$C R-151961$

```
(NASA-CE-151YC1) suLL1AG NCU&NLS IN A N77-17005
Tadallag Vobtex ElGn FlelD Einal Befort
(Nielsen Enqineezing ana fesearch, Inc.l
148 FHC AC7/HF 2?1 ESCL 61A G3/02 Unclas
```


ROLLING MOMENTS IN A TRA:ILING

VORTEX FLOW EIETD

By Oden J. McMillan, Richard G. Schwind, Jack N. Nielsen, and Marnix F. D. Dillenius Nielsen Engineering \& Research, Inc.

NEAR TR 129
February 1977

Prepared under Contract NAS2-9398
by
NIELSEN ENGINEERING \& RESEARCH, INC. Mountair View, California
for

TABLE OF CONTENTS

Section Page
SUMMARY 1
INTRODUCTION 1.
SYMBOLS 3
APPARATUS AND INSTRUNENTATION 5
TEST CONDITIONS AND PROCEDURES 8
Vortex structure and Location ε
Tests with the Force Model 10
Tests with the Pressure Model 11
PRESENTATION AND DISCUSSION OF EXPERIMENTAL RESULTS 13
The Following wing in the Absence of the vortex 1.3
The Following wing in the Presence of the Vortex 14
DESCRIPTION OF THEOFETICAL METHODS AND COMPARISON WITH DATA 17
Strip Theory 17
Vortex-Iattice Theory - Rectilinear Vortex 23
Reverse-Flow Theory 25
Some Remarks on Calculations Including Vortex Bendting 25
CONCLUDING REMARISS 26
TABLES 1 through 3 28
FIGURES 1 through 19 3.1
APPENDIX A - TABULATED EXPERIMENTAL DATA 63
APPENDIX B - SLENDER-BODY ESTIMATE OF THE CONTRIBURIONS TO SURFACE PRESSURE OF VORTEX BENDING AND NONLINEAR VELOCITY TERMS 135
REFERENCES 143

By Oden J. McMillan, Richard G. Schwind, Jack N. Nielsen, and Marnix F. E. Dillenius Nielsen Engineering \& Research, Inc.

SUMMARY

An experimental investigation has been carried out to provide detailed pressure distributions on a wing in close proximity to a tip vortex of known structure generated by a larger, upstream semispan wing. Overall loads calculated by integration of these pressures are checked by independent measurements made with an identical model mounted on a force balance. For certain positions of the following wing, the data are shown to include effects from the unrolled-up portion of the vortex sheet from the generating wing. With the vortex close to the wing, these effects are minimal.

Conventional methods of wing analysis are used to predict the loads on the following wing. Two different versions of strip theory are shown to give uniformly poor results for the loading distribution, although the predictions of overall lift and rolling moment are sometimes acceptable. Modeling the incident vortex with vorticity distributed in the core instead of concentrated at the center is important when the vortex is within a core radius of the wing. Vortex-lattice theory gives good results if the vortex with distributed vorticity is constrained to be rectilinear and the loadings are calculated from linearized pressures. The equivalent relation from reverse-flow theory that can be used to give overall loads is presented. Failure to model accurately the nonlinear contributions to loading is shown to have small impact on the overall results.

INTRODUCEION

There is considerable practical interest in the ability to calculate the loads induced on a wing surface in a free stream by a nearby streamwise vortex. For example, this ability is important in the analysis of the vortex hazard problem for a small aircraft operating in the wake of a larger aircraft. It is also central to the analysis of helicopter rotor systems and to the design of control or lifting surfaces for missiles or
aircraft if these surfaces are subject to concentrated vortices generated by the nose or by canards. Several investigators have formulated models for calculating induced loads of this type; varying levels of success have been achieved in terms of prediction of overall offect:s.

In spite of the fact that there is a voluminous literature on this subject, there exists a need for experimental data of sufficient detail and completeness to evaluate the theoretical methods. With the exception of the investigation of reference 1 , the existing data lack either detailed measurements of the distribution of loading on the wing or knowledge of the structure of the approaching vortex; reference 1 deais with the case where the vortex-generating wing is at most or the same span as the following wing. Therefore, previous tests of theor"es for cases where the vortex core is at all appreciable compared to the sale of the following wing have been in terms of gross effects, or have requirec. critical assumptions with respect to the nature of the vortizal flow field involved.

The purpose of the work described herein is to provide measurements of sufficient completeness to allow detailed evaluation of existing theories for loads of this type and to conduct such an evaluation. In the particular cases treated, the loads are measured with the following wing at zero angle of attack using pressure taps; the vortux generator is a larger semispan wing. To allow checking of the overall loads calculated by integration of the measured surface pressures, independent measurements are made using an identical model mounted on a force balance. The theoretical methods evaluated are standard methods of wing analysis.

This report describes the experimental arrangement utilized, presents and analyzes the data. The theoretical methods used are described, detailed comparisons with the measurements are made, and shortcomings of the methods are assessed.

SYMBOLS

a_{0}	three-dimensional lift-curve slope
$\mathrm{a}_{\mathrm{OL}_{\mathrm{L}}}, \mathrm{a}_{\mathrm{OR}}$	lift-curve slopes for wing portions, equation (18)
RR	aspect ratio of wing portion, equation (1,)
b	wing span
c	wing chord
c_{l}	section-lift coefficient
$\begin{aligned} & \mathrm{c}_{\mathrm{I}_{\alpha}} \\ & \left(\mathrm{c}_{\ell}\right)_{r o 11} \end{aligned}$	```section lift-curve slope section-iif: coefficient for wing in steady roll, equation (1.7)```
C_{l}	rolling-moment coefficient, $\mathrm{R} / \mathrm{q}_{\infty} \mathrm{b} \mathrm{s}$
\hat{C}_{ℓ}	rolling-moment coefficient for force model at zero angle of atrack in absence of vortex; tare vailue
C_{L}	lift coefficient, $\mathrm{I} / \mathrm{G}_{\infty} \mathrm{S}$
${ }^{\text {c }}$	lift coefficient for force model at zero angle of attack in absence of vortex; tare value
C_{p}	pressure coefficient (based on corrected pressure), $\left(p-p_{\infty}\right) / q_{\infty}$
I_{1}, I_{2}, I_{3}	exponential integrals, equations (15), (16) and (21)
k	constant in model for leading-edge contribution to section lift, equation (4)
L	Iift
p	static pressure corrected for pressure measured at same point on pressure model at zero angle of attack in absence of vortex; also roll angular velocity, positive right wing down
P	ratio of semi-perimeter to span of wing portion, equation (17)
G_{∞}	free-stream dynamic pressure
r	radial. distance from vortex centerline
R	rolling moment, positive right wing down
Re_{c}	Reynolds number based on the chord of the following wing
5	wing semispan, b/2

S	wing area, be for rectangular wing
t	pseudo time coordinate, equation (1)
V_{θ}	tangential velocity in vortex, equation (2)
V_{∞}	free-stream velocity
w	component normal to wing of velocity due to vortex, equations (9) and (12)
$\mathrm{X}, \mathrm{Y}, \mathrm{z}$	Cartesian coordinates with origin at the centerline of the leading edge of the following wing, cm, figure 1
Y_{v}, z_{v}	coordinates of the vortex center assuming the presence of the wing causes no deflection
α	angle of attack
$\Delta y_{v}, \Delta z_{v}$	change in location of the vortex center due to deflection caused by the presence of the wing
Γ	circulation of vortex at radius, x, equation (1); positive for counterclockwise rotation
Γ_{0}	strength of notential vortex; or circulation of vortex at large r
v	pseudo viscosity, equation (1)

Subscripts

A	pertaining to the aged vortex of equation (1)
G	generating wing
ℓ	lower wing surface
P	pertainirg to a potential vortex
S	pertaining to the split-wing version of strip theory
u	upper wing surface
v	vortex
∞	free stream.

APPARAPUS AND INSTRUMENIATION

The experiment was performed in the wind tunnel which is under the jurisdiction of the U. S. Army Air Mobility Research and Development Laboratory at the NASA/Ames Research Center. This is a closed-circuit, atmospheric tunnel with a test section of rectangular cross section 2.1 meters (7 ft) high r; 0 metere (10 ft) wide. It is described in more detail in reforence 2 . Whe general arrangement and coordinate system used are shown in rigure 3 . The "generating wing" is a semispan model attached to the tumel scoles with its trailing edge at the center of the tunnel turntable. The geometrical characteristics of this wing are listed in Table I. Its measured lift curve (verified in this investigation) and more geometrical detail are available in reference 3. The "following wing" was mounted by means of a small fuselage to the tunnel traversing system (not shown) with its leading edge two generating-wing chord lengths downstream of the generating wing trailing edge. This strearmise position was chosen to minimize the effects of vortex meander (discussed later) and to coincide with a position where a portion of the velocity field of the vortex had previously been measured (ref. 4). While this close proximity to the generating wing is totally unrepresentative of the vortex hazard problem, minimizing meander and operating in a vortex whose structure is at least partially known greatly facilitate application of theoretical methods. The following wing geometrical characteristics are listed in Table I; the exterior lines of the fuselage are shown in figure 2. Provision was made to pitch the following wing-fuselage assembly relative to the traversing system.

There were actually two following wing-fuselage assemblies of identical exterior shape but of different internal construction and instrumentation. One (the "force model") was fabricated of wood and fiberglass and was mounted to the traversing system through a 2.54 cm (1 in.) diameter Task Mark XIVA force balance (balance center at $x=2.59$, $y=0, z=-2.54$). The gages used to measure lift and rolling moment were calibrated in the tunnel; the estimated experimental uncertainty for a single measurement of lift is ± 5 percent, for rolling moment ± 3 percent. The other assembly (the "pressure model") was fabricated of aluminum and was instrumented with 371 pxessure taps distributed in chordwise rows on the upper and lower wing surfaces as shown in figure 3. The taps indicated as missing at a particular section in this figure were either omitted because of manufacturing constraints or were found to leak or to be plugged after assembly of the wing to the fuselage.

The pressure taps were installed in the splitt wing in one of the two ways shown in figure 4. The stainless steel tubes from the pressure taps were led out through the wing and fuselage interiors and were connected to nine Scanivalve modules (with internally mounted pressure transcucers) by 0.75 meter (30 in.) lengths of flexible tubing. I'he Scanivalve modules were attached to the tunnel traversing mechanism aft: of the model. The electrical leads from the transducers were led out through the tunnel floor to the power supplies, signal conditioning cquipment, and data acçuisition system (described below) located in the tumnel control area. The individual pressure lines were carefully leak checked at several. stages in the construction of the model, including after its final installation in the tunnel.

The pressure transducers used were all of the differential type; their reference sides were manifolded to the static pressure from the standard tunnel "q" probe. This static pressure (as well as the total pressure from this probe) was also input to a port on each Scanivalve. Because all pressures recorded were to be converted to pressure coefficient form before use, this procedure effectively allowed each transducer to be calibrated on each cycle of the associated Scanivalve. The ranges of the transducers used varied from $1.72 \mathrm{kPa}(0.25 \mathrm{psi})$ to 17.2 kPa (2.5 psi); pressure taps located nearest the trailing edge were connected to the transducers with the smallest ranges for best resolution.

To allow determination of the mean vortex position under various conditions (which are described later), a dual-beam, two-color backscatter laser Doppler velocimeter furnished by the Large-Scale Aerodynamics Branch at the NASA/Ames Research Center was used. For a giver test condition, the two beams were positioned so that on the average they bracketed the vortex core, as described in reference 4, and the mean vortex position was determined from knowledge of the LDV focus location. The LDV beams were made visible by injecting vaporized mineral oil into the tunnel in one of two ways: aither a conventional resistance heating smoke wand was placed with its tip near the tip of the generating wing (in which case the vortex was smokefilled in a clear free stream), or the entire tunnel was filled with vapor formed by an air-blast atomizer (in which case the vortex core was clear in a smoky free stream). In this latter technique, the smoke was ducted into the tunnel in the diffuser section just downstream of the test section. Both techniques proved useful in different ${ }^{*}$ facets of this investigation.

One final piece of instrumentation was provided to allow assessment of the instantaneous deviation of the vortex Erom its mean position (meander). This information allows conditional sampling of the data from the force model. Using this procedure, only data collected when the vortex is in its mean position are used to calculate rolling moment and lift. This approach is not possible with the pressure model because of inaderuate frequency response of the pressure instrumentation due to the (relatively) long pieces of small diameter tubing reguired to connect the tapster Scanivalves. The instrument used to provide this instantaneouspositisi i formation is a vorticity meter (sketched in figure 5) specially des.get tor this purpose. The maximum diameter of the blaces is approximately equal to the measured diameter of the vortex core (ref. 4) and the device was constructed to allow rapid response to rotational speed changes (the calculated time constant of this instrument is on the order of $10 \mathrm{~m} / \mathrm{sec}$). When the position of the vorticity meter is adjusted to coincide with the mean vortex position, decrease in its rotational speed is an indication of movement of the vortex away from this mean position. By averaging only force model data associated with a vorticity-meter rotational speed which is above some value, and then increasing this threshold value, one can gain an understanding of the sensitivity of vortex-induced lift and rolling moment to deviation from vortex mean position. This approach cannot, of course, eliminate the contribution to these quantities from the meander velocity of the vortex in its mean position. The conditionally sampled data will include this contribution.

The vorticity meter lateral and vertical positions were adjusted to coincide with the mean vortex position (as determined by the LDV) for a given location of the force model. It was always located three followingwing chord lengths downstream of the following-wing leading edge ($x=3 c$). The response of the vorticity meter to the vortex motion is illustrated in figure 6 which is a tracing of the rotational speed output obtained on an oscillograph for a case where the wing was very close to the vortex. Although no vigorous calibration of the rotational speed was maintained (because only relative values were to be used in the conditional sampling process), it is known that the peak speed obtained in this tracing is in excess of $940 \mathrm{rad} / \mathrm{sec}(9000 \mathrm{rpm})$. It is clear from this figure that the frequency response of the vorticity meter is adequate for it to serve as an indicator of relative vortex position.

The data acquisition system in the tunnel can simultaneously digitize up to 12 analog inputs and punch these values on computer cards for later reduction. One of these analog input channels was always used for the output of the "q" probe transducer. In testing with the force model, for each position of the wing relative to the mean vortex position, this system was used to record the instantaneous signals from the balance and vorticity meter at approximately 100 different instants in time. Note that conditional sampling was not practical at data-acguisition time but was done later during data reduction. With the pressure model, the pressure transducer in each of the nine scanivalves was connected to an analog input channel (after appropriate amplification). Because the Scanivalves had to be cycled through all the ports, a period of about 30 seconds was required to record the pressure field on the whole wing. This process was repeated on the order of 20 times to generate an average of the pressure at each point on the wing.

TEST CONDIIIONS AND PROCEDURES

Vortex structure and Location

As previously mentioned, the streamwise position of the following wing was chosen to coincide with one of the measurement planes in an earlier study of the structure of the tip vortex from this generating wing (ref. 4). In that study, the identical generating wing was mounted in a similar way (vertically) in the test section of the other 2.1 meter by 3.0 meter (7 - by 10 -foot) wind tunnel at the Ames Research Center and a rapid-scanning LDV was used to obtain lateral traverses of tancencial velocity through the vortex core.

Figure 7 shows the resulting profile (for $\alpha_{G}=12^{\circ}, V_{\infty}=24 \mathrm{~m} / \mathrm{sec}$) in the streamwise plane of interest here. In this figure, the tangential velocity (corrected for tunnel wall images)'is normalized by the freestream velocity and the radial coordinate is normalized by the span of the generating wing. The center of the vortex is taken tio be equidistant between the positions of maximum measured tangential velocity. A reasonable degree of symmetry is exhibited between the two sides of the traverse, except just at the edge of the core $\left(r / b_{G} \approx 0.01\right)$ and for $r / b_{G} \geqslant 0.08$. One may not, of course, infer any further degree of symmetry for the vortex from this, for this close to the wing one would expect neither that the vortex is axisymmetric nor that it is fully rolled up (e.g., see refs. l,

5-8). In fact, the small asymnetry noted at large r / b_{G} in figure 7 may be evidence of the unrolled-up portion of the wake (ref. 7). lhe effects on the following wing of the unrolled-up portion of the wake are apparent in some of the data discussed in a later section.

Having duly noted that the vortex at this location is not axisymmetric, we will nevertheless proceed to represent its velocity distribution by two axisymmetric models. These models are used later as input to theoretical calculations of the lift and rolling moments induced on the following wing. This approach is dictated by a desire to determine the accuracy achievable by simple modeling, as well as by a lack of detailed data on the asymmetric structure. The two models are shown in figure 7. The first is a simple potential vortex with strength determined by fitting the experimentrl velocity distribution for $r / b_{G}>0.02$. The second has vorticity distributed in accord with that in a two-dimensional, laminar, unsteady vortex (an "aged" vortex):

$$
\begin{equation*}
\frac{\Gamma}{\Gamma_{0}}=1-e^{-r^{2} / 4 v t} \tag{1}
\end{equation*}
$$

This equation can be recast in the form:

$$
\begin{equation*}
\frac{r V_{\theta}}{b_{G} V_{\infty}}=\left(\frac{\Gamma_{0}}{2 \pi V_{\infty} b_{G}}\right)\left[1-e^{-\left(r / b_{G}\right)^{2}\left(b_{G}^{2} / 4 \nu t\right)}\right] \tag{2}
\end{equation*}
$$

In applying this model, Γ_{0}, the circulation of the vortex at large r, is taken to be equal to the circulation of the potential vortex of the first model. The combination $b \frac{2}{G} / 4 \nu t$ is chosen to provide best agreement to the experimental data as replotted in the form of figure 8 . As a result of these procedures, $\Gamma_{o} / 2 \pi V_{\infty} b_{G}=9.68 \times 10^{-3}, b_{G}^{2} / 4 v t=1.052 \times 10^{4}$. It is of some interest to note that Γ_{0} determined in this way is 77 percent of the value calculated from the maximum section-lift coefficient measured on this wing at $\alpha_{G}=12^{\circ}$ (as reported in ref. 9). This is suggestive of the extent of the rolling-up process at this streamwise location.
${ }^{*}$ This max
A.1. data in the present investigation were taken with $V_{\infty}=49 \mathrm{~m} / \mathrm{ser}$: (160 fps) which corresponds to a dynamic pressure of 1.44 kPa (30 psf). The generating wing was always at $\alpha_{g}=12.6$: Because these values are somewhat different from the conditions used to generate the data of figures 7 and $8\left(V_{\infty}=24 \mathrm{~m} / \mathrm{sec}, \alpha_{G}=12^{\circ}\right)$, the constants just calculated must be adjusted before they are applied to the present situation. Because the roll-up process is essentially inviscid, no correction is applied for the change in Reynolds number (the V_{∞} discrepancy). It is further assumed that the small (0.6°) discropancy in α_{G} has no effect on the distribution of vorticity ($b_{G}^{2} / 4 \nu t$ unchanged) but that the effect on the total shed vorticity is linear in α_{G}. This leads to the final. value, $\Gamma_{o} / 2 \pi V_{\infty} b_{G}=10.14 \times 1 n^{-3}$.

The position of tife wre furbed vortex (in the absence of a following wing) was estaklished using the LDV described earlier. To allow for positioning of the vorticity meter, it was also necessary to measure the perturbed vortex location at $x / c=3$ as a function of following-wing position again using the LDV. Because of the window arrangement in the tunnel, this proredure was possible only with the vortex over the left wing. Measurements were made for $y_{v} / s=-0.5$ over a range of positive z_{v} / c. The deflection of the vortex from its unperturbed location is shown in figure 9. These deflections were also used to position the vorticity meter for the data taken with the force model for $y_{V} / s=0.5$.

Tests with the Force Model

Most of the testing with the force model was done using the arrangement shown in figure 1 (following wing horizontal, angle of attack nominally zero) with the vorticity meter appropriately positioned. The vortex positions at which data were taken are shown in Table 2 along with the run number assigned to that data. Notice that the coordinates in this table are for the unperturbed position of the vortex relative to the force model. Although in these terms the vortex would appear to be beneath the wing (for $z_{v} / c<0$), in actuality the wing caused the vortex to deflect upward as shown for $z_{v} / c>0$ in figure 9. The minimum z_{v} / c position shown $\left(z_{v} / c=-0.18\right)$ is for the case where the wing was observed to bifurcate the vortex

As is also shown in Table 2, some data were obtained with the follow ing wing vertical (rotated 90° counterclockwise, looking upstream), but still nominally at zero angle of attack. Because the coordinate system
shown in figure 1 is taken to be fixed in the model., with the wing vertical a vertical sweep of the model corresponds to varying y_{v} / s, a lateral. sweep to varying z_{v} / c. Runs taken at the intersection of the lateral and vertical sweeps are listed under both kinds of sweeps in Table 2 .

To account for small imperfections in its construction, the loads on the force model were also obtained with the generating wing set to generate zero lift. For this measurement, the force model (still nominally at zero angle of attack) was set horizontal and was located well above the generating wing's wake. These loads $\left(\hat{C}_{I}=0.0858, \hat{C}_{\ell}=-0.00866\right.$, run 43) were applied as tares to all the other data from the force model; the resultant values $\left(C_{L}, C_{\ell}\right)$ are thus induced solely by the presence of the vortex (under the assumption that for the positions occupied by the following wing, variatiors in the flow angularity in the free stream are small). The lift curve for the force mociel was also obtained (runs 43-48).

As previously mentioned, the capability existed for conditionally sampling the data from the force model using the thtational speed output of the vorticity meter as an indication of instantaneous vortex position. Nonlinear effects of small changes in vortex position would be removed from the average values determined in this way, and one would expect the resulting mean values to converge and the standard deviation to be reduced as more of the data where the vortex is "out-of-position" are excluded. However, the effects of decreasing the sample size apparently offset the effects of eliminating data for which the vortex was out-of-position, for no such behavior for mean and standard deviation was observed. Therefore, values from the force model presented in this report are averages of all the samples collected at a given test condition.

Tests with the Pressure Model

All of the testing with the pressure model was done with the pressure instrumented wing horizontal. The vortex positions at which data were obtained are shown in Table 3. As with the force model, the loads in the absence of the vortex were measured (run 69) and all results corrected for these tare values. This process, when applied to the pressure at each tap location, results in C_{p}, the local pressure coefficient from which the effects of the wing thickness and any construction irregularities have been removed. The lift curve for the pressure model was also measured (runs 50-51, 59-74).

As mentioned previously, for each mun approximatoly 20 samples of the pressure at each pressure-tap location were recorded. At each tap location, these values were averaged, converted to C_{p}, and integrated chordwise to define the span loading as follows*:

$$
\begin{align*}
c_{\ell}= & \int_{0}^{1} \frac{p_{\ell}-p_{u}}{q_{\infty}} d(x / c)=\int_{0}^{05} \frac{p_{\ell}-p_{u}}{q_{\infty}} d(x / c)+\int_{05}^{9} c_{p_{\ell}} d(x / c) \\
& -\int_{.05}^{9} c_{p_{u}} d(x / c)+\int_{.9}^{1} \frac{p_{\ell}-p_{u}}{g_{\infty}} d(x / c) \tag{3}
\end{align*}
$$

The second and third terms on the right-hand side of this equation are evaluated by a straightforward numerical integration of the data using the trapezoidal rule. The fourth term provides a negligible contribution. The first term, however, provides a substantial contribution, although it involves only a small region in the wing which cannot be adequately instrumented with pressure taps in a model of this scale. Therefore, the contribution of this term was modeled hy the relation

$$
\begin{equation*}
\int_{0}^{05} \frac{p_{\ell}-p_{u}}{q_{\infty}} d(x / c)=\left.k\left(c_{p_{\ell}}-c_{p_{u}}\right)\right|_{\frac{x}{c}=0.05} \tag{4}
\end{equation*}
$$

where k was determined to be 0.0639 from two-dimensional section data for an NACA 0012 wing (ref. 10). This procedure should be quite accurate over most of the wing as long as the local angle of attack induced by the vortex does not become too large.

Span loading as calculated by equations (3) and (4) is integrated again to get the overall wing lift and rolling-moment coefficients:

[^0]\[

$$
\begin{gather*}
c_{I}=\frac{L}{q_{\infty} S}=\frac{1}{2} \int_{-1}^{I} c_{\ell} d(y / s) \tag{5}\\
c_{\ell}=\frac{R}{q_{\infty} b S}=\frac{1}{4} \int_{-1}^{1}(y / s) c_{\ell} d(y / s) \tag{6}
\end{gather*}
$$
\]

These equations, vaiid for a rectangular wing, are evaluated dy the trapezoidal rule making use of the fact that $c_{\ell}=0$ at $y / s= \pm 1$. Linear interpolation is used through the fuselage location.

PRESENPATION AND DISCUSSION OF EXPERIMENTAL RESULTS

All of the data acquired in this investigation are tabulated in Appendix A. In this section, selected results are presented and discussed.

The Following wing in the
Absence of the Vortex

In figure 10, the integrated lift coefficients for both the force and pressure models are shown as functions of angle of attack. With the exception of one apparently anomalous data point, the agreement for lift derived from the two models is good (within the uncertainty of the force data, ± 5 percent). Predictions of the lift curve from a vortex-lattice program (described later) and from the method of reference 11 are shown for comparison and agree with the data to within this same order of accuracy. It is shown in reference 12 that for the low Reynolds number of this test $\left(\mathrm{Re}_{\mathrm{c}}=330,000\right)$ the lift curve becomes nonlinear for α greater than about 10°. The error bands on the data points from the force model show the standard deviation of those measurements. Because of the assumptions required to integrate the pressure data, accuracy of these data is best assessed by comparison to the force model data and to the theoretical estimates.

An example of the span loading measured by means of the pressure model is shown in figure 11. A decrease in section lift in the immediate vicinity of the fuselage is evident. Good ayreement is shown with span
loading calculated by the vortex-lattice program. The break in this calculated curve at the fuselage location indicates that this program as currently configured does not calculate the lift carry-over onto the fuselage.

The Following wing in the
Presence of the Vortex
Measured rolling moment and lift are shown in figures $12(a)$ and (b), respectively, with the vortex at different heights above the right halfsemispan. Measurements from the force and pressure models are shown; in both cases, the following model was horizontal. Good repeatability and reasonable agreement between measurements with the different models is evident. The standard deviation of the measurements from the force model in the presence of the vortex is approximately represented by the symbol size in these figures. Note that this approximately bounds the effects of meander in these data.

The span loadings measured on the pressure model at the conditions of figure 12 are shown in figures 13 (a) through (f). In these figures, the (unperturbed) position of the vortex relative to the wing and the approximate core size are shown to scale. With the vortex far from the wing, as in figure 13 (a), the loading directly under the vortex should be essentially zero. It is seen that c_{ℓ} is substantially nonzero at $y / s=0.5$, and that because of the mild gradient of the span loading, the discrepancy is considerably more than could be attributed to uncertainty in the vortex position. Further, c_{ℓ} at $y / s=0.5$ is nearer to zero with the vortex somewhat closer to the wing, figure 13 (b). The likely source for this behavior is the unrolled-up portion of the wake from the generating wing;es mentioned earlier, at the streamwise position of the following wing, a substantial amount of the shed vorticity is not rolled up into a symmetric vortex (see sketch on following page). While we propose to do no modeling of the residual vortex sheet to investigate this point further, it is reasonable to suppose that the behavior observed in figures 13 (a) and (b) is due to the fact that more of the wing is exposed

[^1]to this sheet as the separation between the rolled-up vortex and wing increases; additionally, its effects become proportionally more important as those of the vortex are diminished by distance.

When the vortex is closer to the wing (and the effects of the un-rolled-up wake are minimal), one would expect to see evidence of the nonlinear suction lift and vortex-bending contributions to surface pressure discussed in Appendix B. The "bump" in the span loading curves of figures 13 (c) and (d) at $y / s=0.55$ presumably represents these effects (as previously observed in reference 13). Note that because the nonlinear suction and vortex-bending pressures peak directly under the vortex (see Appendix B), this bump is an indication of the perturbed vortex location.

