggregates,

the restructuring of aggregates will occur by bending arms

or chains of microspheres, and individual sphere–sphere

contacts act as hinge points. If little friction is associated

with the rolling or sliding motion, aggregates will be weak

against restructuring. More specifically, [6] have shown

the compressive strength of a porous macroscopic aggregate

depends directly on the rolling friction between its constituent

particles.

Experimentally measuring the torque between adhesive

microparticles is challenging. Still, numerous authors

have succeeded using very different techniques, including

manipulating single [7, 8] or chains of microspheres [9] with

an atomic force microscope (AFM), resolving restructuring

events in time [5, 10], and non-contact techniques [11–13].
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From the theoretical side, the rolling force between

adhesive microspheres has been studied by Dominik and

Tielens [14], who showed an asymmetry in the mutual contact

area will give rise to an opposing torque. The size of this

asymmetry was assumed to equal the interatomic distance. The

theory is still widely used in N -body simulations studying the

behaviour of large ensembles of micrometre-sized particles

[6, 15, 16], despite the fact that the parameter governing the

asymmetry has to be increased by one to two orders of

magnitude to match the experimental results.

In this work we set out to expand the model of [14]

to allow for adhesion hysteresis and viscoelastic losses in

the contact area, in an attempt to explain the large rolling

forces observed experimentally. In section 2, we investigate

how viscoelasticity affects the contact region, and we derive

analytical expressions relating the rolling torque, the level of

asymmetry of the contact, and relevant material properties.

The developed theory is compared to experimental results on

rolling spheres in section 3. Results are discussed in section 4

before the main conclusions are summarized in section 5.

2. Theory of rolling friction

2.1. Equilibrium adhesive contact

To determine the rolling friction of an adhesive microsphere, a

detailed knowledge is required of the contact area, and how it

changes in time. Here, we briefly revisit elastic contact theory

in the absence of external torques. When discussing normal

forces between spheres of radii R1 and R2, two parameters

suffice to describe the mutual contact. These are the contact

radius a and the distance of mutual approach δ. Combining

equations (5) and (11) of [17], the pressure distribution within

the contact area is given as a function of 0 ! r ! a:

p(r) =
E∗

πR

a2 − 2r2 + Rδ
√

a2 − r2
, (1)

where R−1 ≡ R−1
1 + R−1

2 equals the effective radius, and

E∗−1 ≡ (1 − ν2
1 )/E1 + (1 − ν2

2 )/E2 is the combined elastic

modulus, with Ei the Young’s Moduli and νi the Poisson

ratios of the spheres—see also [18]. We deliberately write

the pressure distribution in terms of both a and δ, because the

presence of adhesion hysteresis will lead to non-equilibrium

configurations [19]. The elastic normal force between the

spheres is found by integrating the pressure distribution

FE =

∫ a

0

2πrp(r) dr =
2E∗

3R

(

3aδR − a3
)

. (2)

To describe the contact between a sphere and a flat surface,

R2 → ∞ and R = R1 equals the sphere radius.

In the non-adhesive and perfectly elastic case, a unique

relation between these two parameters exist, as described by

Hertz [20]. In this limit, the elastic force is always repulsive.

Almost a century later, Johnson and co-workers expanded the

work of Hertz to include adhesion [1]. Their theory (hereafter

JKR theory) shows that when the material’s surface energy is

taken into account, the contact area is enlarged compared to

the Hertzian case, and contact can be maintained for negative

values of δ by the formation of an adhesive neck. In addition,

a stable point exists where particles stay in contact when no

external force is present. At this equilibrium point, FE = 0

and the contact radius is given by

aeq =

(

9πγR2

2E∗

)1/3

, (3)

with γ the combined surface energy. In JKR theory, a unique

relation between a and δ exists,

δ =
a2

R
−

√

2πγ a/E∗, (4)

and in principle a single parameter suffices to describe the

contact region and the interparticle force.

It should be noted that JKR theory is valid only for large

values of the Tabor parameter [21]:

µ ≡
(

Rγ 2

E∗2z3
0

)1/3

, (5)

with z0 ∼ 0.2–0.4 nm the spacing between atoms. For µ > 5,

JKR theory can be used, while for µ < 0.1 Derjaguin–Muller–

Toporov theory is accurate [2].