It is reported in reference 13 that when the vortex gets still closer to the wing, bursting occurs and the suction peak disappears. This seems to be the case in figures $13(e)$ and (f) which have no "bump" at $\mathrm{y} / \mathrm{s}=0.55$. Remember that the $\mathrm{z}_{\mathrm{v}} / \mathrm{c}$ position reported in figure 13 is the unperturbed location. The vortex is bifurcated by the wing in figure 13 (f). The span-load distribution remains smooth even for this extreme condition.

Further effects of the unrolled-up wake are evident in figures 14 (a) and (b). In these figures, the rolling-moment and lift coefficients measured with the force model are shown for $y_{v} / s=-0.5$. Measurements are shown with the following model horizontal and vertical. It is clear that changing the attitude of the model relative to the wake causes a substantial change in rolling moment and that this change is increased as z_{v} / C increases. The effect of lift is seen to be small.

The remainder of the data gathered in this investigation were for varying y_{v} / s at $z_{v} / c=0.05$. These data are shown in figures $15(a)$ and (b). Measurements with the pressure model horizontal and the force model both horizontal and vertical are included, as are some theoretical results discussed in the next section. The rolling-moment coefficient data of figure 15 (a) essentially confirm the above remarks; that is, measurements made with the force and pressure models horizontal agree reasonaioly well, while those made with the force model vertical show substantial disagreement. The lift-coefficient results of figure 15 (b) again show small effects of model attitude.

To illustrate the detailed loading distributions that result in the integrated values presented to this point, a series of isometric plots of the pressure coefficient on the top and bottom wing surfaces is given in figures $16(a)$ through (f). The position of the vortex for these figures is the same as for figures 13 (a) through (f); that is, $\mathrm{y}_{\mathrm{v}} / \mathrm{s} \quad 1.5$ and z_{v} / c varies from 1.73 to -0.18 . The spanwise station $y_{v} / s=0.5$ is marked with an arrow in these figures. The pressure coefficients plotted have been adjusted for the tare run; that is, the pressure distribution due to thickness (and any irregularities in the wing) has been subtracted out. The coefficients measured at taps located forward of $x / c=0.05$ are not plotted in these figures because they were not used in the integration of loads, as discussed previously. The curve shown at the wing center line on the top surface is the measured pressure distribution there, although it was also not used in the integration. Obviously, no pressures could be measured on the bottom wing surface at the centerline.

In the earlier comments about figures $13(c)$ and (d), notice was made of the "bump" in the loadings at $y / s=0.55$. The surface pressures resulting in these loadings are shown in figures 16 (c) and (d). Particular attention should be directed to the top wing surface; $y / s=0.55$ is the spanwise station just to the right of the arrow. The chordwise distribution at this station (and to a lesser degree the distribution at the station marked with the arrow) contrasts markedly with the distributions shown at the other spanwise stations. The (relatively) large negative pressure coefficients existing over the mid and aft portions of the wing at $\mathrm{y} / \mathrm{s}=0.55$ result in a locally increased c_{ℓ} (the "bump"). These augmented pressure coefficients are interpreted as the net of the nonlinear suction lift and vortex-bending contributions. As the vortex
approaches the wing, figure $1.6(e)$, and is bilurcated, figure $16(f)$, the increased loading over the mid and aft portions of the wing disappears. The pressure distributions far from the vortex in all these figures resemble standard section data and suggest that that portion of the flow field might be mode'.ed in a straightforward fashion using strip theory. The success of this theoretical approach (and others) is assessed in the next section. Some more detrils of pressure distributions are presented in support of specific points.

DESCRIPTION OF THEORETICAL METHODS AND COMPARISON WITH DATA

Three standard methods of linear wing analysis (strip theory, vortexlattice theory, and reverse-flow theory) are used to predict the loads on the wing due to the vortex. The boundary, conditions used in these calculations consist of the induced velocity field from either a potential vortex or the "aged" vortex of equation (1), with the constants required for the description of the vortex structure determined as described earlier. The methods are applied assuming that the presence of the wing does not alter the vcrtex structure; that is, the vortex remains rectilinear and the incident velocity field is unchanged from that existing for the isolated vortex. Because the vortex models used take no account of the presence of the unrolled-up vortex sheet discussed earlier, the models are applied only with the vortex close to the wing where the effects of this sheet are minimal.

Strip Theory

Several versions of this simple approach have been applied to this problem in prior investigations, with varying claims of success (see, for example, refs. $1,7,14$, or 15).

Using strip theory, each infinitesimal element of the wing is considered to be independent of the others, and the load on each element is assumed to be calculable from the local section angle of attack. Thus for a rectangular wing

$$
\begin{align*}
& c_{L}=\frac{1}{2 s} \int_{-s}^{s} c_{L_{\alpha}} \frac{w^{v}}{V_{\infty}} d y \tag{7}\\
& c_{\ell}=\frac{1}{4 s^{2}} \int_{-s}^{s} c_{L_{\alpha}} Y \frac{w_{v}}{V_{\infty}} d y \tag{8}
\end{align*}
$$

where $c_{I_{\alpha}}$ is the section lift-curve slope and w_{v} / v_{∞} is the local section angle of attack. Previous applications of this method differ in the amount of empiricism used in the sperification of $\mathrm{c}_{\mathrm{L}_{\alpha}}$ and $\mathrm{w}_{\mathrm{v}} / \mathrm{V}_{\infty}$.

In this section, two versions of strip theory (differing in the treatment of $\mathrm{c}_{\mathrm{L}_{\alpha}}$) are used to illustrate the fundamental features of the method. In the first version, ${ }^{{ }^{L_{\alpha}}}$ is assumed to be constant over the entire wing and equal to a_{0}, the three-dimensional lift-curve slope $\left(a_{0}=4.58 / \mathrm{radian}=0.08 /\right.$ degree $i s$ used, see fig. 10). Both descriptions of the vortical velocity field developed earlier are used in conjunction with this assumption. If the vortex is to be represented as potential, application of the Biot Savart law yields

$$
\begin{equation*}
\left.\frac{w_{v}}{V_{\infty}}\right|_{P}=-\left(\frac{\Gamma_{0}}{2 \pi V_{\infty}}\right)_{\left(y_{v}-y\right)^{2}+z_{v}^{2}}^{y_{v}-y} \tag{9}
\end{equation*}
$$

and

$$
\begin{gather*}
c_{L_{P}}=\left(\frac{a_{0}}{4 s}\right)\left(\frac{\Gamma_{0}}{2 \pi V_{\infty}}\right) \ln \left[\frac{\left(y_{v}-s\right)^{2}+z_{v}^{2}}{\left(y_{v}+s\right)^{2}+z_{v}^{2}}\right] \\
c_{l_{P}}=-\left(\frac{a_{0}}{2 s}\right)\left(\frac{\Gamma_{0}}{2 \pi V_{\infty}}\right)\left\{1-\frac{z_{v}}{2 s}\left[\tan ^{-1}\left(\frac{y_{v}+s}{z_{v}}\right)\right.\right. \\
\left.\left.-\tan ^{-2}\left(\frac{y_{v}-s}{z_{v}}\right)\right]-\frac{y_{v}}{4 s} \ln \left[\frac{\left(y_{v}+s\right)^{2}+z_{v}^{2}}{\left(y_{v}-s\right)^{2}+z_{v}^{2}}\right]\right\} \tag{11}
\end{gather*}
$$

I: the vortex is represented by equation (1) (an "aged" vortex),

$$
\begin{equation*}
\left.\frac{w_{V}}{V_{\infty}}\right|_{A}=\left.\frac{w_{V}}{V_{\infty}}\right|_{P}\left\{1-e^{-\left[\left(y_{v}-y\right)^{2}+z_{v}^{2}\right] / 4 v t}\right\} \tag{1.2}
\end{equation*}
$$

and

$$
\begin{gather*}
c_{L_{A}}=c_{L_{p}}+\left(\frac{a}{4 s}\right)\left(\frac{\Gamma_{0}}{2 \pi V_{c o}}\right)\left(I_{I}-I_{z}\right) \tag{13}\\
c_{\ell_{A}}=c_{\ell_{P}}-\left(\frac{a_{0}}{4 s^{z}}\right)\left(\frac{\Gamma_{0}}{2 \pi V_{m}}\right)\left[\frac{Y_{V}}{2}\left(I_{I}-I_{2}\right)\right. \\
\left.-\int_{Y_{V}}-s \quad \frac{\eta^{2} e^{-\left(\eta_{1}^{2}+z_{V}^{2}\right) / 4 v t}}{\eta^{2}+z_{v}^{2}} d \eta\right] \tag{14}
\end{gather*}
$$

The last term on the right-hand side of equation (14) is evaluated numerically. I_{1} and I_{2} are the exponential integrals

$$
\begin{align*}
& I_{1}=\int_{t_{1}}^{\infty} \frac{e^{-t}}{t} d t \tag{15}\\
& I_{2}=\int_{t_{2}}^{\infty} \frac{e^{-t}}{t} d t \tag{16}
\end{align*}
$$

with $t_{1}=\left[\left(y_{v}-s\right)^{2}+z_{v}^{2}\right] / 4 v t$ and $t_{2}=\left[\left(y_{v}+s\right)^{2}+z_{v}^{2}\right] / 4 v t$.
The second version of strip theory used here is based on the reasoning (set forth in reference 15) that the portions of the wing on either side of the vortex act as separate wings, each with its own (constant) value of lift-curve slope. The lift-curve slope for either portion of the wing is determined from

$$
\begin{equation*}
c_{L_{\alpha}}=\frac{2 W R}{P \cdot R+2} \tag{17}
\end{equation*}
$$

where \mathbb{R} is the aspect ratio and P is the ratio of semi-perimeter to span, each evaluated for the wing portion treated as a separate wing. Thus for the rectangular wing treated here,

$$
\begin{align*}
c_{L_{\alpha}} & =a_{o_{L}}=\frac{2 \pi\left(\frac{b}{c}\right)\left(1+\frac{y_{v}}{s}\right)}{\left(\frac{b}{c}\right)\left(1+\frac{y_{V}}{s}\right)+6} \tag{18}
\end{align*} \quad, \quad-1 \leq \frac{y}{s} \leq \frac{y_{V}}{s}
$$

Specifying $c_{L_{\infty}}$ as double-valued at y_{v} / s causes no problems in equation (7) or (8) because w_{v} / v_{∞} vanishes there.

In this second (split-wing) version of strip theory, the aged-vortex relation of equation (12) is used to describe the distribution of section angle of attack. Thus

$$
\begin{align*}
C_{L_{S, A}}= & \left(\frac{1}{4 s}\right)\left(\frac{\Gamma_{O}}{2 \pi V_{\infty}}\right)\left\{a_{o_{L}}\left[\ln \frac{z_{V}^{2}}{\left(y_{V}+s\right)^{2}+z_{V}^{2}}+I_{3}-I_{2}\right]\right. \\
& \left.+a_{o_{R}}\left[\ln \frac{\left(y_{V}-s\right)^{2}+z_{V}^{2}}{z_{V}^{2}}+I_{1}-I_{B}\right]\right\} \tag{19}
\end{align*}
$$

and

$$
c_{L_{S, A}}=-\left(\frac{1}{4 s^{2}}\right)\left(\frac{\Gamma_{O}}{2 \pi V_{\infty}}\right)\left\{a _ { o _ { L } } \left[s+y_{v}-z_{v} \tan ^{-1}\left(\frac{y_{V}+s}{z_{v}}\right)\right.\right.
$$

$$
\left.+\frac{Y_{v}}{2} \ln \frac{z_{v}^{2}}{\left(y_{v}+s\right)^{2}+z_{v}^{2}}-\frac{y_{v}}{2}\left(I_{2}-I_{3}\right)-\int_{0}^{Y_{v}^{+s}} \frac{\eta^{2} e^{-\left(\eta^{2}-1 z_{v}^{2}\right) / 4 v t}}{\eta^{2}+z_{v}^{2}} d \eta\right]
$$

$$
+a_{o_{R}}\left[s-y_{v}+z_{v} \tan ^{-1}\left(\frac{y_{v}-s}{z_{v}}\right)+\frac{y_{v}}{2} \ln \frac{\left(y_{v}-s\right)^{2}+z_{v}^{2}}{z_{v}^{2}}\right.
$$

$$
\begin{equation*}
\left.\left.-\frac{y_{v}}{2}\left(I_{3}-I_{1}\right)-\int_{0}^{s-y_{v}} \frac{\eta^{2} e^{-\left(\eta^{2}+z_{v}^{2}\right) / 4 v t}}{\eta^{2}+z_{v}^{2}} d \eta\right]\right\} \tag{20}
\end{equation*}
$$

where I_{3} is the exponential integral

$$
\begin{equation*}
I_{3}=\int_{\frac{z_{v}^{2}}{4 v t}}^{\infty} \frac{e^{-t}}{t} d t \tag{21}
\end{equation*}
$$

The integrals involving η in equation (20) are evaluated numerically. Predictions of rolling moment from equations (11), (14), and (20) are shown for $z_{v} / c=0.05$ in figure $15(a)$. The predictions shown ignore the effects of the image vortices present because of the tunnel walls. Inclusion of the closest eight of these images results in very small changes in the coefficients (0.002 in $C_{\ell}, 0.01$ in C_{L}); the effects of these images are therefore neglected in all subsequent calc"lations.

ORIGINAL PAGE IS
OF POOR QUALITY

It is seen that the best overall agreement with data js obtajned for the approach of equation (14) which uses $c_{I_{1}}=a_{o}$ for the whole wing in conjunction with the aged vortex. However, the agreement attained by this method is quite variable. Near $y_{v} / s=0$, agreement within about 10 percent is attained; at $y_{v} / s=0.5$, the discrepancy is nearly 40 percent; but at $y_{v} / s=0.9$, there is excellent agreement: Examination of the lift coefficient results of figure 15 (b) reveals a similarly varying level of agreement for this method (eq. (13)); here, however, the whole-wing method in conjunction with a potential vortex (eq. (l0)) leads to virtually identical results, while the split-wing method (eq. (19)) exhibits considerably improved agreement with data for all $y_{v} / s_{\text {. }}$

The reason for this geemingly erratic behavior is apparent from examination of the predicted and measured span loadings in figures 17 (a) and (b) . These figures show cases where the agreement with data for rolling moment coefficient from equation (14) is poor and excellent, respectively. The span loadings predicted using the whole-wing and spilt-wing versions of strip theory and equation (12) are shown; that from the whole-wing approach and equation (9) (not shown) differs from the whole-wing, equation (12) approach only in the immediate vicinity of the vortex where $\left|c_{\ell}\right|$ becomes very large. Predictions from vortex-lattice theory are also shown and are discussed later. It is clear in both figures that both versions of strip theory do a poor job of predicting the spanwise distribution of loading. This is particularly obvious near the vortex where the strorg spanwise gradients invalidate the assumption of no interference between adjacent strips. Therefore, where strip theory gives good results it is fortuitous. Compensating errors occur at different positions on the wing.

In the context of linear theory, there are two major possible sources for these (offsetting) errors. The first is that mutual interaction between adjacent wing sections is important. The second is that the aged vortex of equation (1) is a poor representation of the velocity field that exists when the vortex is close to the following wing; that is, the previously mentioned deflection and possible bursting of the vortex are not represented by this model and may have strong effects on the induced loading. The first possible source of error is removed by applying vortex-lattice theory (or reverse-flow theory) to the problem with the vortex assumed rectilinear and represented by equation (12). These approaches are now described. The second possible source of error is discussed subsequently.

Vortex-Lattice Pheory - Rectilinear Vortex

The vortex-lattice method is an implementation of linear, potential theory wherein the wing and fuselage are represented by a network of distributed singularities. The particular implementation used in this work is described in references 16 and 17. In the present work, it was found adequate to model each wing panel by 20 spanwise rows of 4 chordwise horseshoe vortices. The fuselage is modeled as a circular cylincter with diameter of $4.47 \mathrm{~cm}(1.75 \mathrm{in}$.$) and its axis cojncident with the x-axis$ shown in figure 1 . The image of the incident vortex in this cylinder is required : maintain the flow tangency condition on its surface; a second image at fre cylinder's axis is required to mantain the proper circulation at infinity.

Once the wing perturbation velocities are calculated by the linear theory of the vortex-lattice program, they can be used in any desired pressure-velocity relationship to calculate the surface pressures on the wing. These pressures are then integrated to get lift and rolling moment. It is shown in Appendix B that the contributions to surface pressure of the nonlinear terms present in the Bernoulli pressure relation are of the same order and of opposite sign from the contributions due to vortex bending. Therefore, in the present treatment of a rectilinear vortex, it is appropriate to use the linear pressure-velocity relation. However, for illustrative purposes, examples of loadings calculated from Bernoulii pressures are also included.

Integrated rolling moment and lift' calculated in these ways are shown in figures 15 (a) and (b) which are for $z v / c=0.05$; vortex-lattice calculations were made at $y_{v} / s=0.2,0.5$ and 0.9 . Except with the vortex very neax the wing tip, agreement with the rolling-moment data is good for calculations using either linear or Bernoulli pressures. At $Y_{V} / s=0.9$, neither method does very well but the method using Bernoulli. pressures is slightly better. The agreement with the lift data is of the same order as the agreement between data from the force and pressure models.

As before, examination of the distribution of loading can lend some insight into the behavior of the overall results. Returning to figure 17 (a), we see the span loading for a case ($y_{V} / s=0.5$) where both linear and Bernoulli pressure calculations resulted in good agreement with data, with the linear pressure calculation doing slightly better. The improvement in span loading gained by accounting for mutual interaction between
wing sections is immediately obvious by contrasting the agreement of either vortex-lattice approach to data with that of strip theory. It is seen that the loads are calculated quite well, except in the immediate vicinity of the vorter location. Using the Bernoulli relation leads to no particular improverant here; the agreement is slightly better on the left of the vortex, slightly worse on the right side. The similar behavior shown in figure 17 (b) leads to slightly improved agreement using the Bernoulli pressures, because the area to the right of the vortex is off the wing. The span loadings from vortex-lattice theory shown in figure 1.7 (b) result in porier agreement with data for rolling moment than for lift probably because the area of greatest discrepancy has a large moment arm in the rolling-moment calculation.

Some further understanding of the level of agreement achieved by these vortex-lattice methods is derived by examining the most detailed output of these methods, surface-pressure coefficients. It is particularly instructive to compare the spanwise distribution of pressure at a constant chordwise position. Figures 18 (a) and (b) show measured and calculated pressures due to the vortex on the top and bottom wing surfaces, respectively. The measured pressures are for $x / c=0.65$. The calculated pressures are for $x / c=0.688$. In this region of the wing, this small discrepancy in chordwise position is not important for the purposes of the present discussion. The pressure distributions on both surfaces emphasize again that the agreement with data achieved is good, except near the vortex. On the upper surface, the calculated suction peak (using Bernoulli pressures) is overemphasized and slightly mislocated, indicating that the vortex has in fact moved slightly to the right. On the lower wing surface (fig. 18 (b)), there is also a calculated and a measured suction peak. Here, however, the calculated peak is underemphasized and too far to the right. It is clear from these remarks that while using the Bernoulli pressure relation does qualitatively represent some real effects in the calculation, its use in conjunction with the assumption of an unaltered vortex structure does not lead to improved agreement for loading over a calculation made using linear pressures and a rectilinear vortex. Improvement in the accuracy of prediction would seem to depend on an accurate representation of the effects of the wing on the vortex. The improvements to be gained, however, do not appear to warrant the effort required.

Reverse-Flow Theory

Under the assumption of a rectilinear vortex, reverse-flow theory (refs. 18 and 19) can be used to calculate the induced rolling moment and the theory is equivalent to that of the preceding section. After an initial calculation of the span loading in the appropriate reverse flow, subsequent calculation of rolling moment for any vortex position is reduced to a simple quadrature. Although the loading distribution is not an output of this method, the calculation is of the same accuracy as that of the preceding section. Reverse-flow theory is therefore a very economic approach, as long as details of the loading are not required.

The reverse flow relation for rolling moment is

$$
\begin{equation*}
c_{\ell}=-\frac{1}{4 s^{2}} \int_{-s}^{s}\left(\frac{{ }_{v}}{V_{c o}}\right)\left(\frac{V_{\infty}}{p}\right)\left(c_{f}\right)_{r o l l} d y \tag{22}
\end{equation*}
$$

where $\left(c_{\ell}\right)$ roll is the span loading distribution for the rectangular wing in steady roll at roll angular velocity p. Either vortex model can be used for w_{v} / V_{∞}. In this investigation, $\left(c_{l}\right)$ roli was calculated using vortex-lattice theory and equation (22) was applied using wv/ V_{∞} from equation (12). It was verified that the results from this approach are equivalent to those from vortex-lattice theory (using linear pressures).

Some Remarks on Calculations Including Vortex Bending

As mentioned previously, it is shown in Appendix B that for a point vortex, contributions to loading from vortex bending and nonlineax terms in the Bernoulli pressure relation are of the same order and of opposite sign. To achieve agreement improved over that demonstrated in the previous sections would therefore seem to require satisfactory modeling of vortex bending as well as inclusion of the Bernoulli terms.

The vortex-lattice program used in this investigation incorporates a vortex-tracking scheme based on slender-body theory. This scheme is a simplified version $心$ the analysis for the cruciform wing case discussed in references 19,20 , and 21 . It is inappropriate for use here, however, because it does not take into account the upwash field ahead of the rectangular wing which results in the large vertical deflections of the

ORIGINAL PAGE IS

OF POOR QUALITY
vortex shown in figure 9. But: even if a more complet.e tracking schome were devised, it would not lead to sully satisfactory res lts for the case with the vortex very close to the wing. In this situation the vorticity is more widely distributed and neither equation (9) nor (12) is applicable; higher order accuracy would require proper accounting for the full mutual interaction of the vortex and the wing.

This requirement is fortunately not of marjor concern. The accuracy achieved through the straightforward application of strictiy linear analysis in conjunction with a rectilinear vortex model should be entirely satisfactory for most purposes.

CONCLUDING REMARKS
This investigation has resulted in detailed measurements of the loads on a wing in close proximity to a tip vortex generated by a larger, upstream semispan wing. These measurements show that over most of the wing these loads are due to the spanwise varying angle of attack induced by the vortex. For a limited range of wing-vortex spacings, there are also contributions to the loading from vortex bending and the nonlinear terms in the Bernoulli pressure relation. It is demonstrated, however, that failure to model these last two effects results in only a small penalty in predictive accuracy.

Good agreement of the integrated pressure measurements with overall loads measured by means of a force balance is attained. With the vortex very much above the wing, however, the data are shown to include effects of the unrolled-up portion of the vortex sheet emanating from the generating wing. These effects are also evident with the following model rolled 90° relative to its normal position.

An attempt was made to minimize the effects of vortex meander on the measurements by conditionally sampling the data, using the output of a vorticity meter to indicate vortex instantaneous position. Because the conditional sampling process used here resulted in reduced sample sizes, no improvements were attained over averages calculated using all the data.

Various theoretical methods were used to compute the loads for the experimental cases for which the effects of the unrolled-up wake are minimal. Straightforward applications of strir theory resulted in a varying level of agreement with the measurements. Comparison of the predicted and measured span loadings reveals uniformly poor accuracy, however,
indicating that the limited success strip theory does achieve i.s fortuitous. In these comparisons, two models for the vortex velocity field were used; one a simple potential vortex, the other allowing for distributed vorticity in the core. Both models are based on previously published uDV traverses of the vortex of interest at the appropriate streamwise station. Allowance for the finite vortical core improved agreement slightly over calculations made with the potential vortex model.

Loads predicted using linearized pressures from vortex-latetice theory applied in conjunction with a rectilinear vortex model (with distributed vorticity) are within about 15 percent of measurements unless the vortex is very close to the wing tip. Agreement with measured span loadings is good except in the immediate vicinity of the vortex. The reverse-flow theorem, which can be used to calculate overall loads to the same accuracy, is presented.

The use of pressures calculated using the Bernoulli relation in conjunction with vortex-lattice theory and a rectilinear vortex does not result in improved agreement for loading although it does improve agreement for pressure distribution somewhat. Improvement in predictions should result from accounting for the interference of the wing on the vortex path, unless the wing is very close to the vortex. In this case, the resultant more widely distributed vorticity would have to be modeled.

In summary, economic predictions of overall loads of sufficient accuracy for most applications can be achieved by using reverse-flow theory. If the predictions are for cases where the vortex is within a core radius of the wing, a vortex model with a core should be used. If detailed loading distributions are required, fully linearized vortexlattice theory gives good results. Significant improvements in accuracy beyond this situation are likely to be obtained only by accounting fully for mutual wing-vortex interference.

NIETSEN ENGINEERING \& RESEARCH, INC.
Mountain View, California
February 1977

TABLE 1.- GEOMETRICAL CHARACTERISTICS OF GENERATING AND FOLLOWING WINGS

	Generating Wing	Following wing
Section	NACA 0015 (thickened trailing edge)	NACA 0012
Planform	Rectangular	Rectangular
Tip Shape	Squared off	Squared orf
Chord, c, cm (in.)	45.7 (18.0)	9.91 (3.90)
Semispan s, cm (in.)	123.2 (48.5)	44.12 (17.37)
Aspect Ratio	5.4	8.9

TABLE 2.- VORTEX POSITIONS, FORCE MODEL
(a) Horizontal Wing, Vertical Sweeps

TABLE 3.-- VORTEX POSITIONS, PRESSURE MODEL, HORIZONTAL WING

z_{v} / c	(a) Vertical Sweep
	Run Number, $y_{v} / \mathrm{s}=0.5$
1.73	66
0.73	54,67
0.23	53,68
0.05	60
-0.02	63
-0.18	58
) Lateral Sweep
y_{v} / s	Run Number, ${ }^{2} \mathbf{v} / \mathrm{c}=.05$
-0.5	62
0 .	64
0.1	65
0.2	61
0.475	56
0.5	60
0.525	57
0.9	59

Figure 1.- Experimental arrangement.

(All dimensions in cm)

NOSE SHAPE

Distance from Tip	Diameter
0.76	2.16
2.03	2.82
3.30	3.30
4.57	3.66
7.11	4.27
9.65	4.44
10.16	4.44

Figure 2.- Fuselage exterior shape.

PLAN VIEN

Tap number:

SECTION A-A (Note change of scale)
Chordwise Location

$\operatorname{Tap}_{\text {Number }}(I)$	x / c	$\begin{gathered} \text { Row } \\ \text { Number (} \mathrm{J}) \end{gathered}$	y / s	Missirg Tap Numbers
1	0	1	-0.95	11
2	0.025	2	-0.85	
3,14	0.050	3	-0.70	1
4,15	0.100	4	-0.50	
5	0.150	5	-0.40	1.
6,16	0.200	6	-0.25	
7	0.250	7	-0.10	
8, 17	0.300	8	-0.06	1.8
9	0.400	9	0.00	8, 9,13-21
10,18	0.500	10	0.10	11,19
11,19	0.650	11	0.25	9,10
12,20	0.780	12	0.40	1
13,21	0.900	13	0.45	1,10
		14	0.50	20
		15	0.55	6
		16	0.60	9,10
		17.	0.75	9
		18	0.85	
		19	0.95	8, 9

Figure 3.- Pressure tap locations.

Figure 5.- Schematic of vorticity meter.

Figure 6.- Vorticity meter output.

Figure 7.- Tangential velocity profile through vortex core (from ref. 4), two chord lengths downstream of generating wing. $V_{\infty}=24 \mathrm{~m} / \mathrm{sec}, a_{G}=12^{\circ}$.

Figure 8.- Vortex circulation as a function of radius.

Figure 9.- Iateral and vertical deflection of vortex from its unperturbed position, as measured behind
the wing $(x / c=3) . y_{V} / s=-0.5$.

Figure 10.- Lift curve of the following wing:

Figure 11.- Span loading of the following wing, $\alpha=7.4^{\circ}$.

(a) Rolling-moment coefficient.

Figure 12.- Measured rolling moment and lift, $Y_{v} / 5=0.5$, horizontal wing.

(a) $z_{v} / c=1.73$.

Figure 13.- Span loading of the following wing, $y_{v} / s=0.5$.

Frgurs :- Continuea.

(c) $z_{v} / c=0.23$.

Figure 13.- Continued. .

合

(d) $z_{v} / c=0.05$.

Figure 13.- Continued.

regure 2 . - comiluaen.

(a) Rolling-moment coefficient.

(b) Ifift coefficient.