In the JKR contact description, the stresses at the contact’s

periphery are singular. Treating the contact edge as a circular

mode I crack of length 2πa, we can define a stress intensity

factor as

N = lim
r→a

p(r)
√

a − r. (6)

The energy release associated with the creation of new surface,

the ‘strain energy release rate’, then equals

G = π
N2

E∗
=

E∗

2π

(

a2 − Rδ
)2

aR2
, (7)

similar to the case of rolling cylinders [22]. In the perfectly

elastic case, we may identify this as the surface energy, and

set G ≡ γ . When adhesion hysteresis is present however, the

value of G needed for crack propagation depends on whether

the crack is opening (Gop > γ ) or closing (Gcl < γ ),

and is often written as a function of opening/closing rate,

i.e. the crack velocity [23–26]. The difference between the

opening/closing effective surface energies "γ ≡ (Gop −Gcl),

is called adhesion hysteresis, and can be caused in a number of

ways. For viscoelastic materials, the high strain rates close

to the crack tip give rise to viscoelastic hysteresis, where

("γ /γ ) can vary between effectively zero to several orders of

magnitude, depending on the rate with which the surfaces are

brought together or separated [23, 27–32]. Alternatively, so-

called interdigitation4 of molecular groups across the interface

can give rise to substantial adhesion hysteresis, ("γ /γ ) up

to about unity, depending on the dynamics of the surface

molecules involved [33–36]. For silicates, [37] have shown

adhesion hysteresis can occur as a result of slow structural and

chemical changes at the surface. Depending on the amount of

water in the gas surrounding the silicates, the hysteresis varied

significantly from 0 to 10 mJ m−2 (see figure 12 of [37]).

4 Following [35], the term interdigitation is used to describe any thermally

activated processes involving molecular reorientation across an interface,

including interdiffusion, interpenetration, entanglement, and any other

molecular reorientation process occurring across an interface.
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2.2. Asymmetric contact description

When the sphere is subjected to an external torque, the sphere’s

centre of mass will move, and this will have an effect on the

contact area itself. In the perfectly elastic case, the applied

torque will cause the sphere to roll virtually without any

resistance. In reality, materials are not perfectly elastic, and

energy will be dissipated in the bulk of the material, and at the

edges of the adhesive contact; in the remainder of the text these

regions are referred to as the ‘bulk’ and ‘crack’ regions. The

dissipation in both of these regions will give rise to torques

opposing the rolling motion. In the remainder of this section,

we focus on the torque arising from the crack region, and

develop a more detailed theory of what happens to the contact

during rolling. In section 4, we give estimates for the bulk

dissipation.

In rolling, the contact is asymmetric, where one side is an

opening crack and the other a closing crack. Hence, it follows

from (7) that the contact radius will vary for different parts

of the contact region, causing it to no longer be spherical.

For the contact between a cylinder and a flat, the contact

region is rectangular and an analytical solution is possible [22].

In the case of a sphere, we expect G to vary continuously

along the periphery of the contact, as the angle between the

opening/closing crack and the direction of motion changes.

However, in the interest of obtaining an analytical solution, we

follow [14] in approximating the contact as being comprised of

two semi-circles with radii a1 and a2. The pressure distribution

then becomes

p(r) =

{

p(r, a1, δ) left semicircle,

p(r, a2, δ) right semicircle,
(8)

where δ is the same for both halves (see also [14]), and the

pressure in each half is given by (1). Note that while both

halves share the same δ, the radii of the two semi-circles differ,

as a result of the different values of G at the leading and trailing

edges. It is for this reason that we avoided using an equilibrium

relation between a and δ in (1). There is a finite displacement

between the centre of mass of the sphere (projected onto the

contact surface, x = 0) and the centre of the contact, given by

ξ =
1
2
(a2 − a1). (9)

Writing a = (a1+a2)/2, the contact can now be fully described

by the three parameters ξ , a and δ. Figure 2(a) shows the

pressure distribution of (8) for ξ/a = 0.1, while a and δ

correspond to JKR equilibrium.