Figure 14.- Measured rolling moment and lift, $Y_{v} / s=-0.5$, force model.

(a) Rolling-moment coefficient.

Figure 15.- Measured rolling moment and lift, $z_{v} / c=0.05$.

(b) Lift coefficient.

Figure 15.- Concluded.

Figure 16.- Vortex-induced pressure distributions on following wing, $Y_{v} / s=0.5$.

Figure 16.- Continued.

Figure 16.- Continued.

Figure 16.- Continued.

RUN 63 - BOTTOM

Figure 16.- Continued.

Figure l6.- Concluded.

(a) $y_{V} / s=0.5$.

Figure 1.7.- Comparison of predicted and measured span loadings. $z_{v} / c=0.05$. Predictions use rectilinear, aged vortex, equation (12).

Figure 17.- Concluded.

(a) Top wing surface.

Figure 18.- Pressure coefficients, $y / s=0.5$, $z_{v} / c=0.05$. Vortex-lattice predictions use rectilinear, aged vortex, equation (1).

(b) Bottom wing surface.

Figure 18.- Concluded.

APPENDIX 7

TABULATED EXPERTMENTAL DATA

All of the reduced data from this invostigation are listed by run number* in rables A.l through A.5. In this appendix, the organization of these tables and the nomenclature used are explained.

Table A. 1 contains the results from testing with the force model. The average values for C_{L} and C_{ℓ} shown are the averages using all the data taken at a particular test condition, after correction for the novortex loads $\left(\hat{C}_{L}, \hat{C}_{\ell}\right)$. The standard deviation for each quantity is also shown, as are the wing orientation (horizontal or vertical) and the angle of attack of the force model (zero except for the lift-curve runs).

The integrated average results from the pressure model are shown in Table A. 2 (after correction for the no-vortex loads, run 69). The format of this computer printout is now described. J and Y are the spanwise row number and y / s location, respectively, of a chordwise row of pressure taps (as shown in figure 3).

IIFT is c_{ℓ} integrated from this row of taps using equations (3) and (4). ALPHASUBS is a fictional section angle of attack (in degrees) defined by the pressure difference between the upper and lower wing surfaces at $x / c=0.05$ according to the relation

$$
\begin{equation*}
\text { ALPHASUBS }=\left.2.63\left(C_{P_{\ell}}-C_{P_{u}}\right)\right|_{x / c}=0.05 \tag{A.1}
\end{equation*}
$$

The constant in this relation was derived from two-dimensional wing section data (ref. 10). IUFT FROM ALPHASI $3 S$ is the product of ALPHASUBS and the two-dimensional section lift-curve slope for the NACA 0012 section (0.107/degree, ref. 10). This result, if appreciably different than c_{f} is an indication that the section pressure distribution will not be well modeled by considerations involving only induced angle of attack (e.g., strip theory). CI LDNG EDGE is the contribution of equation (4) to LIFT. Table $A .2$ also contains integrated lift and rolling moment (C_{L} and C_{ℓ}) on the left and right wings, as well as the totai vaiues from equations (5) and (6). Finally, the overall integrated values from ALPHASUBS and the conditions in the tunnel free stream for the particular run are shown. *rables 2 and 3 are a guide to the test conditions for a given run number.

Table A. 3 contains the average pressure coefficients (after correction for the no-vortex loads) at all of the pressure tap locations. I is the pressure tap number in a given chordwise row according to figure 3 . X is the x / c coordinate of that tap, y is y / s as before. A series of asterisks indicates a missing pressure tap. Table A. 4 follows the same format, but the values listed are the standard deviations associated with the mean pressure coefficients in Table A.3.

Table A. 5 contains the tare values for the pressure model in the absence of the vortex (run 69). Tables A.5(a), (b) and (c) follow the formats of Tables A.2, A.3, and A. 4 respectively.

TABLE A, 1-REDUCED DATA - FORCE MODTL

Run No.	Wing Orientation	α (degrees)	Average Over All Samples		Standard Deviation	
			C_{L}	C_{ℓ}	$\mathrm{C}_{\underline{L}}$	$\overline{\mathrm{C}}_{l}$
11	Vert.	0.	. 233	-. 0554	. 011	. 0028
12			. 225	-. 0558	. 066	. 0032
13			. 240	-. 0611	. 011	. 0032
14			. 234	-. 0607	. 011	. 0030
15			. 233	-. 0616	. 012	. 0027
16			-. 035	-. 1084	. 01.3	. 0020
17			-. .036	-. 1086	. 011	. 0020
18			. 065	-. 1071	.012	. 0016
19			. 067	-. 1069	. 011	. 0021
20	\checkmark		. 106	-. 1005	. 007	. 0020
21			. 450	. 0510	. 016	. 0047
24	Horiz.		. 151	-. 0550	. 018	. 0040
25			-. .253	-. 0289	. 023	. 0042
26			-. 318	-. 0412	. 022	.0041
27			. 181	-. 0708	. 017	. 0047
28			. 206	-. 0769	. 013	. 0040
29			-. 310	-. 0533	. 021	. 0048
30			- . 288	-. 0619	. 020	. 0038
31			. 219	-. 0757	. 014	. 0037
32			-. .403	. 0013	. 023	. 0041
33			-. 108	-. 1090	. 013	. 0036
34			- . 119	-. 1067	. 015	. 0039
35			-. 404	. 0418	. 020	. 0036
36			- . 262	-. 0655	. 024	. 0048
37			. 234	-. 0735	. 015	. 00037
38			. 251	-. 0716	. 017	. 0035
39			-. 246	-. 0637	. 017	. 0042
40			-. 047	-. 1155	. 018	. 0040
41			-. 078	-. 1117	. 011	. 0036
42			-. 099	-. 11100	. 012	. 0041
43		,	0.0	0.0	. 019	. 0039
44		1.23	. 103	-. 0022	. 008	. 0034
45		7.21	. 571	. 0052	. 014	. 0044
46	v	5.43	. 427	. 0030	. 017	. 0042
47		3.15	. 240	. 0023 .	. 014	. 0036

TABLE A. 2. - INIEGRATED REGULTS - PRESSURE MODEL

TABLE A.2.- CONTINUED

RUN 56 SECTION COEFFICIENTS						
\checkmark	Y	LIFT	alphasubs	LIFT FROM	alphasues	CL LDNG EOGE
1	-. 950	-. 161	-1.580		-. 159	-.038
2	-. 850	-. 245	-2.225		-. 238	-. 254
3	-. 700	-. 322	-2.308		-. 309	-. 070
4	-. 500	(-9.4)7	-3.575		-. 383	-. 037
5	-. 400	-. 406	-3.999		-. 428	-. 297
6	-. 250	-. 533	-4.477		-. 479	-.107
7	-. 160	-. 574	-5.195		-. 556	-.125
8	-. 060	-. 542.	-3.710		-0.418	-. 095
9	0.000	-. 615°	*******		*\$****	******
10	- 100	-. 659	-5.358		-. 573	-.133
21	- 250	-. 613	-5.390		-. 598	-.135
12	. 400	-. 590	-3.773		-. 405	-. 892
13	. 450	-. 289	-2.367		-. 253	-.058
14	- 500	. 350	2.365		. 253	. 057
15	. 550	. 478	5.684		. 608	. 138
16	. 600	. 517	7.310		. 782	-178
27	. 751	. 599	6.329		. 677	-154
19		. 563	5.878		. 629	. 143
		. 406	3.872		. 414	. 094
load coefficients						
		LIFT	ng moment			
LEFT WING		-. 200	-. 0395			
RIGHT WING		-. 027	-. 02980			
total		-. 227	-. 0635			
from alphasubs		-. 154	-. 0737			
QAVE $=29.651$	PSF	(SIANDARD DEVIATION = . 343 PSF)				
TEMP = 36. DEG	- CENT	BARO. PRESSURE $=29.92$ IN. HG.				

TABLE A．2．－CONTINUED

	RUN 57 SECTIDN COEFFIEIENTS							
	J	Y	LIFT	alphasubs	LIft	from alphasuzs	CL LDNG	EJGE
	1	－． 950	－． 157	－1．800		－． 1.71		－． 037
	2	－． 850	－． 235	－2．107		－． 232		－． 253
9	3	－． 700	－． 305	-2.756		－． 296		－． .867
－	4	－． 500	－． 389	－3．379		－． 3 ¢2		－． 082
－	5	－． 400	－． 446	－3．770		－． 456		－．092
8	6	－． 250	－． 523	－4．432		－． 474		－． 103
发	7	－． 100	－． 500	－5．224		－． 559		－． 127
	8	－． 060	－． 549	－4．370		－． 468		－． 105
8	9	0.000	－． 596	＊＊＊＊＊＊＊		＊＊＊＊＊		＊＊＊${ }^{\text {＋}}$
定	10	． 160	－． 625	－5．167		－． 553		－． 125
E	12	． 250	－． 784	－6． 263		－． 670		－． 152
昌	12	－ 400	－． 731	－4．855		－． 498		－． 113
人8	13	． 450	－． 591	－3．536		－． 374		－． 049
	14	－ 500	－． 238	－2．375		－． 222		－．050
	15	－550	． 334	2.127		． 228		． 052
	16	． 600	． 479	5.373		－ 575		－131
	17	． 750	． 553	0.757		． 723		－164
	18	． 850	． 536	5.712		． 611		－139
	19	． 950	． 409	4.001		． 428		－ 297
land coefficients								
			LIFT	ng mament				
	LEFT WING		－． 193	－． 0379				
	RIGHT WING		－．cte	－． 0178				
	total		－． 255	－． 0575				
	from alphasues		－． 193	－． 0674				
	QAVE＝ 29.932	PSF	（STANDARD DEVIATIDN＝．339 PSF）					
$\stackrel{\rightharpoonup}{H}$	TEMP＝36．DEE	－CEN	bard．pressure＝ 29.92 IN．hg．					

TABLE A.2.- CONTINUED

TABLE A．2．－CONTINUED

	RUN 59．SECTION cosfficients						
	s	Y	LIFT	alpatasubs	LIFT FRDY	alptasubs	CL LONG EJGE
	1	－．950	－． 110	－1．142		－． 122	－． 328
	2	－． 850	－．129	－1．634		－． 175	－． 040
	3	－． 700	－． 225	－2．351		－． 219	－． 350
	4	－． 500	－． 284	－2．536		－． 268	－． 061
	5	－． 400	－． 318	－2．309		－．331	－． 068
	6	－． 250	－． 376	－3．213		－． 344	－． 078
曷	7	－． 106	－． 415	－3．885		－． 414	－． 074
	8	$\cdots .060$	－． 423.	－3．551		－．380	－． 285
哭岛	9	0.000	－． $497{ }^{\circ}$	＊＊＊＊＊＊＊		＊＊＊＊＊＊	＊＊＊＊＊＊
	10	－ 100	－． 542	－4．759		－． 531	－．13：
E	11	． 250	－． 645	－5．565		－． 595	－． 133
0 m	12	－400	－． 732	－5．904		－． 739	－． 168
	13	． 450	-.759 -.815	-7.613 -9.172		-.815 -.874	-.185 -.197
Ex	15	－ 550	－． 846	－8．100		－．857	－． 197
	15	． 000	－． 857	－0．751		－． 717	－．163
边	17	． 750	－．822	－4．595		－． 492	－． 112
	13	． 850	－． 533°	－3．138		－．336	－． 275
	19	． 950	． 217	1.979		． 212	． 048
LOAD CDEFFICIENTS							
			Lift	Rolling mament			
	LEFT HING		－． 242	－． 3275			
	Rigit wing		－． 305	． 0699			
	total		－．，446	． 0424			
	from al．phasubs		－． 402	． 0295			
	QAVE $=30.127$	PSF	istanoa	OEVIATIDN $=.006$	PSF）		
	TEMP＝30．DEG	－CENT	BLRO．P	SSURE $=29.55 \mathrm{IN}$.			

TABLE A.2.- CONTINUED

TABLE A. 2.- CONTINUED

RUN 62 SECTION coefficients

IABLE A．2．－CONTINUED

			RUN	63 SECTION GQEF	icients		
	J	Y	LIFT	alphasubs	LIFT from	ALPhasubs	cl ldng eoge
	1	－． 950	－． 167	－1．560		－． 157	－． 033
\％	2	－． 850	－． 232	－2．109		－． 226	－． 051
\sim	3	－． 700	－． 307	－2．740		－． 293	－． 267
以 9	4	－． 500	－． 391	－3．401		－． 364	－． 033
85	5	－． 400	－． 452	－3．885		－． 415	－． 894
	5	－． 250	－．531	－4．523		－． 484	－． 112
边	7	－． 100	－． 53%	－5．324		－． 570	－． 127
0	8	－． 060	－． 505 j \％	－4．251		－． 455	－． 103
\％	9	0.000	－． 0662	＊＊＊4＊＊＊		＊＊＊＊＊＊	\％＊＊＊＊＊
P	10	． 100	－． 721	－7．148		－． 765	－． 174
Ex	11	． 250	－． 771	－5．195		－． 556	－． 126
昆	12	． 402	－． 590	-3.758		－． 402	－． 097
	13	． 450	－． 452	－2．759		－． 317	－． 0.072
	14	－ 500	－．．649	－．146		－． 016	－． 00014
	15	． 550	． 329	3．746		． 401	． 091
	16	－ 600	－527	5.453		． 583	－ 133
	17	． 750	－623	0.786		． 724	－105
	18	． 850	． 585	6.166		． 663	． 150
			－422	4.034			
			LOAO	COEFFICIERSS			
			．．．				
			LIFT	rolling moment			
	LEFT WING		－． 197	－． 0383			
	Right wing		－． 043	－． 0264			
	toral		－． 240	－． 2647			
	from alphasubs		－． 184	－． 0729			
	QAVE＊ 30.166	PSF	istandaro	DEVIATION＝．005	PSF）		
J	TEMP＝29．DEG	．cent	baro．pres	Ssure $n 29.85 \mathrm{IN}$ 。H			

TABLE A. 2.- CONTINUED
$\stackrel{\rightharpoonup}{\infty}$
RUN of SECTIUN COEFFICIENTS

J	Y
1	-.950
2	-.850
3	-.700
4	-.509
5	-.460
6	-.250
7	-.100
8	-.860
9	0.000
10	.160
11	.250
12	.400
13	.450
14	.500
15	.550
15	.600
17	.750
18	.850
19	.950

LIFT

alphasubs lfft fron alphasues

-.252
-.368
-.479
-.646
-.770
-.793
-.647
. .376
$6.4 * 48$
.554
.729
.742
.693
.668
.814
.575
.463
.393
.257
cl ldNG edge
$-.269$
$-.034$
-.109
-.147
-.147
-.175
$=-180$
$-.147$

.125
.126
.163
.169
.158
158
-152
152
-140
.143
.131
.131
-105
.089
.061
loh coefficients
lift rolling moment

TABLE A．2．－CONTINUED

RJN：SE SGCTION COEFFI：IENTS						
J	Y	LIT	Alptasjus	LIFT FROY	alpriasuos	Cl lovg ejes
1	－． 950	－． 217	－2．244		－． 34.1	－． 355
2	－．859	－．345	－3．130		－． 338	－． 377
3	－． 700	－．4．3	－4．：30		－．442	－．i J
\dagger	－． 500	－0．04	－ı， 3 ？		－． 597	－．127
J	－．4．3	－．tso	－0．130		－．653	－．140
－	－． 250	－．7：7	－7．126		－．752	－．17i
7		－． 0.7	－4．972		－．53？	－．121
3	－．966	－． 437	－2．35？		－．232	－．037
\rightarrow	0.000	－．134．	＊＊＊＊＊＊＊		＊＊＊＊＊＊	＊＊＊＊＊＊
： 3	－\because	－－－	－1．417		－． 152	－．035
11	－2が	－ワ：7	0.327		－ 75.	． 155
22	． $4: 0$	E．${ }^{\text {\％}}$	－． 755		． 723	－ 104
13	－ 750	－ $7:$	3．784		． 147	－173
14	－ 60	－ 5	$\therefore 0.10$		． 73%	\therefore－ 50
： 5	－ 5.1	－04y	2．405		－6as	－153
is	－\％	－ 54	4.117		－644	．145
17	－75．J	． 5.50	4.142		． 537	-15
13	－ 45	． 443	3．35		－423	－${ }^{\circ} \mathrm{F}$
17	－リ：	－\％	2.574		－230	． 362
LIDAD Cnimfledants						
		LFFT	ve mament			
LeFt wive		$-.253$	－0．533			
RIGHT Wirs		－ 3 ！ 4	－．03．37			
total		－．i39	－．1131			
from alphasurs		－．03：	－．1597			
Qave $=30.139$	fif					
TEMP＝2J． $0: \%$	－cent．		27．35 IN．			

TABLE A．2．－CONTINUED
$\stackrel{\infty}{\circ}$

J	Y		LIFT		1Pdus tas	LIFT F	FRUM ALP．tasuas	CL LONO ĖJE
1	$\cdots .853$		－．i4\％		－1．441		－．154	－．035
2	－． 65		－－5		－ 0.705		－．2in	－．044
3	$-.700$		－．		－2．4i1		－．204	－．．う」
4	－．E．）	i	－ 2.2		-2.332		－．330	－．37
5	－ $41:$		－．ここと		－2．11\％		v． 334	－． 272
$\dot{0}$	－． 253		－． －$^{\text {a }}$		－3．451		－．37C	－．23＇
7	－． 6.0		－．4．		－2．145		－．4．2	－．892
a	－0゙9		－． 2 S		－3．354		－． 563	－－832
9	¢．		－．4．3．				＊ 4 ＋ $4 * 4$	4＊＊＊4立
13	－ $1 \times$		－－47：		－4．0．1		－．430	－．1：2
$\vdots 2$	－$\angle 5 \%$		－．43．		－3．371		－． 414	－．034
？2	－$\rightarrow \cdot \cdots$		－． 3.7		－．+9 ：		-5.30	－．073
－ 3	－400		－．cij		－3．774		－． 265	－0．05
$\therefore 4$	－¢ \％		－．15\％		－$-18 t$		－． 213	－． 043
5	－コロ		－－8＇\％		－－．417		－．ごき	－．034
10	－bit：		－．1こう		－． 842		－．1．1	－－．23
17	－7\％		\therefore ，		： 31		． 213	． 033
18	－ 6 ¢！		－ 5 ？		＋．ら゙ら		－123	－いこう
ざ	－ 4		－147		6，322		， $2 \vdots 6$	．34\％
LJM COUFFIGINTS								
			LIFF	rabling	MIMEVT			
LEFT AIVG			－－253		－．93：			
RIGHT NILG			－． 0_{0}^{6}		－．．：ij			
TOTAL			－． 248		－．0．33			
FROM ALPHASUSS			－． 242		$=.022+0$			
QAVE 30．031			ISTANDAP0	Gfviation	$3=0.034$	PSF）		
TEMP＝It．ULS	－CENT		BABC．PRES	jSURi $=2 \%$	\％． 31 ［N．			

TABLE A．2．－CONTINUED

し1「「	AL？14SJ35	LIFT FGOY AiPtasuas	CL LONG EJGE
－－$\because:$	－こ．う5．	－． 2.26	－． 335
－． $2: 7$	－2． 275	－． 2 ？？	－．355
－0．0．t	-2.736	－． 273	－． 257
－ジら	－3．35i	－ 30%	－．23：
－．430	－3．115	－． $3+8$	－． 293
－． 57	－4．162	－．457	－．ivj
－．シャッ	－5．153	－．541	－．123
－．13	－4．：52	－． 447	－．1．
－．630	－ $044+74$	＊＊4＊4＊	44＊＊4．
－．t．d	－0．321	－．730	－． 53
$-.75$	－7．72：	－． 525	－．180
－．！${ }^{\text {a }}$	－－－7		～．1〕2
	－－．954	$-.482$	－．： 2 ，
－$\therefore 2 \mathrm{~S}$	－2．315	－． 268	－． 20 i
$\therefore \therefore 1$	－． 365	－． 0 （39	－．${ }^{\text {a }}$
－ 7 ？	1．179	－2．う	． 223
$\therefore+9$	2．751	－274	.007
－3．14	3.274	－シ51	－ 0 \％
－ 45	3．123	． 334	－075

TABLE A.2.- CONTINUED

$\stackrel{\infty}{N}$

TABLE A．2．－CONTINUED

209 75						Cl ldyg coge
J	Y	LI「T	alitasjes	LIFT FXUM	ALPHASUBS	
1	－．yう	．650	－65．		．672	－312
2	－25：	－is	． 536		－ 0.99	． 020
3	－．702	． 113	． 750		．1：3	－．i？ 2
＋	－．引と）	． 119	1． 234		．1．1	． 82.
5	－．4！${ }^{-9}$	－こご	1． 50		．125	－ 023
¢	－． 250	．123	\therefore－jut		． 210	－ 30
7	－．206	－ 23	1.200		． 129	－32）
3	－．itc	．7 ${ }^{\text {－}}$	－． $\mathrm{S}^{1} \mathrm{i}$		1．1：9	－ 427
9	0.500	－122	44＊＊＊＊		＊＊$* * * * *$	＊＊＊＊＊＊
\pm	－ 2 \％	－124	1．14：		． 122	－＂2
± 1	． 250	$\therefore \therefore$	－0．59		． 122	－023
12	－ 4 Ci	．1．25	． 174		－ 096	－ $0 \leq 2$
13	． 45.3	－1．3	．．．2？		－ 120	， 227
44	－5\％ 3	－1：4	1．0．\％		． 116	$\therefore 20$
± 5	－5クU	－113	1． 225		－110	$\therefore 2 ;$
is	－ 0.9	－11e	1． 3 ？		． 127	－ 23
17	． 756	－i 37	2．134		－121	$\cdots 3$
23	－ 15.1	－\％＇	＋．75		． 132	－．23
29	－ 40	－6－4	－ 33		． 022	－ Sa^{4}
LUAU こUEFFICIENTS						
		Sit T	10 OMEVT			
LEFT HIVG		－$\div 4$	．01）2			
RIGHT WIH．G		－654	－．0121			
tatal		． $10: 3$	． 0300			
FROM ALPHASUAS		.267	-0.93			
QAVE＝$=0.0$		（STASDAKT UEVIATIUN $=$ CS PSF）				
TEMP＝25．Di，	CENT	takit pin	2．8．71 IN．			

TABLE A．2．－CONTINUED
には，7：SECTIJV CREFFIEIENTS

LIFT	Alphasuss	1．IFT FROM ALPHASTBS	Cl．LDNG ejge
． 289	2.727	． 292	． 200
． 391	3.345	－ 379	．Jヵj
． 4.13	3.475	．425	－：77
－ 32	4.442	． 475	－123
－\％	4.52 ：	－484	－113
． 41	4.505	． 433	．111
－＇ 0	＋039	－ 56.3	－114
－	$4.32 \times$	－Eう0	． 117
．539	＋7＊＊4＊＊		＊＊＊＊＊＊
． 54	4.363	－j2）	－130
． 54	4.465	． 400	－10，
－5：3	4.329	－453	－10；
－ 25	4.395	． 473	－137
－ 524	4.330	－481	－23
－ 514	4.516	－403	．123
－ 53	4.273	－459	． 134
－453	3.727	． 420	－ 0.9
－3\％	3.509	． 375	－ 383
． 273	$2.5 ヶ \% ~$	． 278	． 363

TABLE A.2.- CONTINUED

TABLE A.2.- CONTINUED

TABLE A. 3.- SUREACE PRESSURE COEFFICIENTS

RUN 50 AVERAGED PRESSURE GOEFFICIENTS

I	x	$Y=-.95$	$Y=-.85$	$Y=-.70$	$Y=-.50$	$Y=-.40$	$Y=-25$	$Y=-10$	$y=-.06$	$Y=0$.	
1	0.200	-. 708	-1.025		-1.477	******	-1.471	-1.673	-2.614	-. 172	
2	. 025	-1.1. 5	-1.516	-1.984	-1.881	-1.855	-1.926	-2.117	-2.004	-. 552	
3	- 350	-.769	-1.109	-1.315	-1.572	-1.609	-1.652	-1.423	-1.131	-. 526	
4	.100	-. 532	-. 688	-.879	-.877	-.837	-. 918	-.879	-.772	-. 501	
5	. 150	-. 414	-. 557	-.064	-. 684	-. 745	-. 699	-. 885	-.611	$\sim .451$	
6	-200	-. 283	-.43.	-. 502	-. 541	-. 563	-. 558	-. $54{ }^{\circ}$	-. 480	-.345	
7	. 250	-. 223	-. 373	-. 423	-. 457	-. 468	-. 466	-. 457	-.410	$-.352$	
8	- 300	-. 167	-. 273	-. 340	-. 306	-. 365	-. 376	-. 355	-. 326	*****	
9	. 400	-. 137	-. 195	-. 253	-.238	-. 205	-. 274	-. 249	$-.244$	******	
10	. 500	-.128	-. 16^{4}	-. 205	-. 222	-. 224	-. 219	-.178	-.290	-.197	
11	. 650	****4*	-. 0.088	-. 111	-. 129	-. 126	-. 112	-. 086	-.111	-. 125	
12	.780	$-.045$	-. 023	-. 034	-.042	-. 241	-. 040	-.034	-. 001	-. 084	
13	. 900	-. 092	-. 044	-. 060	-. 034	-. 073	-. 045	-.037	-. 031		
14	.050	. 643	. 793	.854	. 898	.889	.917	. 958	1.020		
15	.100	.462	. 016	. 683	. 724	. 710	. 726	. 793	. 730		
16	. 200	. 277	. 398	.453	. 491	. 514	. 509	. 538	. 598		
17	. 300	.191	.297	. 363	. 376	. 392	.346	.426	. 413		
18	. 500	. 099	. 171	. 221	. 235	. 243	. 237	. 239	*4****		
19	.050	. 076	. 125	. 160	. 171	.173	.170	. 164	. 235		
20	. 780	. 303	. 052	. 088	.126	.102	. 086	. 062	-. 114		
21	.900	-. 027	-. 002	. 022	. 041	- 230	. 019	-. 022	-.618		
I	X	$Y=.10$	$Y=.25$	$Y=.40$	$\gamma=.45$	$\gamma=.50$	$Y * .55$	$Y=-b\rangle$	$Y=.75$	$Y=.85$	$Y=.95$
	0.000	-1.399	-1.793	-1.80J	******	-1.240	-1. 174	-1.105	-1.coi	-. 912	-. 438
2	. 0225	-2.052	-1.929	-2.024	-1.827	-1.754	-1. 227	-1.897	-1.032	-1.527	-5.153
3	. 050	-1.532	-1. 665	-1.505	-1.595	-1. 547	-1.516	-1.459	-1.254	-1.145	-. 791
4	. 100	-.880	-. 048	-.033	-.335	-.887	-. 854	-. 377	-. 842	-.7E.j	-. 495
5	. 150	-. 635	-.678	-. 663	-. 658	-. 670	-.663	-. 055	-. 545	-. 527	-.410
6	. 200	-. 456	-.245	-. 534	-. 337	-.5さ1	******	-. 509	-. 463	-.392	-.321
7	. 250	-.469	-. 459	$-.457$	-.497	-. 446	-. 438	-. 443	-. 393	-. $34 ?$	-.211
8	.300	-. 354	-. 394	-. 390	-. 384	-.377	-.371	-. 372	-. 34.3	-. 207	
9	. 400	-. 249		-. 206	-. 254	-. 253	-. 25)	******	******	-. 283	******
10	- 500	-. 201	******	-. 224	******	******	-. 208	******	-. 147	-. 168	-. 117
11	. 650	******	$-.105$	-. 117	-.113	-. 116	-. 107	-. 104	-. 097	-. 082	-. 035
12	. 780	-. 054	-. 061	-. 065	-. 050	-. 034	-. 045	-. 359	-.043	-.047	-.033
13	. 80.9	-. 250	-.055	-.03i	-. 064	-. 063	-. 063	-. 233	-.053	-.itis	-.650
14	.050	. 973	. 512	. 916	.837	. 818	. 346	- 275	. 817	. 701	. 617
15	. 100	. 777	. 711	. 703	. 727	. 713	- 548	. 682	. 670	. 627	. 477
16	. 200	. 544	- 510	. 501	. 492	. 304	. 497	. 433	. 435	. 400	. 237
17	.300	. 400	. 391	. 367	- 378	. 379	- 369	. 352	. 332	. 285	.190
18	- 500	. 238	. 232	. 234	. 237	. 229	. 227	. 214	.195	.167	. 295
19	. 650	******	. 177	. 167	. 165	- 104	. 262	. 163	-. 069	.118	.074
20	. 780	. 061	. 084	. 092	. 089	. 090	. 1480	. 088	. 002	. 078	. 027
21	.900	-.018	-. 018	-. 017	. 022	. 018	. 523	.015	. 035	. 302	-. 022