The contributions to the torque about the y-axis have been

plotted in figure 2(b). From the figure it is clear that the largest

torques originate close to the crack at locations furthest from

the y-axis. The region close to x = 0, where the assumption

that the cracks are in mode I is expected to loose accuracy, has a

negligible contribution. To find the (total) opposing torque that

results from such a pressure distribution we have to integrate

over all torque contributions in the contact area:

M =

∫ ∫

contact

xp(x, y) dx dy

=
E∗

4R

[

(a2
1 − δR)2 − (a2

2 − δR)2
]

. (10)

With the aid of (7), the torque can be written as

M =
R

2
(πa1G1 − πa2G2) , (11)

where G1 and G2 are the strain energy release rates at the

trailing and leading edges of the contact. From conservation

of energy, one might expect to find M = 2R(a1G1 − a2G2),

slightly different from (11). We attribute the different prefactor

to the geometry of the contact area, and the fact that different

parts of the crack region contribute to the torque with different

lever arms (see figure 2(b)).

Realizing that, in the asymmetric case, the total elastic

force equals

FE =
2E∗a

3R

(

3δR − a2 − 3ξ 2
)

, (12)

the torque of (10) can be rewritten as

M = (a1 + a2)(a1 − a2)
E∗(a2

1 + a2
2 − 2δR)

4R

= ξ

[

−FE +
4E∗a3

3R

]

. (13)

In the case of zero load (FE = 0) and small asymmetry, the

contact size is approximately given by (3), and we obtain

M = 6πγRξ, (14)

in agreement with [14]. Lastly, it is useful to obtain a relation

between the rolling displacement and the strain energy release

rates. For small asymmetries, a1 ≃ a2 ≃ aeq and we can

compare (11) and (14) to find

ξ =
aeq

12

(G1 − G2)

γ
. (15)

With this mathematical framework in place, we can now

discuss what happens when an external torque is exerted on

a stationary sphere.

2.3. The onset of rolling

The general picture is then the following. Imagine, as in

figure 1(a), a sphere on a substrate in JKR equilibrium, so

that a1 = a2 = aeq and G1 = G2 = γ . When the sphere

is subjected to an external torque, the displacement between

the centre of mass and the centre of the contact will grow,

as illustrated in figure 1(b). As a direct consequence, a1

and a2 will change (we will take subscript 1 to refer to the

trailing half, in accordance with figure 1(b)). As a result

of a1 and a2 changing, the strain energy release rates will

start to differ from γ as dictated by (7). Initially however,

γ < G1 < Gop, and the crack is unable to open at the trailing

edge, effectively pinning the contact. Only when G1 reaches

Gop, crack propagation will start at the trailing edge. Setting

(G1 − G2) = (Gop − Gcl) ≡ "γ , we can identify a critical

displacement for the onset of true rolling motion:

ξcrit =
aeq

12

"γ

γ
. (16)

3



J. Phys. D: Appl. Phys. 47 (2014) 175302 S Krijt et al

a 1    a 2 a 1    a 2

Fext

R

y

z

x

(a): Symmetric contact (b): Asymmetric contact

+ +

y

z

x

Figure 1. Side view of an adhesive sphere on a flat substrate. (a) shows the symmetric case, when there are no torques acting and
a1 = a2 = aeq. (b) Asymmetric situation during rolling under the influence of an external force in the x-direction. Here, a1 > aeq > a2.
The centre of mass of the sphere (+) and the centre of the contact (⋆) are also shown.

This relation is an important result. It reveals that the critical

rolling displacement ξcrit is set by the size of the contact

radius and the difference between the opening and closing

apparent surface energy5. This picture is different from the

approach of [14], where the critical displacement was assumed

to equal the interatomic distance, about 0.3 nm, independent

of the particle’s radius and elastic properties. If ("γ /γ ) is

constant, the critical displacement represents a fixed fraction

of the contact radius, and is expected to scale with R2/3. When

("γ /γ ) varies, deviations from this slope are to be expected.