TABLE A．3．－CONTINUED
RUN 51．AVERAGED PRESSURE COEFFICIENTS

	I	x	$\gamma=-.85$	$Y=.85$	$Y=-.72$	$Y=-.50$	$Y=-40$	$Y=-25$	$Y=.15$	$Y=-.36$	$Y=0$.	
	1	0.000	－1．363	-1.982	＊＊＊＊＊＊	－2．431		－2．502	－2．942	－4．266	－．147	
	2	． 025	－1．599	－2．319	－2．963	－2．895	－2．895	－3．162	－2．830	－2．272	－．924	
Q_{4}	3	.250	－1．344	－1．552	－1．703	－2．095	－2．171	－3．843	－1．787	－1． 511	－．843	
－	4	.100	－． 643	－． 971	－1．131	－1．182	－1．205	－1．188	－1．169	－．993	－． 731	
4 \square_{10}	5	． 150	－． 489	－．72J	－． 857	－． 384	－． 820	－． 202	－． 347	$\cdots .737$	－．541	
O 2	6	． 200	－． 383	－． 563	－． 656	－． 69.	－． 715	－ 700	－． 657	－． 575	－． 497	
边	7	． 250	－． 313	－． 459	－． 536	－． 573	－．58？	－． 564	－．51\％	－． 473	－． 437	
	8	． 300	－． 242	－． 346	－． 417	$-.450$	－． 454	－． 442	－． 388	－． 353	＊＊＊＊＊＊	
E	9	.400	－． 188	－． 240	－． 294	－．309	－． 312	－． 307	－． 243	－． 228		
2	10	－ 500	－． 170	－． 139	－． 223	－． 237	－． 239	－． 215	－． 100	－． 147	－． 217	
E．\square^{2}	11	． 550	＊＊＊＊＊＊	－．0．71	－． 0.088	－．111	－． 109	$\cdots .083$	－． 053	－． 092	－．130	
	12	． 780	－． 073	－． 015	－． 014	－． 318	－． 026	－． 224	－．093	－． 178	－． 118	
以	13	.900	－． 112	－． 0445	－． 053	－． 088	－．077	－． 075	$-.17 \%$	－． 178		
	14	． 550	． 813	． 939	2.055	1.273	1． 275	$\pm .073$	1.136	1.194		
	15	． 104	． 000	． 781	．853	． 878	． 885	.907	． 974	． 967		
	$1{ }^{10}$.200	． 364	． 505	． 570	． 624	.645	． 642	． 672	． 743		
	17	－ 300	． 250	． 378	． 447	． 433	－4al	－50）	－ 518	． 519		
	18	． 500	． 130	． 214	.267	． 237	.288	.287	． 294	＊＊＊＊＊＊		
	19	． 650	． 090	． 347	.123	． 194	． 294	． 189	． 182	． 152		
	20	． 780	． 002	．053	． 085	.093	． 388	． 077	． 048	－． 0.04		
	21	． 900	－． 038	－ 015	－．011	． 005	－． 006	$\cdots .027$	－． 065	－． 030		
	I	x	$\gamma=.10$	$Y=.25$	$Y=.43$	$Y=.45$	$Y=.50$	$Y=.55$	$Y=.60$	$Y=.75$	Y＊．85	$\gamma=.95$
		0.000	－2．502	－3．142	－2．331	＊ 4 ＊＊＊＊	－2．144	-1.975	－1．957	－i． 848	－1．776	－． 972
	2	． 025	－2．737	-2.458	－2．855	－2．714	－2．733	-2.767	－2．727	－2．339	－2．212	－1．581
	3	－ 050	－1．867	－1．992	-2.325	－2．024	－2．051	-2.075	－2．100	-2.150	-1.773	-1.167
	4	． 100	－1．163	－1．201	＊ 2.221	－1．195	－1．171	－1．265	－1．175	－1．657	－． 961	－． 711
	5	.150	－． 855	－．717	$\cdots .879$	． .393	－． 801	－． 890	－． 868	－． 772		－． 480
	6	． 2170	－． 548	－． 708	－． 742	－． 694	－． 713	4 +4.474	－． 070	－． 611	－． 536	－． 370
	7	－ 250	－． 546	－． 584	－． 584	－． 581	－． 580	－． 562	－． 574	－． 513	－． 450	－． 329
	8	－300	－．341	－． 492	－． 490	－． 481	－． 475	－．471	－． 469	$\sim .425$	－． 364	＊＊＊4＊＊
	9	． 400	－． 257	＊＊＊＊＊＊	－． 313	$\cdots .353$	－． 310	－． 309	＊＊＊＊＊＊	＊ 4 4＊＊${ }^{\text {\％}}$	－． 234	＊＊＊＊＊＊＊
	10	． 200	－． 152	＊＊＊＊＊＊	－．25？		＊＊＊＊＊＊	－． 242	＊ 4 ＊＊＊＊	－． 224	－． 199	－． 102
	11	－ 6.50	＊ $4 * * 4 *$	－． 101	－． 107	－． 110	－． 111	－． 107	－． 109	－．089	－．391	－．126
	12	． 780	－．093	－．049	－． 045	－． 047	－． 338	－． 026	－． 043	－．C32	－． 035	－．113
	13	． 960	－． 183	$-.032$	－． 071	－． 060	－． 301	－． 063	－．051	－．i50	－． 062	－．132
	14	.250	1.145	I． 267	1.384	1.045	1.0773	1， 0.2	1.051	1.000	． 935	． 770
	15	.100	． 946	． 698	． 305	． 372	． 084	． 853	． 884	． 838	$.77{ }^{\circ}$	． 608
	16	． 200	． 637	． 052	． 030	． 631	－629	． 63.	． 615	． 555	.517	． 275
	17	－ 300	． 510	． 488	． 495	． 485	． 433	． 479	． 464	． 435	． 374	． 247
	18	． 500	． 298	－ 294	． 293	.295	． 283	． 285	． 232	． 251	－219	－125
	19	． 650	＊＊＊がれ	． 207	． 199	． 198	.198	． 195	－ 292	． 094		． 237
6	20	． 780	． 049	． 085	.057	． 095	． 080	． 047	． 098	． 030	． 078	．221
	21	.800	－． 064	$-.045$	$-.042$	－． 000	－．004	.003	－．002	－． 010	． 0.013	－． 034

TABLE A．3．－CONTINUED
RUN 53 GUERAGED PRESSURE CDEFFICIENTS

I	X	$y=-.95$	$Y=-.85$	$Y=-.70$	$Y=-.50$	$Y=-40$	$y=0.25$	$Y=-.10$	$Y=-.26$	$Y=0$.	
1	0.000	－． 047	－． 037	＊＊＊＊＊＊	－． 304	＊＊＊＊＊＊	－． 016	－． 734	－． 780	.287	
2	． 325	． 347	.450	． 558	． 705	． 773	． 883	1.003	． 918	． 348	
3	.050	． 249	． 336	.451	． 566	． 578	． 682	． 775	． 717	．415	
4	.100	.141	． 227	－338	． 415	． 451	． 514	． 571	． 529	． 391	
5	． 150	． 140	． 163	． 228	． 329	． 353	． 409	． 446	． 428	． 350	
6	． 200	． 073	． 134	． 195	． 202	． 292	． 350	－371	． 361	． 324	
7	． 250	．05C	．113	． 156	． 217	.257	． 311	． 315	． 307	．291	
8	－ 300	． 336	－ 83	． 123	． 177	． 207	． 254	$\bigcirc 270$	． 258	＊\ddagger＊＊＊＊	
9	． 400	． 018	.057	． 101	.145	.163	－189	． 207	． 197	＊＊＊＊＊＊	
10	． 500	－．003	． 034	． 057	.104	． 123	． 154	． 159	． 160	.154	
11	． 650	＊＊＊＊＊${ }_{\text {＊}}$	． 022	． 347	．678	． 359	.209	－ 114	－ 088	－037	
12	． 730	－．005	． 016	． 033	． 060	． 367	． 082	． 054	.031	． 252	
13	． 900	－． 354	－． 109	－． 381	－． 089	－． 3400	－． 012	－． 039	－． 021		
14	.050	－． 372	－． 505	－． 651	－． 782	－． 377	－1．063	－1．341	－1．653		
15	.100	－． 260	－．361	－． 443	－． 564	－． 624	－． 749	－． 983	－1．119		
16	.200	$-.172$	－． 237	－． 290	－． 379	－． 428	－． 520	－． 595	－． 561		
17	－ 300	－． 124	－． 184	－． 223	－． 298	－． 330	－． 330	－．387	－． 398		
18	． 500	－．129	－．156	－． 133	－．127	－． 146	－．188	－． 186	＊＊＊＊＊＊		
19	． 650	－． 010	－． 03 ？	－． 0.05	－． 101	－． 111	－． 131	－． 1.15	－． 236		
20	． 786	－． 0.63	－． 061	－．073	－． 385	－． 101	－． 110	－．071	－． 071		
21	． 960	－． 048	－． 053	－．034	－． 054	－． 972	－． 083	－．079	－． 081		
I	x	$Y=.10$	$Y=.25$	$Y=.42$	$Y=.45$	$\mathrm{Y}=.50$	$Y=.55$	$y=.60$	$Y=.75$	$Y=.85$	$Y=.95$
1	0.000	－2．173	－2．186	－2．05	＊＊＊＊＊＊	－1．059	－．816	-1.335	－．802	－i．263	－． 492
2	． 025	1.217	1.243	1.265	1.054	． 132	－i．085	－1．783	－1．653	－1．593	－2．215
3	． 050	． 999	1.088	1.132	． 896	． 017	－．921	－1．443	－1．243	－1．227	－．322
4	． 100	.710	.825	－ 527	． 553	－． 299	－． 736	－． 703	－．874	－． 742	－． 539
5	． 156	． 567	． 676	－beo	． 392	－． 399	－． 726	－． 483	－．85？	－． 533	－． 432
6	－ 200	． 467	－ 562	－ 565	． 270	－． 464	44＊＊＊＊	－． 340	－． 423	－．40？	－． 323
7	． 230	． 393	． 473	． 418	． 167	－． 397	－． 704	－． 275	－． $34 \pm$	－． 330	－． 226
8	－ 300	． 335	． 398	． 333	． 130	－． 536	－． 633	－． 203	－． 233	－． 270	＊90＊＊＊
9	． 400	． 246	＊＊＊＊＊＊	． 203	． 307	－．5：6	－． 643	＊＊＊＊＊＊	4＊＊46＊	－．ij8	
10	－5i30	． 178	＊＊＊＊＊＊	． 124	＊＊＊＊＊＊	＊＊辛が	－． 047	＊＊474＊＊	－．i15	－． 138	－． 127
11	－ 050	＊＊＊＊${ }^{\text {\％}}$	． 106	．030	－． 088	－． 447	－． 648	－． 133	－． 221	－． 054	－．034
12	.730	． 013	． 10.8	－． 058	－． 141	－． 437	－． 592	－． 234	． 020	－． 220	－．083
13	． 700	－．091	－． 145	－． 154	－． 242	－． 384	－． 545	－． 291	－． 046	－． 303	－． 295
14	.30	－1．833	－1． 529	－1． 145	－． 980	－． 717	． 130	． 657	.749	.707	．301
15	． 104	-1.202	－1．054	－． 799	－． 789	－．472	． 007	． 426	． 545	． 580	． 443
16	.200	－． 737	－．802	－． 697	－． 628	－．421	－． 393	． 159	． 315	． 331	． 242
17	.300	－． 314	－． 645	－． 614	－． 531	－． 350	－． 155	． 036	.212	． 220	． 139
18	． 500	－． 252	－． 436	－．413	－． 365	－．363	－0． 184	－． 037	－ 178	．097	． 050
19	． 650		－． 301	－． 340	－． 293	－． 314	－． 181	－． 103	． 037	． 051	． 227
20	． 780	－． 098	－． 223	－． 280	－． 261	－． 268	－． 227	－． 167	－． 010	． 203	－． 039
21	.900	－． 144	－． 282	－．341	－． 297	－．312	－． 303	－． 243	－． 074	． .057	－．059

TABLE A．3．－CONTINUED

	I	x	Y $=-9.9$	Y＝－． 85	$Y=-70$	$Y=-53$	$Y=-.49$	$Y=-25$	$Y=-10$	$Y=-.06$	$r=0$.	
	1	0.000	－． 039	－． 032	\＃＊＊＊＊＊	－． 276	＊＊＊＊＊＊	－． 556	－． 688	－． 536	． 252	
	2	． 025	． 342	． 467	． 555	． 694	． 743	． 865	． 944	． 861	． 353	
	3	． 050	.254	． 337	．453	． 542	． 581	． 663	． 716	－608	． 393	
	4	.200	． 141	． 229	． 295	． 394	． 433	． 438	． 527	． 485	.366	
	5	． 150	.105	.171	． 223	． 313	． 346	． 382	.417	． 490	． 323	
	6	－ 200	． 076	.136	.179	． 268	． 283	． 337	－ 345	． 336	.295	
E	7	． 250	． 053	． 110	.157	． 223	.240	－ 302	． 304	． 281	． 267	
	8	． 300	． 036	． .86	． 117	． 179	． 205	． 245	． 250	． 242	＊＊＊＊＊＊	
08	9	． 400	.023	． 053	． 0194	.142	－162	－184	． 193	． 190		
32	10	． 500	－． 003	． 035	． 067	． 126	． 220	.153	． 152	． 152	． 145	
0 y	11	． 650		． 029	.045	.275	． 291	1102	－110	－080	． 086	
	12	． 780	－．007	． 015	． 033	． 301	． 260	． 380	． 354	.030	－554	
20	13	－ 20.0	－．095	－． 100	－． 031	－． 291	－． 049	－． 010	$-.193$	－． 038		
	14	.050	－．301	－． 454	－． 0.16	． 725	－． 874	－． 953	－1．255	－1．546		
± 9	15	． 100	－． 279	－． 358	－．+54	－． 527	－． 613	－． 723	－． 855	－1．115		
	16	． 200	－． 166	－． 224	－． 235	－． 365	－． 409	－ 485	－． 586	0.498		
$\text { B } 8$	17	－ 300	－． 120	－． 173	－． 215	－． 278	－． 304	－． 332	－． 35 ？	－． 346		
	18	． 500	－． 128	－． 155	－． 134	－．113	－． 135	－． 173	－．10\％	4＊＊＊＊＊		
	19	． 650	－． 005	－． 035	－． 059	$-.094$	－． 102	－． 117	－． 101	－． 123		
	20	． 780	－． 063	－． 258	－． 064	－． 082	－． 399	－． 101	－． 270	－． 062		
	21	． 900	－． 048	－． 053	－． 053	－． 049	－． 006	－． 076	－． 066	－．061		
	I	x	$Y=.10$	$Y=.25$	$Y=.43$	$Y=.45$	$Y=.50$	$Y=.55$	$y=.63$	7＝075	$Y=.85$	Y＊． 85
	1	0.000	－1．713	－1．812	－1．375	＊＊＊＊＊＊	－． 227	－．02e	－． 092	－． 213	－． 523	－． 330
	2	． 025	1.136	1.134	1.039	． 813	． 465	． 016	－． 479	－．837	－． 971	－． 870
	3	． 050	． 941	． 774	． 823	． 636	－ 319	－． 248	－． 319	－． 604	－． 695	－．055
	4	－100	． 654	－ 723	． 575	－ 394	． 157	－． 081	－． 242	－． 435	－． 482	－． 429
	5	.150	－ 522	－ 585	． 443	－ 263	． 256	－．113	－． 204	－． 336	－． 362	－． 337
	6	． 260	.432	． 480	． 351	． 235	． 003	＊＊－4＊＊	-153	－． 253	－．251	－． 293
	7	.250	－362	－ 422	． 268	． 123	－． 232	－． 123	－． 149	－． 214	－， 203	－． 160
	8	． 300	－ 308	－ 345	． 233	． 282	－． 057	－． 124	－． 135	－． 262	－-153	
	9	． 400	． 234	せ＊＊かもあ	． 124	． 023	－． 0.087	－． 127		＊＊＊＊＊	－． 983	＊＊＊＊＊＊
	10	－ 500	． 175	＊＊＊＊＊＊	．05：）		＊＊＊＊＊＊	－．148		－．069	$-.032$	－． 062
	11	.650	あ 4 \％ 4 ＊	－118	.039	－． 069	－． 144	－． 228	－． 983	－． 018	－．021	－． 332
	12	． 780	．027	． 645	－． 325	－． 096	－． 153	－． 154	－． 273	． 007	－． 021	－． 327
	13	． 900	－．069	－．034	－．038	－．15？	－． 225	－．184	－．099	－．040	－．043	－． 242
	14	.050	-1.705	－1．803	－1．491	－1．05	－． 622	－． 222	－ 071	． 395	． 513	． 497
	15	.100	－1．090	－1．010	－．834	－． 663	－． 429	$\cdots .203$	． 091	． 263	． 393	－355
	16	． 200	－． 635	－． 599	－． 527	－． 430	－． 292	－． 152	－． 042	． 137	． 223	．187
	17	． 300	－． 454	－． 445	－． 347	－． 305	－． 223	－． 132	－． 062	－ 038	－139	－137
	18	． 500	－ 210	－． 236	－． 191	－．15？	－． 124	－． 080	－． 053	． 030	－060	． 354
	19	． 650	＊＊＊＊＊＊	－． 149	－． 141	－． 127	－． 105	－． 077	－． 0.053	． 019	． 033	． 021
$\stackrel{+}{\square}$	20	． 780	－． 081	－． 097	－． 110	－． 114	－．111	－． 097	－． 067	－．004	.007	－．305
	21	.800	－． 106	－． 122	－． 143	－． 115	－．116	-113	－． 098	－．091	－． 04%	－．053

TABLE A．3．－CONTINUED
run 56 averageo pressure coefficients

1	x	$Y=$.	$\gamma=-.85$	$Y=-.73$	$Y=-.50$	$Y=-40$	$Y=-25$	Ya＝． 20	Y＝－． 28	Y＝0．	
1	0.200	－． 059	－． 046	＊＊＊＊＊＊	－． 283	＊＊＊＊＊＊	－． 622	－．739	－． 520	． 247	
2	． 22.5	． 362	． 478	． 575	． 743	． 762	． 878	． 965	． 851	． 304	
3	．050	－239	． 347	． 454	． 552	． 611	． 681	． 737	． 675	． 377	
4	－100	.141	． 223	． 298	． 408	． 435	． 506	． 532	． 478	． 345	
5	.150	． 103	． 268	.243	． 314	． 343	． 397	－ 420	． 397	－311	
6	． 200	． 075	.145	． 125	． 258	． 287	－335	－ 352	． 329	． 283	
7	＋250	.050	． 213	． 164	． 221	－249	－289	． 293	． 278	.251	
8	． 360	.036	． 685	． 127	． 186	． 209	． 240	． 245	． 232	＊＊＊＊＊＊	
9	． 400	． 019	． 055	． 093	.140	． 162	－180	.179	.172	＊$\ddagger+$＊＊${ }^{\text {a }}$	
10	． 500	－． 205	． 034	.057	． 102	.118	.145	.135	． 132	.122	
11	＋650	4＊＊＊＊＊	．031	． 045	.667	.037	.097	． 089	． 062	． 055	
12	． 780	－． 005	． 015	． 035	.257	.064	．071	． 321	． 0.35	． 023	
13	． 900	－． 095	－． 099	－． 030	－．088	－．031	－． 020	－． 076	－0．034		
14	． 050	－． 362	－． 500	－．645	－．809	－．911	－1．022	－1．240	－． 317		
15	． 100	－． 272	－． 305	－． 406	－． 574	－． 664	－． 767	－．893	－1．063		
16	． 260	－． 178	－． 235	－． 303	－． 393	－． 433	－． 521	－． 533	－．621		
17	.300	－． 126	－．175	－．232	－． 286	－． 329	－．351	－． 346	－．341		
18	． 500	－． 129	－． 158	－． 23 a	－．122	－．147	－． 192	－． 211	＊＊＊＊＊＊		
17	． 050	－． 010	－． 034	－． 067	－． 097	－．111	－． 134	－． 157	－．254		
20	.780	－． 065	－． 050	－． 207	－． 090	$\sim .103$	－． 117	－． 127	－． 273		
21	－ 800	－． 048	－．055	－． 050	－． 057	$-.374$	－． 093	－．132	－． 136		
I	X	$\gamma=.10$	$Y=.25$	$y=.42$	$Y=.45$	$Y=.50$	$\gamma=.55$	$y=.60$	$Y=.75$	$y=.85$	$r=.75$
1	0.000	－1．401	－1．612	－1．61？	＊＊＊＊＊＊	－1．157	－2．372	－2． 255	－1．19t	－1．226	$-.221$
2	． 025	1.113	1.192	1.178	． 502	－1．125	－2．003	－2．431	－1．904	－1． 745	－in249
3	－ 050	． 914	1.026	1.055	． 457	－1．043	－1．493	－2．838	－1．552	－1．445	－． 867
4	.200	.637	． 772	． 678	． 112	－1． 329	－．835	－2．055	－．803	－．365	－． 598
5	． 150	． 496	． 613	． 507	－． 048	－1．011	－．669	－． 696	－．702	－． 035	－． 4.72
6	． 200	． 411	． 357	． 360	－． 158	－． 933	＊＊＊＊44	－． 480	－． 542	－． 478	－． 365
7	． 250	． 335	－197	． 288	－． 169	$\cdots .861$	－． 471	－． 325	－． 443	－． 104	－． 251
8	． 300	． 204	． 337	.197	－． 186	－．319	－．421	－． 250	－． 3 ？ 5	－． 342	＊＊＊＊
9	． 400	.200		．033	－． 203	－． 697	－．465	＊＊＊＊＊＊	＊＊＊＊＊＊	－． 213	＊ 0 せ＊＊＊
10	－ 500	． 128		． 011	＊＊\＄4＊＊	＊＊＋\＃中 ${ }^{\text {\％}}$	－． 417	＊＊＊＊＊	－． 236	－．193	－． 161
11	－ 650	＊ 4 ＊＊＊＊	． 530	－． 056	－． 255	－． 575	－． 494	－． 123	－． 096	－． 101	－．120
12	． 780	－．058	－． 1385	－． 145	－． 263	－． 517	$-.465$	－．13．）	－． 045	－． 002	－．123
13	． 900	－． 190	－． 254	－．372	－． 363	－．493	－． 482	－． 203	－．095	－． 095	$-.127$
14	.050	－1．125	－2．102	－． 439	－． 444	－． 143	． 673	． 944	． 825	.791	． 634
15	.100	－． 700	－． 430	－． 344	－． 346	－． 114	． 385	． 578	－642	． 637.	－4う2
16	－ 200	－． 364	－． 062	－．309	－． 362	－． 218	． 086	－334	． 385	－375	． 254
17	.300	－． 422	$\sim .578$	－． 475	－． 448	$\sim .330$	－． 094	． 137	． 253	． 251	． 150
18	－50J	－． 396	－． 500	－ 520	－． 500	$\cdots .451$	－． 249	－． 0500	． 105	． 111	－ 350
19	． 650		$\cdots .498$	－． 535	－． 533	－． 502	－． 215	－． 134	． 043	． 256	.027
20	． 780	－． 365	－． 412	－．481	－． 458	－． 420	－． 330	－． 193	－． 023	． 010	－． 314
21	.900	－．35t	－． 475	－．491	－．454	－． 447	－． 374	－． 250	－．052	－． 061	－．361

TABLE A．3．－CONTINUSD
RUN 57 AVERAGED FRESSURE COEFFICIENTS

	1	x	$Y=-.95$	$y=-85$	$Y=-70$	$Y=-.50$	$Y=-40$	$Y=-25$	$Y=-.10$	$Y=-06$	$t=0$.	
	1	9．105	－．205	－． 199	＊＊＊＊＊	－． 375	＊＊＊＊＊＊	－． 577	－． 772	－．635	． 073	
	2	． 3 c	． 410	． 467	． 507	． 628	． 701	． 798	－ 344	． 836	．481	
	3	－ 2.0	． 232	－330	． 436	． 537	.574	.669	． 727	． 658	－ 356	
	4	0.30	． 131	． 211	． 287	． 392	． 422	． 491	． 522	.475	． 334	
\％	5	． 150	． 098	－ 151	． 223	． 302	.344	－383	． 409	． 386	． 307	
40	6	－ 200	．065	． 131	.177	－ 242	． 277	－ 329	． 343	－ 32 i	.274	
15	7	． 250	． 049	．104	． 152	． 211	． 242	－ 238	－ 237	． 271	． 239	
Q：	c	． 300	.034	.077	． 124	． 177	． 230	． 230	． 242	． 228	＊＊＊＊＊＊	
\％：	c	． 460	． 018	． 056	． 093	． 133	． 157	－177	． 180	． 169	＊＊4＊＊＊	
8	10	－ 500	－． 005	.032	－ 062	． 394	． 120	． 143	． 132	.132	． 120	
？	11	． 650	4＊＊＊＊＊	． 020	.042	－063	.573	． 285	． 065	－061	－050	
	12	． 780	－．004	． 017	． 032	． 055	． 061	． 073	.033	． 611	.024	
1	13	． 900	－．045	－． 103	－． 284	－． 093	－． 253	－ 024	－．057	－． 042		
	14	． 550	－．376	－．495	－． 617	－． 749	－． 363	－1．013	－1．261	－1．0．35		
	± 5	． 100	－． 265	－． 352	－．43j	－．56\％	－．630	－．740	－．860	－1．251		
	16	． 200	－． 171	－． 227	－． 292	－．367	－． 937	－． 515	－． 553	－． 539		
	± 7	． 300	－．123	－． 175	－． 218	－． 283	－． 325	－． 344	－． 341	－． 329		
	18	－ 500	－． 125	－． 156	－． 130	－． 117	－．142	$-.177$	－．175	＊＊＊＊		
	19	.650	$\cdots .000$	－． 031	－． 251	－． 093	－． 110	－． 127	－． 124	－．125		
	20	－740	－． 061	－．054	－． 067	－． 084	－． 100	－． 105	－． 035	－． 005		
	21	． 900	－．044	－．051	－．054	－． 653	－．070	－．080	－． 105	－． 037		
	1	x	$Y=.10$	$Y=.25$	$Y=.4 .3$	$\gamma=.45$	$y=.50$	$\gamma=.55$	$Y=000$	$\mathrm{Y}=.75$	$Y=.85$	Yx．95
	1	0.000	－1．065	－1．325	－1．407	＊ 6 64＊＊	-1.123	－1． 263	－2．755			
	2	． 025	1.039	1．111	1．187	1.102	． 553	－． 0.82	－1．884	－ 2.447	－1．3う9	－1．036
	3	． 050	． 863	1.015	1.109	1.042	－441	－． 978	－1．414	-1.728	－1．412	－．934
	4	． 100	．605	． 74 ？	． 737	． 712	． 135	－． 295	－． 9077	－．927	－．843	－．338
	5	.150	． 480	－ 596	． 632	． 568	－． 012	$-.967$	－． 675	－． 707	－．631	－． 5
	6	． 200	． 396	－ 502	． 474	． 389	－． 101	＋474．4＊	－． 572	－． 534	－． 407	－． 351
	7	． 250	． 322	． 415	． 395	． 294	－．151	－．851	－． 495	－．426	－． 398	－． 278
	3	－ 300	． 273	． 337	－ 312	． 221	－．167	－． 834	－． 082	－． 352	－．332	＊ti＊＊が
	9	． 400	－175	\＃4＊＊＊＊	． 166	． 135	－． 218	－． 708		＊＊＊＊＊＊	－． 207	＊＊＊＊＊＊
	10	． 500	． 120		． 995		4404＊＊	－． 697		－． 159	－．173	－． 156
	11	． 650	＊＊＊4＊	． 05 ？	－．019	－． 051	－． 235	－． 552	－． 509	－． 068	－．047	－．130
	12	． 780	－．045	－．05\％	－． 125	－．143	－． 243	－． 481	－． 461	－． 033	$-.055$	－． 110
	13	．900	－． 184	－． 198	－． 271	－． 305	－． 373	－．494	－． 487	－． 206	－． 303	－． 1.6
	14	.050	－1．104	-1.369	－． 364	－．331	－． 349	－． 170	． 532	． 863	． 762	－ 51 i
	15	． 100	－．7．30	－． 89 ？	－． 536	－． 338	－． 296	－． 158	－ 370	－650	． 510	． 457
	16	． 200	－． 3 －5	－． 669	－． 467	－． 374	－． 372	－． 231	． 059	． 371	． 361	＋250
	17	－ 300	－．333	－．5．54	－．537	－． 454	－． 432	－． 343	－． 107	． 234	． 234	－143
	18	． 500	－－355	－．4．37	－．501	－． 547	－．532	－． 432	$-.275$	． 030	． 1096	． 247
ω	19	． 650		－． 263	－． 571	－． 535	－． 492	－． 463	－． 319	－Cご5	． 037	． 017
	29	． 700	－． 334	－． 305	－． 488	－． 468	－． 465	－． 409	－． 353	－． 074	－．017	－032
	21	． 900	－．360	－． 355	－． 547	－． 448	－． 475	－．436	－． 40.1	－． 129	－． 082	－． 074