2.4. Steady-state rolling

When a sphere has started rolling, the opposing torque is

given by (11), with the strain energy release rates now equal

to Gop and Gcl. Viscoelastic materials often show Gop and

Gcl to depend on the crack velocity. This behaviour slightly

complicates the picture described above, and it might prove

necessary to solve the evolution of the sphere and the cracks

in time. This method has been used by [22] for the adhesive

contact of a rolling cylinder. However, in the case of a constant

externally applied torque, a steady state will be realized where

the contact shape is preserved and ȧ1 = ȧ2 = 0. The external

torque is then balanced by the opposing torque arising from the

contact area, and the crack opening/closing velocity is equal

to the velocity of the sphere’s centre of mass. In this case,

we can still make use of (11) developed here, realizing "γ

corresponds to the adhesion hysteresis at that particular crack

velocity.

It should be noted that most viscoelastic theories predict

adhesion hysteresis to disappear as the crack opening/closing

rate approaches zero [24, 26]. In the absence of other sources

of hysteresis, this assumption would mean frictionless rolling

can be achieved at infinitely low rolling velocities, and would

5 This approach was originally proposed by professor K L Johnson in a private

letter to the authors of [14] in 2005.

imply structures built from adhesive spheres are unstable

under external forces (e.g. gravity) on very long timescales.

We are not aware of such behaviour having been observed

experimentally.

2.5. Rocking motion

Interesting behaviour is observed when the external force

is removed before ξcrit is reached. Suppose a sphere in

equilibrium receives a velocity kick in the horizontal direction

at a time t = 0. Provided the angle over which the sphere

rocks is small, it can be written as θ = ξ/R. The evolution of

ξ in time is then given by

I ξ̈(t) = RM (17)

with M the torque arising from the contact area, and

I = (2/5)mR2 the moment of inertia of the sphere. Of course,

the size of the torque depends on the asymmetry of the contact.

For ξ < ξcrit, the contact is pinned and we can write

a1(t) = aeq − ξ(t),

a2(t) = aeq + ξ(t). (18)

Making use of (14), the equation of motion becomes

ξ̈(t) =
6πγR2

I
ξ(t), (19)

which is readily identified as a harmonic oscillator with

frequency

f0 =
1

2π

(

6πγR2

I

)1/2

=
3

4π

(

5γ

ρR3

)1/2

. (20)

For microspheres, this frequency is typically of the order of

100 kHz, and has been observed experimentally [11–13]. We

will discuss these experiments in section 3.1.3.

4
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Table 1. Material properties for silicate and PSL as used in this
work. Note that for like materials, the total surface energy is twice
the value listed here, which corresponds to an individual surface.

Quantity Silicate PSL

E (GPa) 54 3.4
ν (—) 0.17 0.33

ρ (g cm−3) 2.6 1.026

γ (J m−2) 0.025 0.025

3. Comparison to experiments

Now that we have a theory of rolling friction, we can

compare the predictions to a number of published experiments

measuring either the rolling torque or the rolling displacement.

For this purpose, we will focus on two materials; polystyrene

(PSL) and silicates (SiO2), see table 1. In this section, we will

discuss various experimental results within the framework of

the theory developed in section 2.

3.1. Polystyrene microspheres

3.1.1. Constant-velocity rolling. For PSL, [8] have measured

the rolling force using an AFM for 5, 10 and 15 µm. The

spheres were pushed across a glass substrate at a constant

velocity of 0.1 µm s−1. As care was taken to apply the pushing

force a height R from the substrate, we can relate this force to

a rolling torque via Fext = Mext/R. Figure 3 shows the results

of [8] in comparison to (11), for various values of ("γ /γ ).

The theory of [14], i.e. (14) with ξ = 0.3 nm, is shown for

comparison.

Figure 3 shows how the theory of section 2 explains two

key features of the experimental results: the rolling force is

substantially larger than expected from ξ = 0.3 nm, and

the rolling force increases with increasing radius. Indeed,

a hysteresis characterized by ("γ /γ ) ≃ 3 reproduces

the experimentally observed rolling force well for all three

microsphere radii. For these particular particles, this

corresponds to a rolling displacement of several tens of

nanometres, approximately two orders of magnitude larger

than z0.