TABLE A.3.- CONTINUED

TABLE A．3．－CONTINUED
RUN 59 averaged pressure coefficients

I	x	$Y=-.95$	$Y=-.85$	$Y=-.73$	$Y=-50$	$Y=-.40$	Y－$=.25$	$Y=-.10$	$Y=-.36$	$Y=0$.	
1	0.000	－． 205	－． 205	＊＊＊＊か＊	－．095	＊＊＊＊＊＊					
2	． .325	． 241	． 340	． 403	-.093 .512	＋444＊＊	－． 0.669	-.273 .750	-.231 .632	.194 .244	
3	． 050	.165	． 254	． 327	． 397	． 435	503	． 552	． 517	． 209	
4	.100	.083	.146	． 213	． 280	． 306	． 369	． 381	． 351	． 246	
5	． 150	.063	.110	． 144	.212	.242	.280	． 316	． 297	． 222	
6	.200	． 040	.093	． 115	.175	－172	． 244	． 252	． 247	． 223	
7	． 250	． 024	． 065	． 101	． 149	.167	－260́	． 217	． 2.11	.192	
8	． 300	． 012	－ 343	． 077	.127	． 142	.164	.273	．105	＊＊＊＊＊＊	
9	． 400	． 004	． 031	．057	． 037	.106	． 115	．131	． 228	＊＊＊＊＊＊	
10	． $5: 00$	－． 027	．009	． 030	． 057	． 073	． 094	． 201	． 105	． 200	
11	． 650		.093	.321	． 043	.055	． 065	． 077	． 054	.062	
12	－ 780	－． 015	． 021	． 013	． 027	．033	.042	． 322	． 012	． 034	
13.	.800	－． 081	－． 100	－． 083	－． 107	－． 078	－． 047	－．067	－． 022		
14	.050	－． 270	－． 357	－．854	－． 554	－． 634	－． 721	－．918	－．834		
15	． 100	－． 209	－． 262	－． 335	－． 420	－． 4 ¢ 67	－． 555	－． 665	－．879		
16	． 200	－． 141	－． 173	－． 222	－． 272	－． 277	－． 362	－． 442	－． 432		
17	． 300	－． 099	－． 142	－． 174	－． 211	－． $23:$	－． 267	－． 262	－． 263		
18	－ 500	－． 103	－．128	－． 142	－． 133	－． 109	－． 122	－． 126	＊＊＊＊＊＊		
19	． 650	.008	－． 012	－． 032	－． 053	－． 069	－． 286	－． 1981	－． 2 3		
20	.780	－． 0.055	－． 043	－．051	－． 057	－． 075	－． 082	－． 259	－． 049		
21	． 900	－．038	－． 042	$-.043$	－． 037	－． 050	－． 05 B	－． 053	－．047		
I	x	$\mathrm{Y}=.10$	$\gamma=.25$	$\gamma * .4 J$	$Y=.45$	$Y=.50$	$Y=.55$	$\gamma=.63$	$Y=.75$	$\gamma=.05$	$Y=.95$
1	0.000	－．822	－． 947	－． 963		－1．735	－1．723	－i． 592	－1．701	－1．513	-1.075
2	－1925	． 919	． 996	1.158	1.175	1.195	1.248	1.223	1.267	． 923	－1．152
3	． 050	． 730	． 817	． 963	2.013	1.033	1.063	1.082	1.130	． 798	－． 825
4	.100	． 486	.601	． 693	． 734	． 759	． 792	． 320	． 857	． 557	－． 0.86
5	． 150	.395	.475	． 567	． 583	.600	． 623	． 646	－686	.403	－．045
6	.200	． 327	－433	． 457	． 491	． 513	＋44＊4＊	． 548	． 554	． 267	－． 652
7	－ 250	． 270	． 347	.403	． 416	－ 225	， 441	． 453	． 460	.181	－．0642
8	． 300	． 238	． 302	． 348	－373	－ 371	． 381	－ 378	． 373	． 102	＊＊＊＊＊＊
9	． 400	． 180	＊+ 中＊＊	－ 255	.264	.209	． 272	＊＊＊＊＊＊	＋車禹＊＊＊	． 027	＊＊＊＊＊＊
10	560	． 139	＊＊＊＊＊＊	.171		＊＊＊＊＊＊	.203	＊＊＊＊＊＊	.134	－． 276	－． 22
11	． 650	＊＊＊44＊	－122	． 127	． 118	． 109	． 103	． 087	． 014	－． 131	－． 631
12	． 780	． 027	． 605	.057	.047	． 336	． 013	－．014	－． 095	－． 206	－．625
$: 3$	． 900	－． .070	－．018	－． 031	－． 246	－0． 236	． .103	－． 155	－． 312	－． 353	－．621
14	． 050	-1.157	－1．298	－2．659	－1．334	－2．376	－20．017	－1．463	－．619	－．390	－． 072
15	.100	－ .824	－． 915	－．905	－． 932	－1．340	－1．670	－1．09］	－．459	－． 292	－． 152
16	.200	－． 566	－． 552	－． 634	－． 667	－．081	－． 688	－． 340	－． 541	－．303	－．332
17	． 300	－ 355	－． 435	－． 463	－． 473	－． 485	－． 525	－． 608	－． 543	－． 474	－． 374
18	.500	－．181	－． 226	－． 252	－． 257	－． 287	－． 336	－． 380	－． 634	－． 558	－． 537
19	.650	＊＊＊4＊＊	－． 145	－． 179	－． 194	－． 219	－． 276	－． 342	－． 693	－． 607	－．591
20	.780	－． 085	－． 220	－． 125	－． 134	－． 155	－． 214	－． 257	－． 629	－． 607	－． 550
21	.900	－． 085	－． 130	－． 138	－． 074	－． 134	－． 185	－． 279	－． 668	－． 597	－． 530

TABLE. A. 3.- CONTINUED
RUN 62 AVERAGED PZESSURE COEFFICIENTS

I	x	$Y=-.95$	$Y=-.85$	$\gamma=-70$	$Y=-50$	$Y=-.40$	$Y=-25$	$Y=-10$		$Y=-.06$	$Y=0$.	
1	0.000	-. 032	-. 031	*4*****	-. 268	*******	-. 013	-. 775		-. 555	. 265	
2	. 025	. 340	. 400	. 333	. 695	. 760	. 858	. 950		. 851	. 354	
3	. 050	. 235	. 32.9	. 444	. 557	- 502	.685	. 746		.669	. 374	
4	.100	. 135	. 225	. 278	. 401	.433	.497	. 532		. 481	. 343	
5	- 350	.098.	. 168	. 223	. 319	. 354	. 391	. 419		. 395	- 312	
6	. 200	. 069	.133	. 189	. 235	-280	. 335	. 348		. 332	.287	
7	. 250	.051	. 109	.163	. 215	. 246	. 298	. 297		. 277	. 251	
8	.300	.035	. 082	. 123	.180	. 206	. 240	. 251		. 234	*****	
9	. 400	.021	. 058	. 075	.142	. 158	.179	. 166		. 2.77	* *****	
10	. 500	-. 004	. 033	. 036	.105	. 121	.147	. 141	:	.139	.125	
11	.650	******	.021	. 345	. 074	.087	. 101	. 097		. 070	. 060	
12	.780	$\sim .002$.017	. 032	. 055	.364	. 073	.033		.012	. 025	
13	.900	-. 094	-.093	-.0.3	-. 089	-. 048	-. 017	-. 058		-0.0		
14	.050	-. .360	-.499	$-.623$	-. 782	-.865	-1.034	-1.295		-. 9597		
15	.100	$\cdots .268$	-.353	$-.447$	-. 552	-. 228	-. 748	-. 9.97		-1.190		
16	- 360	-. 168	-. 224	-. 291	-. 375	-. 428	-. 516	-. 604		-. 656		
17	. 300	-. 118	-. 174	-. 213	-. 291	-. 324	-. 341	-. 338		-. 351		
16	. 500	-. 114	-. 153	-. 133	-. 119	-. 142	-. 183	-. 185		******		
19	. 650	-.011	-.03i	-. 063	-. 292	-. 118	-. 123	-. 137		-. 129		
20	. 780	-. 061	-. 050	-. 007	-. 284	-101	-. 102	-. 100		-. 072		
21	. 900	-. 045	-. 052	-. 053	-.052	-. 070	-. 286	-. 114		-.070		
I	x	$\gamma=.10$	$Y=.25$	$Y=.43$	$Y=.45$	$\gamma=.56$	$\gamma=.55$	$Y=.60$		$\boldsymbol{Y}=.75$	$\gamma=.85$	$Y=.95$
	0.000	-1.435	-1.602	-1.0.05	****ヶ*	-1. 124	-1.600	-2.337		-1.295	-i.314	-. 583
2	. 0225	1.099	1.184	1.243	.993	-. 154	-1.003	-2.479		-1.934	-1.832	-i.307
3	. 150	. 900	2.023	1.084	. 832	-. 211	-1.286	-1.602		-1.635	-1.467	-. 926
4	.100	.632	. 754	. 771	. 526	-. 401	-.924	-. 952		-. 617	-.857	-. 610
5	. 150	. 498	. 604	- 542	. 342	-. 476	-. 875	-. 065		-. 696	-. 632	$-.499$
6	- 260	. 409	. 509	.453	-233	-. 501	******	-. 436		-. 533	-. 473	-. 330
7	- 250	. 335	. 427	- 350	.137	-.54	-. 820	-. 375		-. 430	-. 400	-. 256
8	- 360	. 286	. 343	. 233	. 078	-. 475	-. 792	-. 312		-. 368	-. 336	\$ 4 * 4 **
9	. 460	. 200	******	. 257	. 034	-. 432	-. 729	* 4 ¢***		******	-. 211	******
10	. 500	.136	* $4 * * * *$. 369	******	******	-. 704	***4**		-. 131	-. 100	-. 150
12	. 650	******	. 045	-.025	-. 098	-. 370	-. 617	-. 212		-. 073	-. 072	-. 129
12	.780	-. 040	-. 0165	-. 139	-. 184	-. 358	-. 513	-. 252		-. 044	-. 057	-. 112
13	. 900	-. 171	-. 218	-. 298	-. 320	-. 413	-. 534	-. 343		-. 132.	-. 288	$-.122$
14	. 350	-1.274	-1.180	-.423	-. 322	-. 371	. 266	-849		- 8引2	.791	. 624
15	. 100	-. 712	-.893	-. 425	-. 299	-.303	. 104	-588		-654	. 627	- 458
16	. 200	-. 459	-. 096	-. 355	-. 323	-. 343	-. 109	. 223		. 381	. 376	. 212
17	- 300	-. 398	-.583	-. 445	-. 435	-. 404	-. 215	. 027		. 253	. 250	. 154
18	. 500	-. 356	-. 444	-. 523	-. 509	-. 0.499	-. 347	-. 145		. 090	.109	- 354
19	-650	******	-. 430	-. 544	-. 548	-. 503	-. 418	-. 228		. 028	. 053	. 527
20	.780	-. 300	-.356	-. 485	-. 0.481	-. 483	-. 445	-. 271		-. 040	. 303	-. 018
21	.900	-. 347	-.396	-. 530	-. .458	-. 475	-. 0449	-. 363		-. 099	-. 378	-. 009

TABLE A.3.- CONTINUED

RUN 61 aVERAGED PRESSURE COEFFIGIENTS

TABLE A.3.- CONTINUED
RUN 62 averaged pressure coefficients

I	X	$Y=-.95$	$\gamma=-8.5$	$y=-7.7$	$Y=-50$	$Y=-.43$	$\gamma=-.25$	$Y=-.10$	$Y=-.00$	$Y=0$.	
1	0.0 .00	-. 559	-. 874	******	-2.007	******	-2.014	-2.215	-2.938	-. 246	
2	. 025	. 831	1.054	1.126	-. 968	-2.074	-2.426	-2.685	-2.205	-. 695	
3	.050	.042	. 851	1.736	-. 933	-1.327	-1.692	-1.522	-1.257	-. 654	
4	.100	-413	. 624	. 754	-. 893	-1.007	-1.065	-1.051	-. 877	-. 604	
5	.150	. 327	.491	. 595	-. 933	-. 817	-.808	-. 782	-. 658	-. 523	
6	- 250	. 246	. 399	.485	-. 936	-. 714	-. 603	-. 532	-. 511	-. 432	
7	. 250	. 194	- 326	. 397	-. 885	-.515	-. 475	-.483	-. 429	-. 385	
8	. 300	.144	.260	. 322	-.832	-. 395	-. 362	-. 363	-. 344	******	
9	.400	- 092	.179	. 233	-. 750	-. 316	-. 241.	-. 257	-. 254	******	
10	. 500	.041	. 121	. 113	-. 701	-. 225	-. 149	-.193	-. 194	-. 209	
11	. 650	******	. 060	. 035	-. 557	-. 156	-. 065	-. 035	-.115	-. 138	
12	. 780	. 026	. 026	-. 033	-. 453	- 153	-. 056	-.042	-.082	-. 095	
13	. 900	-. 064	-.055	-. 143	-.413	-. 232	-. 225	-. .054	-. 072		
14	.050	-. 832	-j.4is	-1.213	-. 224	. 951	. 952	1.027	1.078		
15	.100	-. 623	-. 752	-.813	$\cdots .217$. 578	- 738	. 832	. 883		
16	. 200	-. 418	-. 232	-. 653	-. 274	.376	. 489	. 552	. 613		
17	. 300	-. 250	-. 390	-. 527	-.315	- 180	-35.	. 426	. 401		
18	. 500	-.157	-. 232	-. 473	-.331	.010	. 17.2	. 208	\# \#\# $_{\text {¢ }}$		
19	. 650	-. 107	-. 163	-. 441	-.369	-. 006	. 083	.112	. 089		
20	.780	-. 158	-. 144	-. 343	$\cdots 324$	-. 144	-. 009	.010	. 008		
21	. 900	-. 139	-. 135	-. 323	-. 271	-. 215	-. 090	-. 075	-. 066		
I	x	$Y=.10$	$Y=.25$	$Y=.40$	$Y=.45$	$\gamma=.50$	$Y=.55$	$y=.60$	$Y=.75$	$\gamma=.85$	$y=.95$
1	0.000	-1.065	-1.234	-2.143	******	-. 532	-. 501	-. 380	-.317	-. 189	-. 037
2	. 025	-1.905	-1.56?	-2.308	-1.295	-1. 268	-1.203	-1.132	$-.741$	-. 75%	-. 566
3	. 050	-1.490	-1.217	-1.014	. 0.984	-. 941	-. 807	-.852	-.656	-. 555	-. 371
4	.130	-.391	-.93)	-. 791	$\cdots .744$	-. 648	-.625	-. 596	-. 491	-. 394	-. 271
5	. 150	-. 674	-. 604	-. 543	- 572	-. 539	-. 503	-. 475	-. 383	-.313	-. 216
6	- 200	-. 529	-. 470	-. 423	-.421	$-.409$	**** ${ }^{\text {* }}$	-. 367	-.309	-.247	-. 212
7	. 250	-. 479	-. 403	-. 350	-. 330	-. 329	-. 323	-. 320	-. 260	-. 217	-. 131
8	. 300	-. 357	-.357	-.311	-. 279	-. 271	- 248	-. 263	-. 213	-. 175	******
9	. 400	-. 255	******	-. 215	-. 195	-.195	-. 174	******	+4****	-.143	* ${ }^{*}$ ****
10	. 530	-213	*7**4*	-. 198	******	******	-. 159	******	-. 125	-.090	-. 048
11	. 650	******	-.121	-. 117	-.111	-. 109	-. 102	-.099	-. 067	-.043	-.032
12	.780	-. 080	-. 086	-.088	-.781	-. 075	-. 060	-. 069	-.034	-. 029	-. 032
13	. 960	-.082	-.091	-.102	-. 101	-. 098	-. 094	-.031	-. 0.57	-. 053	-. 038
14	. 050	. 916	. 771	. 585	. 673	. 665	. 630	.594	. 511	.443	. 316
15	.100	. 716	. 393	. 503	.512	. 499	. 455	. 460	. 382	- 349	. 232
16	- 200	. 487	. 419	- 353	. 347	- 342	- 322	. 312	. 245	. 212	.142
17	. 3.00	. 350	. 305	. 273	. 266	.259	. 244	. 223	. 236	.148	. 088
18	-500	. 199	. 185	.172	. 165	- 158	- 146	$\cdot 237$. 378	- 289	$=045$
19	. 650	******	. 145	.131	. 125	. 119	. 115	. 107	. 088	-063	. 044
20	.780	. 046	. 030	.091	. 087	. 083	. 079	. 071	. 054	.040	.015
21	.800	-.025	-. 027	-. 022	.012	.005	. 007	-. 002	-.031	-. 044	-.051

TABLE A.3.- CONIINUED

	I	x	$Y=-.95$	$\gamma=-.85$	$Y=-873$	$Y=-.50$	$Y=-.40$	$Y=-.25$	$Y=-.10$	$Y=-.06$	$Y=0$.	
	1	0.000	-.028	-.027	******	-. 280	******	-. 578	-. 756	-. 551	.260	
	2	. 025	- 352	.467	. 541	. 701	. 762	-855	. 974	. 870	. 369	
	3	- 350	.245	. 331	.434	. 540	. 609	. 682	.753	-680	. 400	
	4	.100	. 137	.222	. 297	.394	. 423	. 502	.538	. 437	. 367	
	5	.150	.103	.170	. 230	. 319	. 351	. 402	. 427	.4.)1	. 325	
	8	- 200	. 075	. 138	.191	. 250	. 290	. 336	. 356	. 341	. 305	
	7	- 250	. 1048	.109	. 151	.213	.249	.299	.304	.287	. 264	
W8	8	. 300	.036	. 083	. 120	.180	. 198	. 241	- 353	. 233		
400	9	. 400	.019	. 053	. 093	.132	.155	-177	. 134	. 184	4\%****	
	10	- 500	-. 003	. 035	-052	. 100	. 127		- 16	. 142	$.13{ }^{\circ}$	
	11	. 650	4*****	. 020	. 045	.072	.087	. 102	. 102	. 075	. 575	
\bigcirc	12	.780	.053	. 127	. 029	. 055	.064	-173	. 037	.028	. 038	
E	13	-900	-. 093	-. 093	-.031	-.087	-. 045	-. 017	-. 048	-.037		
	14	. 650	-. 349	-. 471	-. 6083	-. 748	-. 870	-1.030	-i.273	-. 437		
\bigcirc	15	.100	-. 268	-. 353	-. 438	-. 545	$-.625$	- 73	-. 217	-1.195		
EQ	16	. 200	-. 257	-. 220	-. 299	-. 360	$-.412$	-. 512	-.54?	-. 644		
E	17	. 300	-. 115	-. 167	-. 224	-. 274	-. 314	-. 341	-. 388	-. 357		
	18	. 500	-. 118	-. 149	-. 133	-. 224	$-.143$	-. 173	-. 183	******		
\%	19	. 650	-.00.7	-.028	-.061	-. 093	-. 1150	-. 126	- 134	-. 131		
	20	. 760	-.062	-. 053	-.365	-.084	-. 102	-. 105	- 0.087	-. 0.067		
	21	.900	-. 042	-.047	-.053	-. 049	-. 070	-.087	-122			
	1	x	$y=.10$	8=. 25	$Y=.40$	$y=.45$	$y=.50$	$Y=.55$	$\because=60$	$Y=.75$	$y=.85$	$r=.95$
		0.000	-1.960	-2.409	-1.451	*辛***	-1.181	-2.820	-1.845	-1.35?		
	2	. 0225	1.169	1.172	1.223	$.869$	-. 3.37	-1.418	-1.691	-2.014	-1.898	-1.330
	3	.050	. 969	1.005	1.771	. 723	-. 457	-1: -157	-1. 1.196	-1.706	-1.542	-.908
	4	.100	. 076	. 752	. 732	-423	-. 526	-.856	-. 958	-. 872.	-. 893	-. $5 \geqslant 0$
	5	-150	. 530	-595	. .549	. 251	-. 555	-.832	-. 875	-. 714	-. 057	-. 533
	6	. 200	. 434	. 505	. 422	.148	-. 544	****\#*	-. 754	-.565	-. 494	-. 354
	7	.250	- 352	. 411	. 326	. 055	-. 540	-. 734	-. 698	-. 407	-. 417	-. 277
	8	- 300	. 303	.340	.231	. 251	-. 475	-.663	$-.436$	-. 404	-. 357	******
	9	. 400	. 208	******	. 125	-..351	-. 440	-. 509	******	*4***	-. 228	******
	12	. 500	.152	* $4 * *+5$.035	* + ****	* *****	-. 479	* *****	-. 223	-. 25.	-.171
	11	. 650	******	.037	-.057	-130	-. 31.9	-. 393	-. 211	-. 129	-.113	-. 240
	12	.780	-.012	-076	-. 264	-. 203	-. 315	-. 351	-. 235	-. 075	-. 075	-.134
	43	. 960	-. 110	-. 234	-. 323	-. 335	-.395	-. 355	-. 239	-. 210	-. 097	-. 129
	14	. 050	-1.751	-.97?	-.363	-. 403	-. 512	. 363	. 879	. 858	. 805	. 627
	1.5	- 100	-1.089	-. 740	-.341	-.351	-.346	. 044	-628	. 669	.637	-477
	16	. 200	-. 666	-. 021	-. 326	-.397	$-.415$	-. 131	. 262	.394	. 385	. 266
	17	. 300	-. 473	-. 542	-. 432	-. 448	-. 489	-.235	.278	. 260	.259	- 156
	18	. 500	$-.240$	-.483	-. 533	-.49?	-. 504	-. 349	-. 118	- 097	.112	-031
0	19	. 550	4*****	-. 477	-.545	-. 542	-.512	-. 394	-.164	. 032	. 052	. 228
	20	. 780	-145	-. 409	-. 404	-. 481	-. 488	-. 418	-. 234	-.044	. 002	-. 020
	21	. 900	-. 164	$-.453$	-. 523	-. 464	-. 488	-. 430	-. 326	-. 108	-. 085	-. 377

TABLE A.3.- CONTINUED

RUN 64 AVERAGEO PRESSURE CDEFFICIENTS

I	x	$\gamma=-.95$	$Y=-.85$	$Y=-.73$	$Y=-5.3$	$Y=-40$	$Y=-25$	$Y=.10$	$Y=-.06$	$Y=0$.	
1	0.000	-. 132	-. 268	******	-I. 032	**4***	-2. 254	-2.128	-. 701	-. 411	
2	. 025	. 534	. 689	. 811	1.042	1.102	1.217	1.196	. 827	-. 512	
3	.050	.389	. 546	. 703	. 855	. 928	1.041	1.003	. 651	-. 433	
4	.100	. 250	-378	.493	. 647	. 713	. 807	. 736	. 384	-. 430	
5	. 150	.189	. 295	. 390	. 505	. 572	. 048	. 547	. 319	-. 421	
6	. 200	.139	.243	. 325	. 433	.474	. 531	. 427	. 198	-. 508	
7	. 250	. 106	. 199	. 277	.362	. 490	. 452	- 328	. 090	-. 492	
8	. 300	. 080	. 159	.227	.304	. 340	. 369	- 262	.036	******	
9	. 400	.053	. 115	.177	.234	-255	. 257	.155	.011	***¢**	
10	- 590	. 022	. 1.84	. 134	.174	.183	. 171	. 070	-. 045	-. 464	
1:	. 650	******	. 053	.090	. 114	.111	. 074	. 003	-. 036	-. 403	
12	. 780	. 010	. 050	.075	. 285	. 072	-. 004	-. 103	-. 151	-. 382	
13	. 900	-. 077	-. 064	-. 041	-. 041	-. 341	-. 114	-. 186	-. 207		
14	. 050	-. 542	-. 763	-1.001	-1.450	-1.819	-1.781	-1.297	-. 336		
15	.100	-. 373	-. 519	-.695	-.75i	-. 9.93	-1.159	-. 742	-. 579		
16	. 200	-. 236	-. 342	-. 476	-. 563	-. 310	-. 630	-.341	-.cól		
17	- 200	-. 173	-. 264	-. 326	-. 413	-. 449	-. 437	-. 246	-. 190		
18	- 500	-. 067	-. 126	-. 137	-. 213	-. 230	-. 223	-. 253	****4*		
19	. 650	-. 041	-. 081	-.113	-. 154	-. 261	-. 199	-. 295	-. 315		
20	. 780	-. 0.088	-.088	-. 103	-. 103	-. 110	-. 151	-. 354	-. 235		
21	. 900	-. 071	-. 077	-. 085	-. 078	-. .182	-. 206	-. 390	-.351		
I	\mathbf{x}	$Y=.10$	$Y=.25$	$Y=.40$	$Y=.45$	$Y=.50$	$y=.55$	$Y=.60$	$Y=.75$	$Y=.85$	Y-. 85
1	0.000	-1.108	-1.369	-1.87)	******	-2.202	-1.0334	-.894	-.t22	-. 479	-. 162
2	.025	-1.741	-2.091	-2.135	-1.981	-1.958	-i. 760	-1.722	-1.375	-1.107	-.703
3	- 050	-1.160	-1.772	-1.727	-1.572	-1.511	-1.342	-1. 253	-. 973	-.8.)7	-. 525
4	. 100	-. 755	-. 915	-. 933	-.876	-. 910	-. 958	-. 933	-. 692	-. 539	-.354
5	.150	-. 560	-. 723	-. 717	-. 683	-. 679	-. 625	-. 597	-. 554	-. 439	-. 235
6	- 250	-. 450	-.5il	-.533	-. 502	-. 558	******	-. 474	-. 420	-. 364	-. 235
7	- 250	-. 399	-. 463	-. 481	-. 477	-. 404	-. 43 ?	-. 433	-. 320	-. 305	-. 294
8	. 300	-. 281	-. 345	-. 404	-. 398	-. 386	-. 373	-. 365	-. 235	-. 235	***立年
9	-480	-. 195	******	-. 275	-. 273	-. 273	-. 255		* ${ }^{\text {* }}$ ***	-. 147	******
10	. 500	-. 152	******	-. 225	******	******	-. 210	******	-.139	-. 150	-.034
11	. 650	+** $4 * *$	-. 070	-. 117	$-.127$	- 232	-. 129	-. 124	-. 209	-. 282	-. 309
12	. 78 C	-. 111	-.053	-.071	-. 079	-. 0.17	-. 069	-. 335	-.60́2	-. 053	-. 066
13	.900	-. 192	-. 103	-. 105	-. 100	-.103	-. 100	-. 085	-.6y3	- 647	-. 357
14	-050	. 810	. 858	. 913	.894	. 366	.843	. 793	. 675	. 589	. 420
15	. 100	. 620	. 664	.633	. 684	- 656	- 521	. 622	- 542	. 464	-319
16	. 200	. 389	. 443	.472	.457	.457	. 439	. 409	-339	-283	.190
17	. 300	. 244	- 305	. 337	. 339	-332	- 322	. 299	. 256	.199	.115
18	. 500	. 079	. 143	.184	.193	. 186	. 184	.174	.147	.119	. 357
19	. 550	******	- 392	. 118	.125	.127	. 128	. 126	. 103	. 085	. 049
20	.730	-. 101	.017	.050	. 053	. 356	. 067	. 071	. 607	. 257	. 015
21	. 900	-. 177	. 032	. .053	. 005	. 035	. 002	.002	-	. 026	.015