3.1.2. Critical displacement. In a somewhat similar study,

Ding and co-workers moved PSL microspheres across a

flat silicon substrate, by pushing the spheres with an AFM

cantilever [7]. The diameters of the spheres used varied

between 22.5 and 26.8 µm. After each push, a scanning

electron microscope (SEM) image was obtained to find the new

position of the microsphere, while the pushing force could be

calculated from the cantilever’s deflection. As a result of this

experimental setup, the motion of the spheres is discontinues,

and difficult to simulate in detail. An interesting results of [7]

however is that a change in rolling stiffness was observed

for most particles, after a total displacement between 73 and

94 nm. Ding et al attributed this change in rolling stiffness

to the transition from pre-rolling (no contact readjustment) to

true rolling motion.

Figure 4 shows the observed critical rolling displacements,

and compares them to predictions of (16). While the

rolling displacements are orders of magnitudes larger than

the atomic spacing, the results can be understood in terms of

adhesion hysteresis. The inferred value of ("γ /γ ) ≃ 2.5.

Unfortunately, the variation in particle radius is too small to

test the correlation between ξcrit and R predicted by (16)6.

3.1.3. Rocking microsphere. Another interesting opportunity

to study the critical displacement comes in the form of the

experiments conducted by Peri and Cetinkaya [11–13], where

rocking motions are excited in the adhesive contact of a

PSL microsphere (21.4 µm in diameter) on various substrates.

From the fact the microsphere oscillates in the lateral direction,

it was inferred that the contact edges are effectively pinned

(see section 2.5). Moreover, the motion is damped within a

dozen oscillations, something that might well be explained by

the bulk dissipative torque. The experimental results can be

understood within the framework of the theory of section 2.5.

We choose to focus on the aluminum substrate, as the

experimental results appear to be the cleanest (see figures 10

and 14 of [11], and use the elastic properties of table 1 of [11]

and a surface energy of 0.1 J m−2. For this particular setup,

aeq ≃ 380 nm. When the sphere is excited and the contact

pinned, the centre of mass will oscillate with frequency f0

set by (20). This frequency, 150 kHz for this particular PSL–

aluminum system, was found by [11–13] to compare very well

with the experimental observations.

The maximum observed rocking angle in the experiments7

was 0.16◦, corresponding to ξ = 30 nm (two orders of

magnitude larger than z0), and a maximum torque of roughly

M = 6 × 10−13 N m. Comparing this offset to the contact

radius we find ξ = 0.08aeq. Since this maximum ξ < ξcrit, we

can use (16) to find a lower limit of ("γ /γ ) > 0.95.

3.2. Silicate microspheres

Silicates (SiO2) are thought to play an important role in the

formation of Earth-like planets, and because of this many

experiments involving silicates have been performed over the

last decade or two (see [38, 39] for excellent reviews). Heim

et al [9] measured a rolling force of (8.5±0.3±1.3)×10−10 N

for 1.9 µm-diameter silicate particles, by taking a chain of

microspheres and bending it in a periodic manner. The

frequency of the bending motion varied between 0.1 and

1 Hz. Blum and Wurm [5] examined several restructuring

events in microsphere structures and obtained a rolling force

of (5.0 ± 2.5)× 1010 N, for coated SiO2 particles of 1.9 µm in

diameter. Lastly, using a similar approach Gundlach et al [10]

measured a rolling force of (12.1±3.6)×10−10 N for 1.5 µm-

diameter SiO2.

The experimental results are compared to the adhesion

hysteresis model in figure 5. At first sight, it appears

the rolling force drops with particle radius. However, we

attribute the scatter in rolling force values to differences in

6 In fact, the size of the particle corresponding to the left-most point in figure 4

was not determined individually, and assumed equal to the nominal sphere

diameter of 21.4 µm (see table 1 of [7])
7 This maximum angle was quoted for the PSL–silicon combinations, but as

the values of the vertical displacement is very similar for the PSL–aluminum

system (compare figures 8 and 10 of [11]) we expect it applies here as well.
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(a) (b)

Figure 2. (a) The asymmetric pressure distribution for ξ/a = 0.1 viewed from the top, for a sphere rolling in the x-direction. (b) shows the
torque contributions for the same contact. The centre of mass of the sphere (+), and the centre of the contact (⋆) are offset. These particular
numbers correspond to the contact between a PSL microsphere with radius 5 µm and a PSL table.

Figure 3. Experimental results of [8] (") for the rolling force of a
PSL microspheres on a glass substrate. Solid lines correspond to
(11) assuming different values for ("γ /γ ) and a1 = a2 = aeq, in
which case the rolling force scales with R2/3. The black dashed line
corresponds to (14), assuming ξ = 0.3 nm, and the dotted line
shows the expected bulk torque for Q = 102 (see section 4).

experimental procedures, and believe that the current data with

its uncertainties is not enough to test the radius dependence of

the rolling force. Nonetheless, the results can be understood

in terms of ("γ /γ ) ∼ 0.5. This suggests the size of the

adhesion hysteresis is smaller than for the PSL of figures 3 and

4. The absolute size of the rolling displacement is significantly

smaller than the one found for PSL particles in the previous

section. The reason is twofold. For one, the smaller value of

("γ /γ ) causes ξ to be a smaller fraction of the contact radius.

Second, the contact radius itself is much smaller for the silicate

particles considered here, as they are smaller and harder.

We must address that the contact model presented here

is a continuum one, and is expected to break down when the

sizes of individual atoms start to play a role. In figure 5 for

example, we see that for some radii, the predicted torque lies

below the curve corresponding to [14]. When that occurs,

Figure 4. Experimental results of Ding et al [7] (⋆) for the critical
rolling displacement of a PSL microspheres on a silicon substrate.
Solid lines refer to (15), for different values of ("γ /γ ).

the rolling displacement ξ is smaller than the size of an atom,

and one might question whether it is physically meaningful to

have a difference between a1 and a2 that is arbitrarily small.

The question whether continuum descriptions can still be used

in this regime is beyond the scope of this work, and has to be

addressed with the use of molecular dynamics simulations [40].

4. Discussion

In this work we propose a model for the rolling friction of

microspheres based on the concept of adhesion hysteresis. In

the case of rolling of a spherical contact area, the geometry does

not allow for an analytical solution. However, by assuming that

the contact consists of two semi-circles with different radii,

an approximate analytical solution can be achieved. When

the contact is close to JKR equilibrium, and the asymmetry is

small compared to the contact radius itself, simple expressions

relating the torque, contact asymmetry and adhesion hysteresis

6
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Figure 5. Rolling force versus effective radius for equal-sized silica
microspheres. Symbols refer to the experimental results of [9]
(•), [5] (#) and [10] ( ). Solid lines correspond to (11) assuming
a1 = a2 = aeq and different values for ("γ /γ ). The black dashed
line corresponds to equation (14), assuming ξ = 0.3 nm, and the
dotted line corresponds to the bulk rolling force for Q = 102 (see
section 4).

exist, and are given by (14) and (15). In the presence of external

loads, the more general result (13) can be used, while the effect

of the external load on the size of the contact radius and the

approach should be taken into account.

Comparison of the theory to experiments of rolling

microspheres reveals that the new model is capable of

explaining two key results; the variation of the rolling force

with particle radius, and the observation that the rolling

displacement can be much larger than the interatomic distance.

Good agreement between theory and experiments is achieved

for adhesion hysteresis values of ("γ /γ ) ≃ 3 for PSL, and

("γ /γ ) ≃ 0.5 for silicates. When the asymmetry in the

contact is small, the strain energy release rate at the contact

edge is not large enough to cause the crack to move, effectively

pinning the contact area. If no external forces are acting, this

will cause the sphere to oscillate back and forth. An example of

such behaviour is observed in the experiments of [11]. From

the maximum rocking angle reached in the experiments, we

infer ("γ /γ ) > 0.95.

Two main origins of adhesion hysteresis are mechanical,

i.e. arising from viscoelastic losses near the crack tip, or

chemical hysteresis, connected to the state and dynamics of

surface groups and molecule chains (see section 2.1). The

latter can give rise to ("γ /γ ) ∼ 1, similar to the values

observed in section 3. However, further comparison would

require a detailed knowledge of the molecular dynamics at the

surfaces involved, and is beyond the scope of this work. For

viscoelastic materials, a theoretical prediction for the apparent

surface energy has been obtained by [24, 25]. For a three-

element solid, characterized by a single viscoelastic relaxation

time, T , they show that the departure of G from γ is set

by the non-dimensional crack velocity v∗ ≡ ȧγT/(z2
0E

∗),

with ȧ the crack opening/closing velocity. A difference in

apparent surface energy of 3 and 0.5 then corresponds to

a v∗ of 2 and 0.1, respectively (through figure 6 of [24]).