TABIE A．3．－CONTINUED

	1	x	Y＝－．5\％	$Y=-$－${ }^{\text {a }}$	$Y=-.72$	$Y=-$ ：	$Y=-.49$	$\mathrm{Y}=-.25$.	$Y=-13$	Ye－．${ }^{\text {d }}$	$Y=\%$	
	1	30.6	－． 210	－．．3．	＊＊＊＊＊＊	－． 705	＋a＊＊＊＊	－1．571	－1．293	－． 530	． 3.34	
	2		－454	．64？	． 757	－シミ7	1． 215	1．133	1.153	1．612	－ことう	
09	3	－ 26	－ 312	－\％	－uts	.773	． 343	． 434	．937	－EZ2	－52）	
	4	．150	． 324	－se 3	．4．1	－ 30	． 645	． 724	． 73	－i23	－45＇	
\bigcirc	5	． 1.0	－106	－ 53	－30．	．453	． 315	－ 277.	． 555	－443	－ 507	
$\bigcirc 8$	6	－ r	－ 227		．215	． 330	－421	． 400	－443	． 454	． 307	
式	7	－ $3 \div 0$	．25：	－17．	－24？	－32）	． 363	， 490	.367	－321	－235	
	8	－3．	－W07	．14？	－？－	． 27%	－3Cl	－ 323	．2．73	．254	＊ 4 4＊＊	
O\％	9	－	－ 247	\cdots	－154	－ 2	． 232	． 233	．172	－107		
分	10	－ 530	.020	.274	．122	－16．）	.571	.163	． 112	－59，	－j5E	
	11	－ $5: 5$	＊＊＊ヶ\％＊	． 5.5	－ 2	－$: 105$.120	. .73	． 319	－．030	－．017	
Hy	12	－ 750	． 6.9	0.44	－ 0 ± 3	． 103	． 772	－ 5	－．2．31	－¢\％	－．843	
边	13	－＊6	$-\ldots 2$	$\rightarrow 11$	－－3j3	－．000	－． 332	－．098	－． 234	－． 203		
	14	－	－． $3: 1$	－．715	－．t大う	－1．2： 2	－1．475	－1．730	－． 953	－． 073		
	15	－1：0	－．343	－． 4314	－．c3i	－．52\％	－．848	－1．204	－． 234	－．343		
	15	． 230	－－2：0	－．3．i	－．431	－． 521	－．532	－．390	－． 139	－． 013		
	17	.330	－．icz	－． 41	－．-.9	－．322	－．4i3	－．429	－． 1 ה7	－．23		
	18	－ 3.1	－．Eus	－．121	－iこう	－．231	-2.23	－．i．j 3	－．35\％			
	17	－」	\cdots	－． 53	－．2．3	\cdots	-104	－．213	2.475	－．503		
	23	－706	－0．038	－． 6.6	－4．73	-110	$-.121$	－．187	－． 533	－． 497		
	21	－ 720	－． 364	－．－71	－．， 77	－．003	－． 209	－． 163	$-.612$	$-.477$		
	1	x	$y=. i ;$	$Y=.20 j$	$Y=.9$	$y=.45$	$r=.20$	$Y=. \dot{5}$	$Y=.0 .3$	$Y=.8$	$Y=. \dot{j}$	$y=.93$
	1	20．50	－1．75j	－3．204	－．．77i	－4＊＊＊＊	－i．933	－2． 234	－1．0．3	－．74	－．573	－．234
	2	－ 02 y	－1e8	－2．077	－2．14？	－3．144	－2．231	－1．973	－-354	－－2，	－． 599	－ 5 －${ }^{2}$
	3	－ロ1	－ 3	$\ldots .271$	－1．24	－1．747	-1.723	－i．20	－1．433	－1．0゙う	－． 0.3 l	－．50\％
	4	$\because \therefore 1$	－． 311	－．9\％）	－．4ij	－．tas	$-.107$	－． 11	－．713	－． 770	－553	－． 319
	5	－ 1,0	－．314	$\cdots .043$	－12）	-735	－．7ij	－．734	－．853	－ 5.5	－．437	－ 211
	0	－24	－4＊	$\cdots 1$	－．593	－． 531	$-.573$		－．521	－．117	－．6：3	－．233
	7	－ 236	－0，	$\rightarrow \cdot 93$	－．tir 7	－．477	－．735	－． 400	－．4－3	－．34	－．334	－．2？1
	6	－3．4	－－－ 33	-2.21	－． 391	－． 357	－．423	－． 397	－．2．71	－． 217	－0．53	494447
	9	－ 40	－－30j	44.585		－．230	－．207	－． 271		＊4＊＊＊＊	－ 104	
	10	－ 20	－． 373	－ 4484	－．-77		＋4＊＊＊＊	－0．4．${ }^{\text {a }}$	－＊0ヶ＊	－ c^{\prime} 二2	－．20j	－．231
	11	． $05 i$	＋4＊45	－0．64	－．．ソ5	\cdots	－．117	$-.130$	－． 123	－． 118	－04！	－．がう
	12	－ 7 c	－． 3.3	$-. .71$	$\rightarrow \square$	－．2i i	－．104	－．．．04	－．133	－． 070	－．0も7	－－ 17
	13	－ 20	－．3\％：	$\rightarrow i=1$	－．17\％	－．33）	－．0．7	－\because \％	－03？	－． 19.9	－－ij）	－．1．73
	14	－15	－．3．	． 21	． 675	． 111	．+20	－ 375	－8きj	．730	．02）	－ 718
	15	－W？	－． 347	． 56	－ 30	－ 5×3	－ 7.19	－E5＊	． 636	． 265	．4ij	． 332
	16	－－－－	－－ 411	． 535	－4．4	．434	． 400	－ 401	． 433	－ 505	－3：	－ 52
	17	－30＊i	－．4．2	－6． 74	－2＂：	． 320	．33）	． 331	.321	－＜27	．213	－i 53
	10	－ 310	－．27：	－：？	．153	.172	－ 170	－ 275	． 173	－13）	．123	－6シ0
$\stackrel{\sim}{0}$	19	－550	4 44474	$-.342$	－．13？	－ 3%	． 133	． 116	．1：7	－ise	－ 597	． .348
\bigcirc	20	－ 10%	－． 25 ？	－－ 3 \％	－3］	． 025	.247	－ 452	－ 457	． 050	． 050	． 013
	21	－yue	－． 301	－．-11	－ロッi	－．037	－．032	－．423	－． 015	－．ti 3	－．323	－．1）5：

TABLE A．3．－CONTINUED
kUi；gj avinagio pressjae coifficientis

1	λ	$y=-.85$	$r=-95$	$Y=-.71$	$Y=-$－${ }^{\text {\％}}$	$r=-.40$	$\gamma=-.23$	$Y=-.13$	$y=-00$	$y=2$.	
i	1．30：	－．0．27	－．．17	＊＊＊＊8＊	－． 103	＋＊＊＊＊＊	－． 302	－． 276	－．133	． 220	
2	－J25	． 324	－425	．493	－6ご	－ 540	． 124	． 771	． $6=$ ：	－2゙3	
3	－13\％	－ 2 a －	－ 513	． 373	． 473	－901	． 547	． 531	． 440	－273	
4	． 146	－239	．23）	－${ }^{\text {c }}$ ）	． 347	． 335	． 4.4	4．42	． 355	－ 259	
5	－1̇0	． 19	． 257	．19\％	－ 206	－2 25	．33）	－330	－320	－267	
0	－Stic	－167	． 32	．！3j	－ 13	． 242	． 274	． 252 ．	－ 32	． 212	
7	－2：0	－ 48	－151	．131	－13？	－？ 3	－ 334	． 225	－${ }^{\text {2 }} 3$	－2じ	
8	－3．3	－ 29	－ 02	．1us	．151	－169	－242	． 131	． 173	＊＊＊＊＊＊	
9	－tiou	－： 5	． 14 \％	．7：	． 115	－13）	． 136	． 137	． 135	4＊＊＊＊＊	
10	－ 000	－．061	．33）	．325	－95	－1：1	－115	． 115	． 136	－ 322	
11.	－650	＊＊＊＊＊＊	－ 315	－$\because 2$	－य5	－Jo3	． 674	． 073	－652	． 0 \％	
12	． 706	－． 20 \％	． 114	－ 35	－ 97	.249	－ 5 5	． 33	－ 130	－${ }^{\text {a }} 3$	
13	－93．7	－．034	－．ip）	－．375	－．073	－． 3 j 7	－． 230	－．0．07	－．c．35		
14	－$\because=0$	－． 3.27	－．43．	－． －$^{\text {2 }}$	－．224	－．500	－．77J	－．044	－．ショJ		
15	－109	－． 224	－0．95	－．35）	－． 433	－．44？	－． 542	－． 58.	－． 657		
16	－200	－．147	－．20？	－．231	－． 242	－． 310	－． 363	－．383	－． 333		
17	－sid	－．1．je	－－if	－－33	－ 225	－． $2+4$	－． 253	－． 271	－． 231		
28	－ 30	－．112	－． 131	－．12．	－．154	－．2．4	－． 125	－． 113	＊＊＊4＊＊		
19	－ 0 Or	． 3.4	－．010	－． 042	－．065	－． 070	－． 374	－． 257	－．433		
20	． 750	－．ab：	－．0．3	－．334	－．．257	－． 974	－． 074	－． 043	－．6．4．3		
21	． 9.00	－．．337	－．034	－．042	－．033	－． 940	－．653	－． 229	－．．034		
I	\times	$\mathrm{Y}=.1$ ：	$Y=.25$	$Y=.+3$	$r=.45$	$r=.50$	$r=.3$	$Y=.53$	$Y=.75$	$Y=.85$	$y=.95$
1	0.020	－．003	－．747	－．443	＊＊＊＊＊＊	－． 363	－． 035	－．091	－． 13	－．178	－．1：${ }^{8}$
2	－ 25	． 37%	． 773	－013	． 545	． 444	． 331	． 212	－． 050	－． 323	－． 643
3	－350	． 6.84	．．23\％	－$\% 2$	－345	－310	． 23.4	．154	－． 637	－．2\％0	－．431
4	． 100		，423	－323		$: 217$	－158	－035	－． 6.42	－．140	
5	－isk	－ 37.	． $3+4$	－ 271	－2is	－1．7	－164	－354	－．034	－． 107	－． 171
6	－ 200	． 275	－293	－23 3	－17 7	$\cdot 121$	＊＊＊＊＊＊	． 054	－－60．3	－．0．35	－－：43
7	－ 36	－？	$\because \because 7$	－2is	－122	－ 37	－${ }^{\text {a }}$	． 031	－． 6.34	－． 0.74	－－： 6
8	－30\％	－ 1	$\therefore 97$	－133	． 113	－ y （1）	． 045	． 013	－．033	－．25j	＊＊＊＊＊＊
9	． 400	－ 50	＊＊＊＊＊＊	－134	$\cdots 64$	． 174	－ 314	＊404＊＊	＊4＊64＊	－．034	＊＊＊4＊＊
10	－5cc	．114	＊＊＊＊＊＊	－¢\％	－6＊＊＊＊	＊＊＊＊＊＊	． 114	＊4＊－4＊	－． 021	－． 325	－．032
11	． 0 ± 0	＊＊＊＊＊＊	． 71	－íl	．$\because 4$	． $3: 4$	－． 02	－．832	－．． 20	－00j	． 020
12	． 750	． 009	－023	－0：3	－．615	－． 2 j	－． 317	－．j41	－－615	－053	－ 713
23	－i： 0	－． 242	－． 77	－．104	－．115	－． 137	－．j6；	－． 016	－．031	－． 037	－3）
14.	－9：0	－1．04\％	－．3\％．	－0．t？	－． 547	－． 437	－． 303	－． 214	－013	．215	． 337
25	． 10	－． 743	－． 5 ¢ 7°	－．44；	－． 373	－．Sua	－． 202	－． 158	－．614	－13i	－ $2+4$
15	－ 260	－． 465	－0．0．	－0？ 0	－．233	－ $2 \cdot 17$	－．-53	－．122	－－：19	． 075	－116
17	． 300	－．3i\％	－－くず	－． $6: 1$	－．isi	－．153	－．123	－．13	－－6\％	－ 35	－ 35
18	－ju	-140	－．147	－． 107	－．117	－． 116	－． 383	－．jej	－．6i3	－ 233	．013
19	－54．30	＊＊＊＊＊＊	－． 515	－．$\because 74$	－． 314	－．364	－． 021	－． 042	－．0．9	－ 23	－621
20	． 766	－．204	－． 337	－．0e 7	－． 0.57	－． 352	－． 036	－． 913	－． 037	－02？	－－i
22	－96．	－．ije？	－．．．0＇\％	－． 19 ：	－．931	－． 235	－． 033	－． 033	－． 016	－．333	－． 2.2

TABLE A．3．－CONTINUED
RUA OT AVEZAGED PREJSJRE CUEFFICIENTS

	1	x	$Y=-.85$	$Y=-.35$	$Y=-.7)$	$Y=-b ;$	$\mathrm{Ya-.43}$	$Y=-.23$	$Y=-.10$	Y＝a．Jj	$Y=0$.	
	1	3．0uc	－032	－．：3）	＊＊44＊＊	－． 247		－． 327	－．093	－．445	.272	
	2	－J2う	． 142	．475	－34，	－06ら	． 748	． 653	－937	－0ヶ¢	－ 363	
	3	－ 10	－245	－± 44	．443	.543	． 594	－663	． 713	－605	． 365	
	4	－ 26	－ ¢ $^{\circ}$	$\bullet 3$.	．257	－4．5	－+47	－ 2 Cl	.523	． 499	． 305	
	5	－ 100	－ 1.4	.173	．23．3	． 31.4	． 357	－397	． 430	． 413	． 335	
	6	$\cdots 3$	－ 175	－． 4 ？	．15？	－25	－ 251	－ 241	． 3.7	． 333	． 3 j	
	7	－ 20.	－ 4	－12	．102	． 220	． $2>3$	－ 24.3	－277	－ 237	.273	
	8	－36\％	0.33	．034	－1こう	．171	.230	． 235	． 354	． 246	中＊＊＊＊＊	
	9	． 40	－ 23 $^{\text {a }}$	－． 53	－ 29	$\pm .53$	． 153	－ 28.2	． 173	－152	＊＊＊＊＊＊	
	10	－560	－ 3.3	\cdots	． 067	.127	． 125	． 121	． 154	－ 557	，15？	
	11	－ 5	\＄＊＊＊＊＊	－？ 1	$\because 3$	． 173	－ 3.3	． 102	． 11.	． 104	0.057	
	12	－7 9\％	$-.-22$	－ 17	． 535	－． 25	． 177	． 530	－1） 35	－ 32	． 054	
	13	－460	－．0゙62	－．691	－．675	－．034	－． 343	－． 22	－． 342	－0is		
0	14	－$\cdot 0$	－． 344	－．943	－．547	－．73．	－．023	－．49？	－1．21．3	－．925		
	15	－＋6i	－．237	－．35	－．4i2	－． 52	－．jej	－．063	－．014	－i．17i		
Φ	16	－ 2.1	－． $1=9$	－． 53	－．2i\％	－．3i	－．3き3	－．473	－． 572	－．22）		
82	17	.304	$-.112$	－．－ 5	-2.7	－． 271	－3\％；	－． 31 j	－．320	－． 2.9		
	14	－360	－．111	－－23i	－．115	－． 117	－．：33	－． 179	－． 155	中＊ 4 \％\％		
	19	－020	－．6．6	－0．121	－0．5？	－．634	－． 370	－．i00	－． 292	－． 110		
$\underset{\sim}{0}$	20	． 750	－．0t2	－． 497	－． 26	－．273	－． 342	－．19：2	－． 007	－ijう		
S	21	－ 7 ，	－．64．	－44	$-.040$	－．043	－．035	－．00	－．037	－¢こう		
E	1	x	$Y=.21$	$y=035$	$Y=.4$	$r=.45$	$Y=.20$	$Y=.50$	$Y=.60$	$Y=.75$	$Y=.03$	$Y=.75$
	1	3．．．	－1．737	－-123	－1．583	＋4＊＊＊＊	$-.242$	－．090	－．105	$-2+3$	－． 503	$-.3 \div 8$
	2	－いく口	1.224		1．．if	． 0.7	－ 427	－90．3	$-.417$	一尤ちう	－1．033	－1．02i
	3	.0 .53	－ 72	－\％）	－ 54	． 021	－343	－．こ5？	－． 324	－0．523	－． 727	－．c\％
	4	－ 2 安	－ 5	． 725	．03）	． 412	－． 77	－． 374	－． 23.8	－423	－． 607	－． 415
	5	.150	． 533	－シ	－ 9 4 4	.277	－．）3	－． 5.5	－－ 3 － 3	－．32	－．3う？	－．3ic
	6	－ 3.3	－434	－ 4 ？ 4	－ 315	－171	$\bigcirc \cdot 3 \div 2$	4x＋＊＊4	－． 172	－． 27 \％	－．2．2？	－． 275
	7	－3\％	－ $2=3$	－4；	－ 35	－129	－． 342	－． 237	－． 134	－．234	－． 207	－． 100
	8	－3．3i	－317	－د3	－ $2 \cdot 9$	． 2 CH	－． 234	－． 132	－． 144	－－It 2	－．jos	＊＊＊＊＊＊
	9	－ 40.6	－ 2 i	$424+4{ }^{4}$	－ 27	．117	$-.112$	－．13\％	＊＊＊＊＊＊	4＊＊＊＊＊	－．044	
	10	． 20.5	－ 770	Fricks．	－182		4＊＊＊＊＊	－－j5	＊＊＊4＊4	－．008	－．07）	－． 054
	11	－is 6	＊ $64+44$	\therefore 免？	－ $5:$	－．03？	$-.173$	－0：${ }^{\text {－}}$	－－185	－ 25	－． 317	－． 231
	12	－70）	－12	$0 \cdot 3$	－．u．j	－．131	－．105	－． 102	－．U70	．1．35	－213	－0i34
	± 3	－+3	－10．	－．：3］	－．13）	－． 10.5	－．215	－－Eúa	－aide	－．235	－．143	－． 341
	14	－ 5	－－． 6.54	－1．44	$-1.3+1$	－1．993	－．014	－i 9 ？	． 137	． 4.9	． 519	－3i？
	15	$\because \therefore$	－3．6．1．	－-1.7	－．5．	－．0）${ }^{\text {（\％）}}$	－． 614	－．18j	．010	－241	－ 4 L	． 304
	10	－Cbe	-295	－ 0.5	－03\％	－．73？	－． 254	－． 4.	－0．32	－+7	．235	－ 200
	17	－ 140	-440	－．443	－．354	－． 240	－． 20 －	－．120	－0．34	-38	－143	．1）7
	18	－56	－．？ 3	－23，	－． 241	－． 1.37	－． 122	－． $29: 3$	－．053	－ 34	－Oto	． 038
	19	－ 0.00	4ta＊＊＊	－．： 43	－．13\％	－． 117	－． 379	－． 374	－．553	$\therefore \therefore$	－5 4	－ 277
0	（1）	－Tin	－$\quad \therefore 2$	$\cdots: 1$	－．111	－．11？	－．112	－．304	－． $07+$	$\cdots \cdots$	－023	－． 312
L	21	． 700	$-.38$		－． 144	－．119	－． 117	－．113	－．0）\ddagger	$\because \%$	－．040	－．ubl

TABLE A.3.- CONTINUED
BUY O G VENGGED PRESSJRE CUEFFLCIENTS

TABLE A.3.- CONTINUED
REY 7 ; AJEスAGED PRESSURE CDEFFICIENTS

TABLE A．3．－CONTINUED

I	χ	$Y=-.97$	$Y=-0.35$	$Y=-7 ;$	$Y=-$－．	$Y=-.40$	$Y=-25$	$Y=-1 J$	Y＝－． 36	$Y=0$.	
1	9．530	－．332	－ 517	＊ 4 和4＊	－．320	＊＊4＊炜	－． 559	－．944	－1．256	－． 281	
2	． 025	－．024	-2.102	－1．392	-1.302	-1.307	－2．357	－7．4．16	－1．3．36	－． 303	
3	－ 15	－．536	－． 749	－．14．	－．97\％	－1．014	－i．v03	－1．033	1．539	－． 3 ± 7	
4	． 100	－． 3 E．t	－． 227	－．1233	－．632	－．055	－．t． 81	－．07J	－． 248	－． 304	
5	－1－0	－．273	－．34．	－． 403	－． 545	－．543	－． 273	－． 433	－． 414	－．3ij	
6	－L＇心	－．214	－．30	－．432	－． 424	－． 450	－． 429	－．33\％	－．34．3	－． 273	
7	． 250	－． 193	－． 275	－．33）	－． 33 ？	－．343	－． 3 －	－．342	－．31！	－． 257	
d	－ 36	－． 177	－． 217	－． 247	－．2ej	－．2\％	－． 284	－． 274	－． 253	－＋＊＊＊＊	
9	－4，	－．：79	－．15？	－－ 4 \％	\rightarrow－icij	－．1：5	－．（1）	－．193	－102		
10	－ 200	－．031	－． 22.2	－．22！	－．177	－． 302	－． 173	－． 164	－． 254	－． 148	
11	－ 530	＊＊＊＊＊＊	－．．jei	－． 243	－． 112	－．111	－． 105	－． 073	－． 075	－．04\％	
12	． 780	－．014	－．354	－．isd	－． 1343	－． 132	－． 453	－．643	－． 251	－．25	
15	． 900	－．0：7	－．043	－．87）	－．144	－．074	－．079	－．．65	－．0？j		
14	－030	－+11	． 0%	． 573	． 713	． 707	． 734	． 750	． 630		
15	－ 168	－32：	．49\％	－¢3）	． 549	－333	． 371	－614	． 698		
20	． 2 ？0	． 2 Ec	－3， 3	． 354	． 309	． 390	． 380	． 397	． 450		
17	－ 3 CL	－ 23	1：3	． 2.51	． 35%	． 285	－ 38	－312	． 335		
16	． 500	．07e	． 515	.173	－19\％	$.1 \geqslant 7$	． 185	．14\％	44＊4＊		
19	－＇ら入	－193	－	．13j	． $14{ }^{\circ}$	－1シ0	． 145	． 135	．134		
20	－7er	－．${ }^{-5}$	． 440	－！¢ 3	－11？	－ 218	． 105	${ }^{4} 073$	． 049		
21	－ 9.9	－． 045	－．019	． 014	． 031	． 333	． 035	－． 017	－．3．5		
I	x	$\gamma=.10$	$y=.25$	$y=.10$	$y=.43$	$Y=.50$	$r=.55$	$y=.30$	$Y=.75$	$Y=.85$	$\gamma=.85$
1	0.300	－． 721	－．711	－．911	＊＊＊＊＊＊	－． 630	－． 613	－． 537	－．455	－． 403	－．235
2	－」2	－1．4：4	－－．252	－1．13i	-1.335	－1．314	－1．935	－1．344	－1．214	－1．04i	－．813
3	－ $3=0$	－1．203	－． 990	－．75j	－．751	－－ $3: 2$	－． 595	－． 214	－．355	－．75	－．533
4	． 100	－．0co	－． 775	－．745	－． 749	－． $7 \geq 1$	－． 694	－． 647	一－5yi	－． 341	－． 329
5	－in	－． 400	－．4．4：	－．j．2	－． 512	－．533	－． 514	－．5i3	－．452	$-.370$	－． 251
6	.200	－． 397	－．j4s	－．303	－．342	－． $39 n$	＊＊＊＊＊＊	－．37）	－． 3.15	－． 320	－． 234
7	－ 3 2ir	－． 206	－．24？	－．341	－．342	－．332	－． 317	－．3i5	－． 274	－． 273	－ヵジ
8	－ 310	－． $26 . \mathrm{J}$	－．3：3	－． 2.57	－． 27 ！	－．2：4	－．272	－． 305	－． 235	－．21i	＊＊＊＊＊＊
9	－4：10	－．143		－203	－．2i1	－¢＋＋	－．18\％	＊ 4 ＊＊${ }^{\text {a }}$＊	4＊＊4＊＊	－．118	＊＊＊＊＊＊
10	－ $5 \cdot 6$	－．17\％	＊ 4.447	－．1．1	＊\＃＋${ }_{\text {－}}$	＊＊＊＊＊＊	－． 165	＊＊＊＊＊＊	－．I3j．	－． 127	－． 370
11	． 590	4＊＊＊＊	－．097	－．13i	－． 109	－．．78	－．693	－．072	－． 174	－． 507	－． 43
12	－ 706	－．004	$-.157$	－． 012	－． 063	－． 253	－1」とう	－． 253	－-45	－0．j3	－．344
13	－ 40	－0．02	－． 73	－．ivj	－． 305	－． 362	－．083	－． 073	－． 072	－． 363	－． 3.7
14	，30	． 792	． 711	－¢ 3	． 7 i ！	．7．j	． 723	－69）	． 635	．573	． 450
15	－ 60	． 022	－： 23	． 215	－501	－530	． 48	． 543	－ 545	． 473	． 317
16	$\cdots 30$	． 4.1 －	． 397	． 375	－3．7	． 373	． 363	－ 348	． 323	－297	． 238
17	． 360	－364	－3i	． 277	－ 23%	－298	． 277	－ 307	－ 245	－ 2 ： 3	－ 127
18	－ 50	． 172	．19．）	． 134	－135	． 192	.175	－103	．140	－： 14	－ 027
19	－ 3 －		－ 2 ？	－．-17	－143	－142	． 138	－12．	． 113	－097	．931
2 C	． 700	．67	． 101	． 125	－ 163	．132	． 355	． 238	－． 79	．003	－623
21	－Sbil	－0．028	－． 34	－1！	－${ }^{\text {？}}$	． 225	－020	．02\％	－．003	－．92？	－． 342