For the experiments of [8], the crack velocity equals the

rolling velocity of 10−7 m s−1. For the experiments plotted in

figure 5, the rolling velocities are estimated8 to lie between

10−6–10−5 m s−1. Plugging in the material properties and

correct ȧ returns T = 7 × 10−2 s for the PSL particles of

figure 3, and T = 5 × 10−4 s for the silicates of figure 5. For

PSL at room temperature, the obtained T −1 does not coincide

with either α or β relaxation peaks, which occur at much lower

frequencies (figure 8.20 of [41]), but might correspond to one

of several other relaxation peaks [42]. Alternatively, much

shorter relaxation timescales were obtained by [19] by fitting

rebound experiments of micrometre-sized spheres, indicating

that a viscoelastic model with a single characteristic relaxation

time might not accurately describe the material response over a

large range of strain frequencies. However, as there is virtually

no variation in rolling velocity in the experiments used in

section 3, connecting the observed adhesion hysteresis to a

viscous relaxation time remains speculative.

Thus, measurements of the rolling friction of adhesive

spheres provide a powerful window into adhesion hysteresis

of the materials involved, as the observed torque can be

directly related to the difference in apparent surface energies

on both sides of the contact. So-called JKR experiments

(e.g. [36, 43]) are also powerful, but require knowledge of

the contact size throughout the loading–unloading experiment,

which is challenging for the relatively small contacts between

microspheres. Additional experiments, that measure the

rolling force of microspheres in a controlled manner, will

provide valuable insight in the behaviour at the crack

tip. Specifically, experiments probing a broad range of

rolling velocities will allow a more thorough comparison to

viscoelastic crack theory.

So far, we have neglected the effects of bulk energy

dissipation on the rolling torques. The elastic energy stored

in a spherically symmetric contact equals [17, 44]

UE =
E∗a3

3R

[

δ

(

3δR

a2
− 1

)

−
a2

5R

(

5δR

a2
− 3

)]

, (21)

where again we have deliberately omitted making use of an

equilibrium relation between a and δ. Assume now the sphere

rolls over a distance 2a. In that case, a surface element that

passed through the contact area has undergone a complete

stress cycle. Assuming the bulk dissipation is small, the total

energy loss associated with the elastic strain energy can then

be estimated as UB ∼ (π/Q)UE, with Q the ‘quality factor’9.

The reciprocal of the quality factor is associated with the ratio

of energy dissipated to the energy stored in dynamic loading,

and can be viewed as a fundamental measure of mechanical

dissipation [45]. In the case of rolling friction, the reciprocal

of the quality factor is identical to Tabor’s hysteresis loss

factor [46], apart from a numerical factor of order unity [18].

Typical values for the quality factor in solids are 10 − 102 for

polymers, 103 for glass and soft metals, but may vary with

8 These numbers are obtained by estimating the rolling angle and timescales

from figures 3 of [5] and 7 of [10].
9 In treatises of viscoelastic materials, the loss tangent tan δ is often used.

To avoid confusion with the mutual approach, we will use the quality factor

instead. These are related through Q−1 ≃ tan δ.
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frequency. As the sphere rolled over 2a, the torque associated

with this bulk energy loss can be written as10

MB =
UBR

2a
∼

πUE

Q

R

2a
. (22)

Earlier we obtained the torque arising from the region close to

the crack. Making use of (11) while plugging in a1 ∼ a2 ∼ aeq

and the surface energy US = −πa2
eqγ , we can compare the

sizes of the two torques to find

MB

MC

∼
(

UE

US

) (

π

Q

) (

γ

"γ

)

. (23)

While approximate, the above expression is very instructive;

and we will briefly discuss the three terms on the right-hand

side of (23). Firstly, in a JKR equilibrium contact, the total

energy is always negative, as the particles are bound. This

immediately tells us the surface energy dominated the elastic

energy. If external forces are present, the elastic energy can

be increased significantly, potentially changing the value of

(UE/US). In the specific case of a sphere resting on a flat

surface, the gravitational force on the sphere is such an external

force. For a silicate sphere, gravity will cause significant

deviation from the JKR equilibrium only for sphere radii

larger than a millimetre. Alternatively, the potential presence

of dust or asperities can decrease the effective contact area,

and reduce the overall importance of the surface energy and

adhesion [21]. Secondly, the ratio (π/Q) is very small for

solids. At different frequencies, different mechanisms will

be responsible for demoing, and the behaviour of Q as a

function of frequency will differ per material. A wide range

of experimental techniques are used across the frequency

spectrum to measure Q (figure 6.25 of [45]), but typical values

at Hz to kHz frequencies and at room temperatures are 10–102

for polymers, 103 for glass and soft metals, and orders of

magnitude larger for structural metals and quartz ( [45, p 208]).

In a typical crystalline solid, the quality factor is relatively

constant as a function of frequency, while the Q-spectrum of

a typical amorphous polymer shows more pronounced peaks,

corresponding to various molecular motions (figures 8.1 and

8.2 of [45]). Thus, we expect (MB/MC) ≪ 1 for small

and smooth adhesive spheres in a JKR equilibrium contact,

justifying the approach of section 2. This finding is supported

by experiments on adhesive cylinders [22, 49, 50], where the

observed rolling torque was attributed solely to adhesion

hysteresis. Alternatively, the presence of asperities, additional

external loads, very low quality factors, or negligible adhesion

hysteresis, will act to increase the relative importance of the

bulk dissipation.

From the damped oscillation in the experiment of Peri

and Cetinkaya (see section 3.1.3), we can derive an order-of-

magnitude number for the quality factor. First, we modify the

10 In the Hertzian case, (22) is in agreement with the result of Brilliantov

and Pöschel [47, 48], who obtained an expression for the rolling torque for

non-adhesive elastic spheres by integrating small dissipative stresses in the

contact area, provided their viscoelastic constant, A, is related to the quality

factor through Q ∼ (2a/vroll)/A. This relation is expected since A has units

of time, and (2a/vroll) is the typical stress timescale probed by the moving

contact.

expression for the total elastic energy to include the contact

asymmetry

UE(a1, a2, δ) =
1
2

[UE(a1, δ) + UE(a2, δ)] , (24)

where UE(ai, δ) is given by (21). Using this relation, we see

that for an asymmetry of ξ/a = 0.08, the elastic energy is

increased by about "UE = 0.1UE compared to the symmetric

case. During the oscillation, this energy is converted into

rocking motion and vice versa, and in a single oscillation to a

maximum ξ and back, a fraction π/Q of "UE is dissipated.

Now, we can write down a condition for the timescale on which

this excess energy is dissipated, and the oscillation is stopped.

It is instructive to express this timescale in a number of periods:

f0

"UE

(d/dt)"UE

∼
Q

π
. (25)

From the observation that the oscillations is damped in roughly

10 periods, we obtain Q ∼ 30, in agreement with typical

quality factors of polymeric materials at kHz frequencies [45],

strengthening our assumption that the damping originates from

energy dissipation in the bulk of the material.

5. Conclusions

Our main findings can be summarized as follows:

• For microspheres in JKR equilibrium, rolling friction will

be dominated by dissipation associated with the opening

and closing of the cracks on both sides of the contact region

(e.g. adhesion hysteresis).

• For a fixed adhesion hysteresis ("γ /γ ), the critical rolling

displacement equals a constant fraction of the contact

radius, and therefore scales with R2/3.

• The theory is capable of reproducing a variety of

experimental results, explaining in a natural way the

large observed values of the rolling force and rolling

displacement during pushing experiments (figures 3, 4

and 5); the rocking motion of microspheres for small

rolling angles, and the observed radius dependence of the

rolling force (figure 3).

• Applying the theory to experimental results indicates

adhesion hysteresis for polystyrene roughly equals

("γ /γ ) ≃ 3, and ("γ /γ ) ≃ 0.5 for silicate particles.

Owing to their simple forms, (14) and (15) can be directly

integrated in simulations of systems of adhesive spheres, while

future experiments measuring the rolling forces for different

velocities and particle sizes can be used to test and discriminate

between different models of adhesion hysteresis.
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