TABLE A．3．－CONTINUED
FUN 72 AVEZAGEO PAESSUAE GUEFFIEIEATS

	1	＊	$Y \mathrm{x}=. \dot{y}$	$Y=-.73$	$Y=-.7)$	$Y=-5$	$Y=-417$	Ya－．25	$Y \mathrm{x}=.13$	$Y=-.06$	$r=2$.	
	1	3.000	－．924	－5．${ }^{\text {－}}$	＊＊＊＊＊＊	－-731	＊4＊＊＊＊	－1．733	－1．993	－2．830	－． 207	
	2	－02）	－1．317	－j．tij	－ 5.197	－2．229	－2．128	－2．384	-2.423	－2．256	$- \pm \pm 7$	
	3	－2\％	－．374	－1．704	－1．4：3	-1.703	－1．701	－1．498	－1．444	－1．201	－．59\％	
	4	－ 16	－．58？	－．757	－．94i	－．913	－． 2.794	－．442	－．853	－． 623	－． 570	
	5	． 150	－．4is	－．-97	－．721	－．7i．	－． 775	－． 732	－． 727	－．t37	－．5y	
	6	－己心	－． 243	－．453	－．5il	－．507	－． 51.4	－． 50 L	-571	－． 514	－． 424	
	7	－255	－． 246	－． 277	$-.7+1$	－． 4 as	$\cdots+472$	－． 433	－． 471	－． 437	－．37．	
	a	－ 300	－．192	－． 293	－．350	－． 355	-335	－ 98	－． 371	$-.3+2$	7444＊＊	
	9		－．145	－．2．2	－．2̇3	－．277	－． 274	－． 232	－． 263	－． 2.7	＊＊ $4+30$	
	10	－ 510	－． 1.36	－． 167	-2.20	－． 222	－．220	－． 217	－．i9j	－．192	－．203	
	12	－ 020	＊＊＊＊＊＊	－．35	－．1．3	－129	－． 120	－．107	－． 351	－－－2	－． 124	
	12	.160	－．0．49	－．-7	－．12．	－．939	－． 133	－． 31	－． $3 \geq 7$	－．0．9	－． 087	
	13	－ 300	－． 392	－． 333	－． 3 E －	－． 275	－． 301	－．j38	－． 553	－． 540		
10\％	14	－ 50	． 564	－332	． 95	.453	． 963	－ 458	1．017	1.074		
05	15	.160	． 493	－＝90	－ 743	． 76.	－ 755	． 772	－37\％	－ 835		
		．2：3	－293	．433	－ 478	． 533	． 238	－ 537	． 562	－6i3		
\bigcirc	17		－2ij	.317	． 377	－35．	－¢1	－ 423	． 442	． 437		
P	10	－ 30	－110	.177	－235	－ 243	－ 252	－ 253	－こう	＊4＊＊＊＊		
	19	－530	．1274	－ 221	． 367	－ 177	． 180	． 177	．167	－143		
$\geq \square$	20	． 700	－004	，59	－ 22%	－ 312	\cdots	． 187	163 -023	．653		
E	21	－ 71%	－0322	－－Uv	． 215	． 233	． 503	－ 507	－．123	－． 527		
C	1	X	$y=.10$	$Y=.23$	$Y=.45$	$\gamma=.43$	$r=.50$	$Y=.53$	Y＝－6）	$Y=.75$	$Y=.85$	$p=.75$
	1	）．	－2．451	－－	－E．23	－ 4 \＄ 4×4	－i．4：7	－i， 300	-2.343	－10972	－－－0．0j	－6．30
	\dot{L}	－Jet	－2．272	－-j －	－2．1！	－－5ib	－2．138	－2．111	－2．087	－1．65i	－1．うら3	－1．232
	3	－ 250	－1．731	－1．703	-1.747	－2．573	－i．720	－-243	－1．71）	－1．4：3	－1．317	-1352
	4	－ilc	－．7da	－．963	－．4i）	－． 357	－． 248	－． 340	－．75	－．723	－．77\％	－． 570
	5	.200	－． 75.4	－．75\％	－．ti？	－．7：j	－．725	－．713	－． 1.3	－．014	－E53	$=.432$
	6	． 200	－．jil	－，－i 5	－ 3 ，	－．7b8	－0＇3？	＊＊＊＊＊＊	－．357	－．4）2	－－783	－．333
	7	－ 20	－．3t	－＋ict	－．4ij	－． 434	－ 907	－．405	－． 473	－．415	－． 372	－．237
	8	－ 3 －	－．373	－+ ？	－．4i＝	－．37．	$\sim .4105$	－．-340	－． 396	－．332	－ 327	＊＊4＊＊
	9	－tic	－．2ej	＊＊＊＊＊＊		－． 271	－． 273	－ 205	＊＊＊＊＊＊	＊＊＊＊＊＊	－．14？	＊＊＊＊＊＊
	13	－jl	－．2？	4 4 $4+4$	－3－	＋6004\％	4444＊＊	－． 214		－． 199	－． 172	－．131
	11	－30	－4，4＊＊	－． 5.17	－－－ 2	－011	－．11E	－${ }^{\text {a }}$－ 3	－．1） 3	－ 590	－． 577	－． 074
	12	－7\％0	－．040	－．644	－． 254	－．553	－． .140	－．33．	－．．35	－． 237	－． 543	－．094
	13	－9：3	－．1557	－¢	－．－5	－．j5i	－． 253	－． 353	－． 254	－．052	－． 063	－．037
	14	－ 0 －	1.044	． 977	． 9.6	．76？	－749	． 74.4	． 951	－ 9.0	－5：3	－5：3
	25	$\because \because$	－CCS	． 773	－134	． $70 ?$	－79？	－ 730	． 752	－7i	－5， 3	－53
	16	－	－ 245	－243	－5 5	－ 225	－ 321	－ 540	． 517	－455	．432	－325
	17	－ 360	－4．4	－417	－4 5	－450	－4．3	－422	327 .332	－35\％	－ 315	． 221
	18	－ 50	． 261	．243	． 24.5	－？$=$	． 243	． 244	－232	－235	－120	－ 124
	19		＋4＊＊＊＊	－ 23	.178	－17：	． 167	－ 174	－ 5	－ 32	－12j	． 073
\bigcirc	20	． 750	．0¢5	－033	． 673	．097	． 374	－493	－ 0 ¢	－630	． 375	－1320
	21	.900	－．022	－いこう	－．02？	． 327	.015	． 017	－512	． 221	－．322	－．023

TABLE A．3．－CONTINUED

I	x	$Y=-.95$	$Y=-.3 j$	$Y=-7.7$	$Y=-$－J	$y=-.41$	$Y=-.25$	$Y=-n 10$	$Y=-20$	Y $=0$.	
1	J．0．30	－1．130	－1．73？		－2．1．7	＊＊＊＊＊＊	－－． 6.74	－3．565	－3．43t	－． 221	
2	． 225	－1．453	－10．939	－2．455	－2．453	－？．i4t	－2．747	－2．531	－2．172	－．7d7	
3	－ 55	－1．940	－1．443	－1．4：7	－2．335	－2．277	－1．004	－1．627	－1．3う年	－． 733	
4	－$\because 6$	－．t？ 4	－．37；	－：．127	－-9.9	－i．${ }^{\text {－}}$ j	－1．079	－1．077	－．930	－．53i	
5	－150	－． 439	－．061	－．793	－． 314	－． 339	－．03\％	－．303	－．67\％	－． 551	
6	－2ji	－． 25	－．-11	－．6．77		－． 559	$\rightarrow .86$	－．t3j	－．5；2	－． 471	
7	－ 29	－．290	－． 425	－．473	－． $5 \geq 3$	－．53j	－． 223	－．j＂？	－．400	－．4．35	
a	－ 30	－．27\％	－．323	－．38）	－．41\％	$\sim .423$	－． 424	－． 391	－． $3=1$		
9	．430	－．ios	－－23\％	－． 277	－．297	－．291	－． 299	－． 272	－． 256	＊＊＊＊＊	
16		－．1上1	－． 175	－．213	－．230	－． 230	－． 221	－． .197	－．179	－．${ }^{\text {\％}}$	
12	－130	－＊＊＊が	－． 31	－．－34	－．112	－． 110	－． 103	－． 367	－－¢ ？	－． 231	
12	－750	－．205	－．113	－． 317	－． 221	－．127	－． 6.21	－0．324	－．033	－．295	
13	． 9 Uu	－． 102	－．37	－．0it	－．074	－．701	－．0．347	－．1193	－． 577		
14	－ぶう	． 76.	．423	1．033	2．337	－． 2 こ	2．034	1.293	1.135		
15	－ 100	－ 546	－72j	． 136	．923	． 319	． 843	．871	．555		
16	－ 2.8	－ 33	．472	－¢	． 58	． 585	． 534	． 315	－67		
17	－ 3 F．	－ 22 I	－ 515	－4i	． 433	－475	－4ジ	．495	． 437		
10	． 500	． 121	－203	.247	． 27 ，	． 271	． 272	．こら）	＊ 4 4＊＊＊		
19	－${ }^{\text {b }}$	－ 635	－141	.273	．185	.129	． 193	． 132	－ 253		
20	． 73.	－ 30	－ご1	． 0.35	．39	． 394	． 261	．653	－E゙j		
21	－H6，	－．c34	－．011	．034	． 320	－Juy	－．669	－． 245	－．194		
I	x	$\gamma=.10$	$Y=.25$	$Y=.43$	$Y=.45$	$Y=.50$	$t=.55$	$Y=.57$	$Y=.75$	$Y=.83$	$y=.75$
	3.6	－1．7e7	－2．975	－2．014	＊＊＊4＊＊	－1．739	-1.003	－2．b4i	－2． 51.6	－¢0，	$\rightarrow .773$
2	－¢2\％	－ 2.48	－ci．：7？	－i．4．；	－3．39\％	－2．456	－2．415	－2．453	-2.6030	－2．73）	－1．410
3	． 350	－1．737	－，＋6：	－．．97\％	－1．73）	－1．734	－1．975	－！．003	－-746	－2．207	－．9．12
4	－1．ju	－1．6ic	－1．09？	－．tidy	－1．092	－1．075	-1.056	－1．229	－．674	－．305	－． 345
5	－ 150	－－dy	－004	－．3：3	－ 314	-9.9	－0．312	－．773	－． 710	－．b27	－． 533
0	－ 200	－0ict	－．-47	$\cdots 6.7$	－6i？	－． $0^{4} 4$	＊＊＊＊＊＊	－． 013	－ッジう	－aty	－． 337
7	－ 35.	－． 334	－ 0.14 ）	－－j 3		－．534	－． 213	－．510	－．40：	$-.407$	－． 275
ξ	－ 31	－ 589	－．tis	－． 434	－ 4.4	－．445	－．+3 \％	－． 435	－．354	－． 342	4＊＊＊＊＊
9	－ 6	－． 275		－．273	－． 284	－．27）	－． 284		＊＊＊＊＊＊	－．212	＊＊＊＊＊
10	－¢0，	－－$=19$	4．4＊4＊	－．${ }^{3} 7$	＊＊＊＊＊	¢4＊＊＊	－． 223		－．2i	－．isj	－． 1.0
11	－ 0 －	＊ 0 ¢禹	－．： 5	$\rightarrow-\therefore 1$	－．1：2	$=112$	－．12d	－．134	－． 210	－． 385	－． 114
12	－ 730	－．043	－． 045	－．04i	－． 743	－． 314	－． 231	－． $0: 8$	－．035	－．30y	－－ 13 j
13	－ $7 \cdot 3$	－． 56	－．．5y	－．357		－． 355	－0．59	－．953	－．C4\％	－． 201	－．031
14	． 050	1.070	1．0．1	？． 217	1．72．	1．204	－．165	． 99.3	－प35	－ 3 5\％	． 737
15	－$\because 2$	－9＇：	－329	． 795	－8．3	． 331	－ 805	． 432	． $7+1$	．72）	－500
16	－20	－ 4 4	－ 5.4	－547	． 573	－دdこ	． 073	－562	－515	－47）	． 334
17	－309	－4．3	－451	． 447	－ 275	－ 41	． 447	－421	－ 275	－3ッ3	－227
18	－5．J	．282	． 277	． 272	． $27 ?$	． 272	－263	． 235	－229	－ $2+7$	． 110
19	． 650		．275	．172	－ 5 9	.187	－ 183	． 253	．105	． 133	． 203
20	． 73.	－t¢ez	．00\％	． 07%	． 294	． 5.5	． 095	． 097	－63c	． 375	． 323
21	． 4.2	－．035	－．33	－．835	． 512	.009	． 011	.007	－．034	－． 007	－．02d

I	x	$Y=-.95$	$Y=-.35$	$Y=-.7$ ：	$r=-5.5$	$Y=-.40$	$Y=-$ Ej	$Y=-.13$	$Y=-.25$	$Y=0$.	
							\vdots				
1	J．020	－1．372	－1．973	＊＊＊＊4＊	－2．43）		－？．3td	－2．919	－3．63	－．156	
2	－こご	－1．3i？	－2．？ 37	－2．732	－2．311	－2．357	－1．704	－2．727	－2．2？	－．347	
3	－$\because=$	－－\＃5	－． 5	－i．2＋8	－1．302	－8．923	－1．705	－2．77i	－2．501	－．793	
4	－deu	－．374	－．i4	－1．223	－1．16\％	－：．277	－i． E！$^{\text {a }}$	－：．33	－．98：	－． 077	
5	． 120	－．43．1	－． 78	－．34：	－．877	－．300	－．89）	－．842	－． 712	－．570	
6	－ 2 cos	－． 364	－．337	－．035	－． 310	－． 711	－． 67.7	－．545	－． 507	－．4yl	
7	． 250	－． 312	－． 4.49	－． 53.3	－． 504	－． 573	－． 352	－． 515	－．409	－．42i	
8	． 300	－． 24 ？	－． 245	－．+ ：	－．444	－．432	－．443	－．3．37	－． $3 \cdot 60$	－＋4\％＊	
9	－ 400	－．－¢ 3	－． 34.3	－，\％i？	－． 30.3	－． 3.8	－．3．4？	－． 247	－． 229	＋04＊＊＊	
10	－ 36	\rightarrow－isi	－．1．3	－．217	－．23j	－．232	－． 217	－．55：	－－243	－．2うう	
11	－ 520		－．9）	－．$\because 17$	－． $2: 9$	－．1：0	－．094	－．05？	－．104	－． 131	
12	－700	－．073	－．332	－．311	－．：	－． 123	－．．i23	－． 073	－．i－？	－．113	
13	． 7.0	－． 1.36	－．${ }^{4} \mathrm{j}$	－．65\％	－． 3 j	－． 176	\cdots	－． 105	－．17j		
14	.000	． 334	－ 78		3.173	2.193	－．183	1.127	1184		
15	－1． 1	－ 095	． 701	． 8.5	．37）	．831	． 895	－． 957	1．：こう		
16	－2．0	－2コ」	－ $\mathrm{S}^{\text {j }}$	． 373	－5！3	－ $\mathrm{c}^{\text {ç }}$	． 036	－655	． 733		
17	－ 300	－2こ」	． 303	．44？	． 474	－ 4.5	－494	． 515	－515		
16	－\＃ic	－ 22 ¢	0.10	． $2 \pm$－	． 285	－342	． 285	． 293	＊＊＊47＊		
14	． 6.0	． 389	－ 24	－${ }^{94}$	－ 37	－2．7	－139	.133	．159		
2.5	． 720	－．002	． 154	． 134	－コン	． 339	－ 07.3	.1347	－ 137		
21	－72ij	－ 257	－ E	$-.115$	－ 303	－3．30	－． 221	－． 054	$-.0 .1$		
1	x	$y=0 \cdot$	$Y=.25$	$Y=.40$	$Y=.45$	$y=.50$	$r=.55$	$Y=.53$	$\gamma=.75$	$Y=.3 j$	$y=.73$
							．				
1	3．350	-2.264	－2．47）		＊＊＊＊＊＊＊	－3．33	－1．495	－－ 93.3	－1．734	－1．50）	－．940
2	－ 025	－2．042	－2．161	－2．7．7	－2．340	－2．753	－2．64；	－2．533	－2．343	－2．2：4	－5．51？
3	－ 37	-1.835	－：．977	－E．3？	－2．：$: 7$	－2．115	－2．221	－2．359	－2．209	－1．7is	－1．100
4	． 16	－1．102	－ 2.3	－1．13i	-1.132	$-1.16 .3$	-2.27	－i．iqj	－1．3？	－．95	－． 0.59
5	－123	－044：	－勺－	－．43	－．+0 ？	－． 344	－． 87.3	－ $6=5$	－． 776	－．64．3	－．4i2
6	－ 20	－．047	－． 050	－7： 1	－． 0 ¢\％	－．j1	＊＋＋＋＊\％\％	－．cst	－．627	－．546	－．307
7	－200	－．549	－．273	－． 274	－． 572	－．57）	－．563	－．53j	－．475	－．4．j	－．j3
8	－3t	－．354	－．4．3	－． 434	－． 40.7	－． 413	－．483	－．454	－． 427	－．372	＊＋4＊＊＊
9	$.400^{\circ}$	－． 260	$4+4+4 *$	－．1！	-30%	$-3: 2$	－－${ }^{\text {a }} 7$	＊＊＊	＊4＊4＊＊	－ 2 1\％	－4＊＊4
16	． 50	－． 176	＊＊＊＊＊	$-.24 i$	4＊＊＊＊＊	＊＊＊＊4＊	－－35	＊ 4 ＊＊＊＊＊	－．2¢． 3	－． 245	－ 10 ：
11	． 651	＊4＋4＊＊	－． $2!$ ？	－． 21	－111：	－．115	－．16．	－ 103	－．053	－． 045	－．114
12	． 700	－．254	－ －$^{\text {\％}}$	－． 43	－．．844	－．234	－＊3）	－． 243	－．031	－．037	－．3i0
13	.920	－． 15	$\cdots .75$	$-.36$	－． 0.33	－． $5=3$	－．-361	－．055	－059？	－．0ic	－． 279
14	－55	1．23－	：．1．4j	$\therefore 03$	1．475	\therefore ． 03	2． 259	－． 41	．697	． 325	． 751
15	． 160	． 948	． 377	．314	－87？	． 333	－ 347	． 875	－54：	． 777	－303
10	－2．j	．0．77	． 642	－63．	－ 5 く	．633	－ 22.7	.604	－5j」	－5－3	－360
17	． 360	． 5.34	－100	－43	.483	，400	－ 474	． 455	． 434	． 377	－223
18	－ 56	． 305	－ 29	． 273	． 295	． 235	． 284	． 275	． 251	－2？	－122
19	－	4＊：4y 4	－ $3: 7$	． $2:-$	－2\％	.158	． 194	． 293	． 173	－145	－2す0
20	． 7 －s	．in ${ }^{\text {a }}$	．-97	． 159	－153	－$\because 8$	－ 390	． 78%	．675	． 075	． 021
21	.706	－055	－0．4：	－03\％	． 314	． 212	－U67	－． 2.21	－． 0.08	－． 213	－．030

TABLE A. 4. - STANDARD DEVIATYONS FOR PESSURE COEFFICIENTS
run 50 standard deviatiuns

THE MAX STANDARD DEVIATION IS $\quad 15$ UCCURRING AT $I=1$ AND $=1=8$.

TABIE A．4．－CONTINUED

	I	χ	$Y=-.95$	$y=-.85$	Y－－ 77	$Y=-50$	$Y=-.40$	$Y=-.25$	$Y=0.10$	$Y=-.06$	$Y=0$.	
	1	0.000	． 040	－ 63	＊＊＊＊＊＊	． 056	＊＊＊＊4＊	． 025	． 133	． 115	－003	
	2	－025	． 022	． 043	． 051	.077	． 125	． 100	．013	． 522	－218	
	3	－ 550	． 026	． 355	．058	.073	.116	． 359	.044	.075	．015	
	4	.100	． 023	． 018	． 034	． 014	． 025	． 012	.014	－ 613	． 0.5	
	5	． 150	0.09	． 012	． 007	． 015	． 010	． 012	． 010	． 015	． 0.07	
\％0	6	－ 280	.0009	．01\％	－031	.009	． 012	． 011	． 009	.013	． 005	
\＃	7	． 250	． 002	.005	． 203	． 313	． 700	－604	． 023	．012	.306	
凹每	8	． 300	.005	－003	－006́	.009	． 010	.002	． 210	－ CO 7		
81	9	． 400	． 034	－035	．093	0.304	． 343	－3ij	． 013	． 020	＊＊＊＊す＊	
	10	－ 500	－005	． 0.02	． 004	.004	.204	－609	． 019	－020	－ 366	
E	11	． 650	＊＊＊＊＊＊	.002	． 002	． 004	． 209	． 005	． 007	－C14	． 005	
0	12	.760	． 004	． 003	.204	.033	． 004	.005	． 023	． 019	.003	
	13	.900	． 004	.002	． 003	． 005	.005	.013	． 018	.018		
家	14	． 050	． 014	．065	－ 018	． 228	.037	． 010	－005	.0 .03		
F回	15	.100	． 017	． 014	.007	． 337	． 314	． $0: 1$	． 909	． 012		
F－r	16	.200	.022	． 009	．0：0	． 012	． 311	.307	． 010	－cy 7		
\cdots	17	． 300	.004	.006	． 004	． 005	． 012	－ 210	.008	.004		
	18	． 500	． 003	.006	.001	． 003	． 205	－303	.002	＋＊＊＊＊＊＊		
	19	． 650	.304	． 004	.005	． 004	． 003	.001	.003	－ 003		
	20	.780	．001	－032	.233	． 0.03	． 063	． 004	． 005	.010		
	21	.900	． 001	.002	．00？	.004	.0305	.306	． 0.36	－6Jy		
	1	x	$r=.10$	$Y=.25$	$\gamma=.40$	$Y=.45$	$y=.50$	$Y=.55$	$Y=.60$	$y=.75$	$i=.85$	$Y=.95$
	1	0.000	． 079	.105	． 350	＊＊＊＊＊＊	． 056	． 031	.187	.097		．035
	2	． 0.025	． 633	.090	． 461	$.026$	． 078	． 131	.077	． 036	． 097	． 054
	3	． 050	.053	.049	． 014	． 052	． 935	.041	． 342	－ 049	． 037	． 036.
	4	． 100	． 019	.017	． 034	.022	． 034	． 020	． 37.5	． 026	－015	．0．34
	5	.150	． 013	.319	． 015	.016	.018	． 015	.009	． 012	． 015	.017
	0	－200	． 004	． 0.76	． 219	． 213	.014	＋4＊）	． 020	． 023	－012	． 216
	7	． 250	.016	． 011	.005	． 005	． 005	． 000	． 011	． 600	－017	－035
	8	$.30 \%$.013	.306	． 104	． 096	． 006	． 010	． 038	.010	． 003	$\psi * * * * *$
	9	． 400	． 005	－4＊＊＊＊	.1004	.036	.232	． 003	－ $4 \times 4 \times 4$	＊＊＊＊＊＊	.002	＊＊＊＊＊＊
	10	． 500	.012	\＃ 4 ＊＊＊＊	.093	＊＊＊＊＊＊	＊＊＊＊＊	． 004	＊＊＊＊＊＊	．002	－ 102	．002
	11	． 650	＊4t＊＊＊	． 004	． 002	． 003	．004	． 002	． 004	． 002	． 002	． 003
	12	． 780	.023	.003	.003	． 0234	－303	．003	.093	． 022	－002	． 002
	13	－ 960	.004	－005	． 054	． 003	－022	． 003	． 373	－ 022	－0．1	－ju2
	14	－0350	． 012	－205	．014	－ 207	． 010	． 016	． 007	． 012	： .021	． 319
	15	.100	． 011	． 319	．011．	． 025	.305	． 010	． 012	． 615	． 227	．027
	16	.200	.012	.002	.011	． 0000	． 009	． 012	． 021	． 007	． 023	． 096
	17	． 300	.006	－ 20	． 314	． 0198	－ 0.7	． 009.	． 006	． 004	． 008	． 005
	18	.500	，005	.005	－005	． 003	． 002	． 003	． 0173	． 002	． 008	.336
	19	． 650	＊＊＊＊＊＊	－1003	.057	.003	． 004	． 005	． 004	． 005	． 002	－031
	20	． 780	－007	． 003	．0．03	． 003	． 253	．003	． 001	． 003	$.002$	$.032$
	＋21．	.900	.009	． 004	． 002	． 002	.003	． 001	． 002	.004	. .304	． 023
	THE	STANO	D OEVIAT	N IS	5 OCCURR	G ATI＝	AND J	2.				

TABLE A．4．－CONTINUED
RUN 53 STANDARD DEVIATIONS

I	x	$y=-.95$	$y=-.85$	$Y=-.70$	$\gamma=-.50$	$\gamma=-.40$	$Y=-.25$	$Y=-10$	$Y=-.06$	$y=0$.	
1	0.000	． 031	． 024	＊＊＊＊＊＊	.061	＊＊＊＊＊＊	． 060	.112	． 102	． 014	
2	． 025	． 033	.037	． 345	．034	． 044	． 033	． 026	． 029	－318	
3	.050	.020	． 223	． 027	． 042	． 031	． 044	． 025	． 025	.017	
4	.100	.016	． 234	－03）	． 024	． 324	－624	． 015	－C22	.015	
5	． 150	． 017	． 020	． 022	． 014	． 022	－022	． 025	－6il	．015	
6	－ 200	.012	． 214	． 017	． 021	.1016	． 020	． 014	． 014	－ 012	
7	． 250	．014	． 015	.017	． 027	． 216	． 314	． 012	.012	． 0.03	
8	． 300	． 010	． 009	.014	.011	.014	． 01 ？	． 015	． 012	＊$\# 4 *$＊	
9	.400	.006	.005	－01？	． 012	． 312	． 006	.007	． 009	＊＊＊＊＊＊	
10	． 500	． 006	． 009	． 093	.013	． 020	－ C C8	． 307	．036	－035	
11	． 650	＊＊＊＊＊＊	． 011	.010	． 010	． 010	.005	.005	．037	． 056	
12	． 780	． 004	.003	． 305	． 205	． 0.7	． 006	． 233	． 033	． 800	
13	． 900	．0c3	.005	． 006	． 008	． 008	－006	． 003	． 054		
14	.050	． 038	． 053	． 503	． 052	.058	． 075	．05？	． 030		
15	.100	． 020	． 037	.025	． 038	． 044	． 048	． 063	． 054		
16	－ 200	.014	． 020	． 025	.027	.042	－020	.025	． 031		
17	． 300	.005	． 015	．0． 25	． 020	． 016	． 010	． 023	． 010		
18.	． 500	． 005	． 007	． 012	.010	.012	． 009	.006	＊＊＊＊＊＊		
19	.650	.006	． 007	． 20.7	.008	.010	． 008	． 033	． 003		
20	.780	． 005	． 1003	． 000	.0 .36	． 008	． 008	． 023	． 0000		
21	． 9 CO	． 003	． 004	． 003	． 003	.306	． 006	． 009	． 03.7		
1	x	$y=.10$	$Y=.25$	$Y=.40$	$Y=.45$	$Y=.50$	$Y=.55$	$y=.80$	$Y=.75$	$Y=.85$	$Y=.85$
	0.000	． 109	－ 314	－ 308	＊＊＊＊＊＊	.220	.129	－ 330	．085		
2	． 325	． 027	． 039	.027	． 071	.125	． 191	． 133	． 052	.047	． 042
3	． 050	． 022	． 036	.027	.364	． 138	.191	． 167	．0．079	． 046	． 030
4	.100	． 019	.019	． 225	． 107	.137	.102	．062	． .042	． 023	．033
5	． 150	．01． 5	．017	． 021	． 104	． 137	.105	－ 023	.033	． 022	． 024
6	． 200	.012	.013	．013	． 078	． 082	＊＊＊＊＊＊	． 317	． 026	． 015	．018
7	－ 250	． 010	.015	.020	． 077	.096	． 084	.023	． 018	－013	． 098
8	.300	． 009	.313	． 029	． 051	． 289	.096	． 021	． 014	． 211	＊＊＊＊が
9	.400	． 000	＊＊＊＊＊＊	． 016	． 252	． 098	． 077	＊44＊＊＊	＊＊＊＊＊	－607	
10	． 500	． 009	＊＊＊＊＊＊	． 211	＊＊＊＊＊＊	＊＊＊＊＊＊	． 089	＊＊＊＊＊＊	－i13	－らう9	．0．36
11	－ 5 －	＋＊＊＊＊＊	－315	－！5	． 035	． 1561	．1109	． 535	－ 293	． 007	． 0.97
12	． 780	． 009	． 325	． 031	． 031	． 347	－063	． 393	－610	－3： 7	－ 25
13	．9JC	． 014	． 045	－130	． 027	.042	． 054	． 065	． 005	． 607	．035
14	.050	．035	． 321	－535	.417	－ 1 ć5	． 112	． 045	． 019	． 213	． 022
15	． 100	.033	． 139	． 243	． 258	． 238	． 077	． 034	． 616	．011	． 313
16	.200	． 020	.038	． 132	.374	． 051	． 049	． 020	． 013	． 009	． 011
17	． 300	.013	． 065	． 163	－108	． 285	． 076	． 031	－058	． 008	． 008
18	． 500	． 019	.093	.131	.153	． 121	． 084	． 344	． 007	． 005	．035
19	． 650	＊＊＊＊＊＊	－ 116	－ 122	． 117	.111	． 075	.034	． 009	． 024	． 004
20	． 700	． 020	． 104	.134	． 115	． 105	． 076	． 043	． 009	． 007	． 007
21	． 900	.026	.104	． 114	． 088	． 072	.045	． 037	． 011	.005	． 024

THE MAX STANDARD DEVIATION IS
.53 OCCURRING AT I a 14 AND J． 12.

TABLE A．4．－CONTINUED

RUN 54 STANDARD DEVIATIONS

1	x	$Y=-.93$	$r=-.35$	$r=-.70$	$\gamma=-.50$	$Y=-40$	$Y=-25$	$y=-10$	$\gamma=-.06$	$Y=0$	
1	0.000	． 009	.012	＊＊＊＊＊＊	． 055	＊＊＊＊＊＊	． 085	． 075	． 116	－${ }^{\text {a }} 3$	
2	． 025	－320	.023	． 047	． 036	． 041	． 028	.024	． 023	． 222	
3	． 050	． 019	.031	． 027	． 038	－024	． 035	.041	． 027	． 017	
4	.100	． 019	． 020	.016	． 019	． 018	． 032	． 017	.013	．021	
5	.150	.012	.317	.021	． 019	.022	． 020	． 013	． 018	.013	
6	． 200	． 012	.017	． 329	． 011	.015	.012	.316	.014	． 015	
7	． 250	.010	． 015	． 015	.023	.015	.014	．012	.017	． 013	
8	． 300	.007	－011	.013	． 014	.011	． 011	． 015	－023	＋＊＊＊＊＊	
9	． 400	． 004	.007	． 0.07	． 012	.012	． 008	.010	． 311	＊＊＊＊＊＊	
10	． 500	．093．	． 038	.011	.008	． 010	.007	． 009	－ 007	． 009	
11	． 050	＊＊＊＊＊＊	.016	． 0.07	． 205	.004	． 305	.007	． 006	． 005	
12	． 780	． 203	． 026	． 020	． 036	． 00.0	． 005	． 333	－634	． 006	
13	.900	． 0102	.004	． 005	． 006	． 008	． 003	． 004	． 1003		
14	.050	． 035	.043	.063	． 059	.377	.040	．073	． 257		
15	.100	.015	． 023	． 039	． 040	.042	． 028	． 050	． 139		
16	． 200	． 013	． 215	． 022	－ 332	． 024	． 035	． 024	.025		
17.	． 300	． 008	.012	.015	． 221	． 020	． 008	． 033	． 021		
18	． 500	． 000	． 007	． 211	． 010	.012	.011	．039	＊＊れれ゙＊		
19	． 650	.007	.007	． 011	． 007	.006	． 007	． 007	． 006		
20	． 780	.005	． 004	． 003	． 005	.007	． 003	． 205	.024		
21	.900	． 003	.003	.034	.005	． 005	.007	． 015	． 106		
1	X	$y=.10$	Y＝． 25	$Y=.40$	$Y=.45$	$Y=.50$	$\gamma=0$	$Y \times .60$	$Y=.75$	$Y=.85$	$Y * .85$
1	0.079	． 155	． 266	． 497	＊＊＊＊＊＊	． 067	． 023	． 013	． 024	． 046	． 031
2	． 025	.031	.033	． 033	． 006	.070	． 052	． 1030	． 529	．045	.039
3	． 050	． 020	.047	.070	.052	． 004	． 056	.056	． 029	． 025	.225
4.	． 115	.025	． 037	． 043	． 042	.042	． 034	． 022	． 025	． 022	.019
5	． 150	． 023	． 020	.030	.042	． 028	． 018	． 319	． 018	． 214	． 323
6	－ 200	． 017	－ 535	． 051	． 037	.014	44＊＊＊＊	． 313	． 01.	． 003	． 212
7	.250	． 020	－ 22.7	． 134	． 024	． 013	． 012	． 009	． 012	.007	.007
8	． 300	． 016	． 023	． 030	． 129	． 219	． 023	．0．37	.010	． 009	
9	.400	． 012	＋4＊＊＊＊	． 022	.023	． 015	.018	＊＊＊＊＊＊	＊＊＊＊＊＊	． 004	＊＊＊40゙＊
10	． 500	． 009	＊＊＊＊＊＊	． 218	＊＊＊＊＊＊	4＊＊いが	． 024	＊＊＊＊＊＊	． 006	.004	－． .004
11	． 650		． 006	.014	． 012	． 520	． 019	－ 016	． 005	． 0069	.033
12	． 780	.005	． 007	． 1212	.012	． 019	． 015	． 014	． 007	． 001	.305
13	． 900	.004	． 004	.009	． 018	.923	． 031	． 013	． 204	． 003	． 304
14	． 050	． 107	－ 242	． 261	.168	． 102	． 041	． 024	． 020	． 020	． 019
15	.100	.043	． 076	． 038	－ 260	． 252	.041	． 825	． 015	.015	． 012
16	． 200	． 029	.042	． 055	． 031	.031	． 017	.313	． 009	． 000^{\prime}	． 213
． 17	． 300	．024	． 0.21	． 026	． 020	． 022	． 016	． 013	． 009	.013	． 056
1－10	． 500	.007	－007	． 013	.013	.312	． 009	.012	.005	． 004	． 003
$\text { F } 19$	． 650	＊＊＊＊＊＊	.005	． 037	．011	． 012	.012	． 007	． 004	．004	． 033
$\cdots \quad 20$	． 780	．006	． 030	． 034	． 007	－310	． 010	$.009$	． 004	$.005$.006
（1） 21	－ 900	． 006	． 034	－ 005	.007	． 011	． 030	.010	.005	． 002	.003

THE MAX STANDARD DEVIATIDN IS－ 49 OCCURRING AT $I=2$ AND $\downarrow=12$.

TABLE A.4.- CONTINUED
RUN 50 STANDARD DEVIATIONS

I	x	$y=-.95$	$Y=-.85$	$Y=-.72$	$y=-50$	$y=-40$	$Y=-.25$	$Y=-.10$	$Y=.06$	$y=0$.	
1	0.000	. 099	.101	******	. 393	**** 4 *	. 368	. 105	.117	. 065	
2	. 325	. 029	. 047	. 041	. 053	. 054	- 050	.033	. 037	. 013	
3	-050	. 028	.433	.031	. 028	. 331	.223	. 032	. 019	. 214	
4	.100	. 024	. 022	.031	. 022	. 024	. 020	. 021	.015	-cis	
5	.150	.012	, (2)	. 224	. 022	.027	. 015	. 015	.017	. 011	
6	. 200	. 009	. 013	.017	. 023	.217	.013	. 210	.011	. 007	
7	. 250	.010	. 017	.018	. 021	. 018	.009	.010	-003	. 006	
8	- 300	.068	. 010	. 009	.014	.016	. 013	. 014	.010	**4***	
9	. 400	.005	.610	.011	. 010	. 010	. 010	.011	. 00.0	***体*	
10	- 500	. 005	- 07	. 011	.011	. 003	.007	. 008	. 038	. 006	
11	.050		. 123	. 098	.2 .27	- 807	. 004	. 010	.007	. 008	
12	. 780	. 003	. 006	.006	.000	.306	. 010	. 022	. 011	.005	
13	-960	.003	. 206	. 004	. 007	.009	. 007	. 032	. 026		
14	.050	.032	.041	. 065	. 054	.978	. 044	.187	. 298		
15	.100	. 018	.037	.034	. 033	. 032	. 050	.144	. 340		
16	. 200	. 015	.013	.326	.230	.027	. 026	. 126	.213		
17	. 300	.009	. 313	. 017	. 623	. 310	. 011	. 024	. 053		
16	- 360	.007	-.005	. 014	. 011	.012	. 012	. 055			
19	. 650	. 006	- cos	. 615	. 510	. 012	. 007	. 072	. 075		
20	.780	.005	. 00.	.007	. 007	.207	. 013	. 035	. 531		
21	.900	. 004	.034	-1.)C4	. 004	.005	. 011	. 038	. 074		
1	X	$y=.10$	$Y=.25$	$Y=.40$	$Y=.45$	$\gamma=.50$	$Y=.55$	$Y=.60$	$Y=.75$	$\gamma=.85$	$Y=.95$
	0.000	. 163	. 213	. 198	******	.170	. 483	. 304	. 050	. 085	. 098
2	. 025	.051	. 052	. 068	. 250	. 232	. 666	. 761	. 228	. 235	. 158
3	. 650	. 024	. 016	.047	.166	- 129	. 165	. 203	. 072	. 077	. 224
4	- ico	. 019	-917	. 042	.181	. 034	. 102	. 043	. 028	. 227	-070
5	. 150	. 015	. 015	.044	. 131	. 323	. 125	. 143	.033	. 025	. 016
6	. 200	. 008	. 203	. 328	. 159	. 375	* 4 ****	. 149	.022	. 013	. 020
7	-290	. 0109	. 010	.035	. 117	. 144	. 152	. 126	. 022	. 016	. 015
8	. 300	.006	.013	. 634	.119	. 387	.101	. 092	. 020	.011	******
9	. 400	. 005	***4**	. 035	. 033	. 093	. 117	******	******	.014	******
10	. 500	. 005	***क\%*	. 025	******	******	. 398	******	.020	. 014	-0J8
11	. 650	******	. 017	. 031	. 041	. 089	. 089	. 063	. 027	. 014	. 039
12	. 780	. 011	.024	.027	.043	. 071	. 068	. 037	. 028	. 003	. 038
13	. 900	.013	. 022	. 039	. 031	. 035	. 064	.038	- 018	-328	. 227
14	.050	-103	. 136	. 156	.171	.113	. 083	. 033°	. 017	. 318	. 016
3\%	. 100	. 158	. 100	.090	. 174	.073	. 0.82	. 323	. 039	. Cl 4	. 011
16	$\cdots 200$.108	-059	. 137	.083	. 070	. 062	. 015	. 009	. 011	. 013
17	. 300	. 085	. 042	. 1.22	. 089	.249	- 053	- 319	. 038	. 010	. 028
18	. 500	.042	. 043	. 035	. 041	. 039	. 963	. 030	. 006	-020	-2.26
19	. 650	******	. 058	. 052	. 057	. 028	-072	. 534	. 039	. 007	. 220
20	. 780	. 063	.067	. 085	.064	.093	.069	. 036	.007	. 011	. 008
21	.900	. 054	.068	.057	. 081	.077	. 056	. 032	. 011	.095	. 006

THE MAX STANDARD DEVIATION IS . 76 OCGURRING AT I $=2$ AND $J=260$

TABLE A．4．－CONTINUED
RUN 57 standard deviations．

I	x	$Y=-.85$	$Y=-.85$	$Y=-.73$	$Y=-.50$	$Y=.40$	$Y=-.25$	$Y=-.10$	$Y=-.26$	$Y=0$.	
$\cdots 1$	0.200	． 669	． 640	＊＊＊＊＊＊	． 425	＊＊＊＊${ }^{\text {＋}}$.107	． 298	． 445	． 744	
$\cdots \quad 2$	． .025	－ 206	． 278	． 262	． .364	． .356	． 319	． 331	． 179	． .684	
3	． 050	． 024	． 229	． 032	． 033	． 039	． 033	.023	． 019	． 018	
4	.100	． 022	． 031	． 026	． 229	． 323	.030	． 019	． 039	． 016	
5	－ 50	． 014	． 013	.019	.019	． 029	． 014	． 512	.016	． 220	
6	－200	.011	． 010	－122	． 020	.019	． 0.13	.010	． 009	． 011	
7	.250	.009	． 013	． 015	.017	． 018	． 016	． 010	． 023	． 007	
8	－300	.005	． 010	.015	.015	.017	.011	． 009	． 003	＊＊＊＊＊＊	
9	． 40 C	－1208	． 0408	． 021	． 013	． 012	－010	.007	． 090	＊＊＊＊＊＊	
16	． 500	． 095	． 006	． 009	． 011	－009	－0．08	． 208	.036	． 205	
11	.650		． 008	.097	.023	． 02.3	.029	.019	． 013	． 012	
12	． 780	.006	－C05	． 099	.006	.007	． 0.05	． 0.04	． 034	.007	
13	＋900	.003	.005	.006	.005	． 0007	.007	． .03	－¢ ${ }^{\text {d }}$		
24	． 250	.234	． 043	.048	． 060	． 042	－ 007	.149	． 042		
15	－ 160	－023	． 320	． 042	．05？	． 050	.042	－051	． 045		
16	－ 200	.012	． 019	． 016	.019	． 333	． 023	． 034	． 117		
17	－300	． 008	.008	． 017	．021	． 321	． 007	.009	.011		
18	． 500	.007	． 008	－013．	． 013	． 313	． 033	． 009	＊＊＊＊＊＊		
29	． 650	.007	． 007	．011	.007	．007	.007	． 013	.006		
20	． 780	． 007	.006	． 009	． 005	.005	.006	． 010	． 008		
21	.900	.003	－びつ3	． 004	.055	.306	.005	.008	.008		
1	x	$\gamma=.10$	$Y=.25$	$\mathrm{Y}=.40$	$Y * .45$	$Y=.50$	$Y=.55$	$Y=.60$	$Y=.75$	$Y=.85$	9－． 95
1	0.000	． 652	1.203	． 0.38		． 559	.499	1.197	． 634	． 543	． 128
2	． 025	． 323	． 420	． 402	． 320	． 152	1.591	1.136	1.777	1.350	2．293
3	． 050	． 427	． 615	． 1227	． 038	． 132	－． 197	． 309	． 111	． 053	． 323
4	.100	.026	.410	． 022	． 045	－154	． 081	.072	． 067	． 031	． 041
5	－150	． 019	． 013	． 024	． 034	. .375	.115	． 071	－033	． 025	． 022
6	－200	.010	.012	－018	． 031	.147	＋＊＊＊＊＊	.157	． 028	． 022	． 014
7	． 250	． 010	． 010	． 022	．023	－159	． 282	－ 152	． 022	.019	． 0.014
8	－ 300	－0．）7	.010	.017	． 034	.136	． 093	－ 140	.030	.218	＊＊＊＊＊
9	． 460	－DOB	＊＊＊＊＊＊	－ 023	． 023	． 089	.097	＊＊＊＊＊＊	4＊＊44＊	． 014	＊＊4＊＊＊
10	． 500	$.006$	4＊＊＊＊	． 023	＊＊＊4＊＊	中＊＊＊＊＊	－． 086		． 050	． 015	． 010
11	． 650	＊ 4 ＊＊＊＊	.017	.023	． 031	． 052	． 113	． 269	.046	．015	.310
12	.786	$\therefore 025$	． 023	． 032	． .333	． 337	－U81	.087	． 050	.012	.012
13	.900	． .029	． 025	.047	． 334	.041	.040	.347	．031	． 017	． 009
24	－ 050	． 172	． 337	． 210	． 102	． 075	.110	． 057	.022	． 016	． 1012
15	$\cdots 100$.195	.067	.155	． 223	.097	． 064	.062	.015	．016	.010
16	.200	－ 160	.025	． 234	． 132	.101	． .048	． 053	－62？	． 0.23	.013
17	－ 300	.695	． 025	．03？	－ 09.8	－ 380	.051	． 054	． 069	． 007	． 053
18	－ 500	． 050	． 033	． 234	． 052	． 024	． 060	． .352	． 015	． 006	． 007
－19	－ 6 ± 0		.046	． 054	． 055	.095	－084	． .382	． 015	． 0099	.007
20	． 730	． 294	． 051	.112	． 071	.073	． 078	． 071	.010	． 025	． 021
＋21	.900	.007	． 052	． 069	.107	． 066	． 078	． 057	． 023	．013	.010
THE	STAND	OEVIAT	IS	OCCURR	AT I	AND J	7.				

TABLE A.4.- CONIINUED

RUN 50 STANDARD DEVIATIONS

1	x	$Y=-.95$	$y=-.85$	$Y=-.79$	$\gamma=-.50$	$y=-40$	$y=-25$	$y=-.10$	$Y=-.06$	$y=0$.	
1	0.000	. 015	. 019	******	. 045	******	. 051	. 102	.095	. 026	
2	. 025	. 033	. 053	. 043	. 033	. 550	-025	0.35	. 031	. 012	
3	-150	. 028	.032	. 327	. 042	. 334	. 032	. 025	.027	. 016	
4	. 100	. 017	. 024	. 023	. 021	. 024	. 224	.016	.0.1	-0¢8	
5	. 150	. 012	. 023	. 032	. 023	. 018	. 014	. 012	. 012	. 311	
6	-260	. 014	. 013	-021	. 224	-318	. 015	. 015	. 029	. 036	
7	. 250	. 008	. 017	. 022	. 023	. 314	. 014	. 011	. 010	.009	
8	-300	. 008	. 012	. 014	. 015	. 212	. 010	. 009	. 009	******	
9	. 400	. 006	. 008	-089	-02?	- 310	-006	0.019	. 605	+*****	
10	. 500	. 004.	. 007	. 027	. 007	. 008	. 005	. 397	.033	. 205	
11	. 650	******	- 017	. 905	. 008	. 006	. 007	. 005	-005	. 007	
12	. 780	. 004	. 207	. 0.25	. 034	. 306	. 0.05	. 014	. 009	.007	
13	-900	. 005	. 005	-025	. 006	. 007	. 005	-023	. 010		
14	. 050	. 031	. 042	- 8 B 2	. 077	. 387	. 555	. 141	. 182		
15	. 100	. 019	. 029	. 032	. 034	. 338	. 237	. 154	. 279		
16	-260	. 010	. 015	. 019	. 027	. 020	. 027	. 041	. 147		
17	- 360	. 007	-012	.016	. 021	. 019	. 007	. 023	. 050		
18	. 500	. 006	. 007	. 011	. 011	. 024	. 012	. 068	** 4 ¢**		
19.	. 550	. 035	-6is	. 012	.0:38	. 012	. 009	. 033	. 010		
20	. 780	. 006	. 00 ?	. 025	. 005	. 006	. 303	. 2000	. 089		
21	. 900	.003	. 004	. 005	. 005	. 004	. 007	. 052	. 057		
1	x	$\gamma=.10$	$\gamma=.25$	$\gamma=.43$	$\gamma=.45$	$y=.50$	$Y=.55$	$Y=.60$	$\gamma=.75$	$Y=.85$	$Y=.95$
1	0.000	. 123	. 166	. 191	******	. 179	. 311	. 552	. 096	. 094	. 055
2	-025	. 024	. 013	. 011	. 063	. 247	. 611	. 845	. 077	. 089	. 250
3	. 050	. 018	. 013	. 013	. 083	. 220	. 271	. 553	.119	.087	. 046
4	-100	. 012	. 011	. 021	. 375	. 176	-117	-148	-644	.027	. 036
5	. 150	.011	. 010	. 016	. 058	. 122	.082	. 093	. 632	- 49	. 019
6	- 200	. 009	.009	. 014	. 074	. 098	******	. 071	. 020	. 022	. 013
7	- 250	. 006	. 008	. 027	. 072	. 152	. 163	. 056	. 017	. 614	. 015
8	. 300	. 006	. 007	. 022	. 044	. 136	. 113	. 153	. 019.	. 210	******
9	. 400	. 006	******	. 214	. 079	. 394	. 145	******	******	.00a	******
10	. 500	. 006	******	. 017	******	******	-699	******	. 028	. 355	.038
11	. 650	******	. 013	. 020	. 037	. 048	. 251	. 074	. 0097	. 334	. 026
12	. 780	. 015	-613	. 017	. 030	. 264	. 062	. 043	. 007	. 203	. 036
13	. 800	. 024	.023	. 018	. 014	-029	. 041	. 060	. 011	. 233	.034
14	- 050	. 143	. 230	. 113	.123	. 178	. 130	.0\%9	. 027	. 020	. 019
15	-100	. 119	. 095	. 298	. 093	. 054	:125	. 059	-620	. 017	. 027
16	- 200	. 108	. 063	. 048	. 076	. 102	. 114	. 251	. 012	-614.	- 310
17	. 300	. 039	. 046	. 034	. 113	. 075	. 102	. 047	. 011	. 013	. 039
18	. 500	. 055	. 040	. 049	. 061	. 078	. 070	- 028	. 036	. 00%	. 334
19	. 650	******	- 33	.035	. 047	. 104	. 059	. 017	. 039	. 003	. 333
20	. 780	. 070	. 043	. 035	. 035	. 074	. 044	. 027	. 006	. D0d	. 006
21	- 900	. 074	. 040	. 035	. 052	. 258	. 048	. 041	. 015	. 006	. 003

the max standard deviation is . 85 uccurring at $I=2$ anc $\mathrm{J}=16$.

TABLE A．4．－CONTINUED

RUN 59 STANOARD DEVIATIONS

	1	x	$Y=-.85$	$Y=-.85$	$Y=-79$	$Y=-.50$	$Y=-40$	Y＝－ 25	$Y=-.17$	$y=-05$	$Y=0$.	
對	1	0.000	． 015	． 013	＊＊＊＊＊＊	． 032		． 366	． 359	.047	． 015	
	2	． 025	.030	． 023	． 034	． 040	． 058	． 046	． 045	． 042	． 023	
\％9	3	． 050	． 024	． 632	.041	． 033	.034	． 0.33	． .334	.036	.027	
O2	4	.100	.014	．039	.034	． 034	．035	－023	． 029	． 025	． 017	
止	5	． 150	－ 0 － 9	\％017	．02\％	． 016	． 022	． 023	． 022	． 023	.019	
\cdots	6	． 200	.011	.013	.017	． 021	.310	． 026	． 023	． 225	． 214	
E	7	． 250	． 00.0	.012	.016	.015	.017	－012	． 015	． 017	． 014	
8	8	． 360	－ 307	.013	.013	.014	.013	． 016	． 012	． 014	＋ $4+44{ }^{\text {＋}}$	
$E G$	9	． 460	－066	－009	.010	． 014	.013	． 011	．01？	． 012	＋＊＊4＊＊	
可	10	． 500	.003	． 0004	． 0.07	.012	．012	． 011	． 008	． 010	． 007	
人	11	． 650	＊＊＊＊＊＊	． 006	.008	． 007	． 009	－．008	.037	． 095	.007	
	12	． 760	． 005	． 005	.025	． 007	.007	． 007	． 204	.023	． 293	
	13	－900	.010	． 0.04	－003	.004	.006	． 055	.003	． 034		
	14	.050	． 026	． 036	.042	.064	． 074	． 062	． 058	． 036		
	15	． 160	． 323	． 030	.225	.041	． 230	． 040	.043	． 035		
	16	.200	.010	． 013	． 013	． 021	． 033	． 033	． 04.3	． 024		
	17	－ 300	.007	． 009	.012	.019	． 015	.021	． 513	． 215		
	18	． 500	.007	－010	－300	． 012	$=011$	． 0.14	.012	＊＊＊＊＊＊		
	19	． 650	． 004	． 034	． 007	． 012	． 012	.014	． 2.35	.004		
	20	.700	.003	． 095	． 005	． 026	.008	． 007	． 005	． 004		
	21	.900	.003	.002	． 304	.003	.007	－1004	.008	． 006		
	1	x	$Y=.10$	$Y=.25$	$Y=.42$	$\gamma=.45$	$y=.50$	$Y=.55$	$Y=.60$	$\gamma=.75$	$Y=.85$	$Y=.75$
								－				
	1	0.000	.110		.122	＊＊＊＊＊＊	． 039					
	2	． 025	.045	． 034	． 019	． 017	.021	． 015	.014	． 014	．057	． 125
	3	－050	.033	－ 232	． 224	． 023	.322	． 0.11	．010	－cir	－049	． 069
	4	． 100	.019	.023	．02）	． 022	.016	． 014	． 016	－C？ 0	． 084	． 350
	5	． 250	.022	－ 222	.015	．023	.315	． 014	． 010	． 015	． 082	.037
	6	.200	． 012	， 012	． 015	． 012	．011	＊＊＊＊＊＊	． 329	.012	． 061	． 059
	7	． 250	.012	.017	.015	． 009	.211	.008	． 0.39	．012	．057	． 075
	8	.300	． 011	.013	.009	.007	.009	.009	． 023	． 015	． 070	＊＊＊＊＊＊
	9	.400	． 011		． 003	． 006	． 009	.020		＊＊＊＊＊＊	0005	＊＊＊＊＊＊
	10	.550	.009	＊＊＊＊＊＊	－155	＊＊＊＊＊＊	＊＊＊＊＊＊	． 007	＊＊＊＊＊	． 017	． 034	． 070
	11	． 550	＊＊＊＊＊＊	． 007	． 035	． 304	－ 007	－． 909	． 011	． 023	．028	． 037
	12	． 780	． 004	． 005	． 005	.020	． 213	． 316	． 013	． 030	． 329	． 228
	13	． 960	.004	－CO4	.006	． 058	． 014	． 023	． 025	． 050	． 030	． 031
	14	． 050	． 058	． 097	． 112	.112	． 281	－ 0.2	． 225	． 597	.007	． 096
	15	.100	． 033	.047	． 053	． 031	． 338	． 027	． 051	.135	.169	． 051
	16	－ 200	． 037	． 020	． 323	．053	－ 923	． 022	． 062	－114	.076	． 041
	17	． 300	.017	． 019	－015	.013	． 311	． 022	.043	.087	－695	． 035
	18	－ 500	.008	． 009	． 007	－ 005	． 312	． 019	.021	． 034	． 036	． 044
	19	． 650	＊＊＊＊＊＊	． 0027	． 575	． 005	． 314	． 031	． 023	． 354	． 025	． 037
－	20	.780	． 0006	－ 006	． 005	． 007	． 014	． 034	.343	． 030	． 027	． 098
	21	.900	． 007	.003	． 006	.003	． 021	.034	.045	． 092	.058	－632
	THE	\times STAND	OEVIAT	IS	OCCURR	AT I	AND J					

$\stackrel{\leftrightarrow}{\stackrel{-}{\infty}}$
RUN 60 STANDARD DEVIATIONS

I	x	$\gamma=-.95$	$\gamma=-85$	$Y=-.79$	$Y=-.50$	$Y=0.40$	$Y=-25$	$Y=-10$	$Y=-.06$	$r=0$.	
1	3.0 .00	. 026	. 015	******	. 047	******	. 268	. 053	. 053	. 015	
2	. 025	. 032	. 045	. 046	.051	. 038	. 035	.029	.025	. 014	
3	. 350	.024	.ก34	.041	. 034	. 031	. 026	. 020	. 016	. 012	
4	. 100	.017	. 025	.027	.027	.020	.026	.017	.059	.011	
5	. 150	.012	. 023	-1321	.028	. 022	. 014	.015	.613	.010	
6	- 200	.010	.017	. 317	. 027	.018	. 022	. 911	. 610	. 008	
7	. 250	. 010	.013	.016	.020	. 015	. 015	.009	-0.39	. 006	
8	- 300	. 007	. 012	. 214	.015	.013	. 211	. 0.10	.037	******	
9	. 400	. 004	.007	. 015	.010	.011	. 009	.035	- C.30		
10	. 500	.004	.207	. 003	.009	. 009	. 005	. 005	.004	. 036	
11	. 650	******	. 005	. 023	. 069	. 097	. 005	. 005	-005	. 007	
12	. 780	. 009	. 005	. 006	. 005	.267	.007	. 211	.057	.038	
13	. 900	-006	.005	. 035	.007	. 208	. 005	. 016	.005		
14	.050	. 028	.048	. 044	. 051	.277	. 353	. 077	. 131		
15	.200	.022	.027	. 037	.042	.042	. 040	. 034	- 210		
16	. 200	.011	.016	. 225	.027	. 029	. 328	. 022	- cot 2		
17	. 300	. 009	. 012	.017	. 025	.315	. 007	.013	. 035		
18	. 500	.010	.006	.012	.009	. 014	.013	. 0.040	*****		
19	. 650	. 006	. 009	.013	.01)	. 009	. 007	. 032	. 032		
20	. 780	.006	. 000	.005	. 005	. 005	-029	. 049	. 035		
21	. 900	. 206	. 005	.006	. 005	. 207	. 009	. 013	-015		
I	x	$Y=.10$	$y=.25$	$y=.45$	$Y=.45$	$\gamma=.50$	$Y=.55$	$Y=.60$	$Y=.75$	$\mathrm{Y}=.85$	$Y=.75$
1	0.000	. 170	. 145	. 153	******	. 049	. 238	-420	. 091	. 035	. 045
2	. 025	. 024	. 018	. 012	. 0660	. 275	.203	. 510	-071	. 231	.045
3	. 050	. 223	.015	.016	.102	. 265	. 262	. 214	. 075	. 052	. 034
4	.200	. 018	.016	. 315	. 58.3	- 186	- 247	. 288	. 032	. 027	. 331
5	. 250	.012.	. 013	. 023	- 050	. 184	. 283	. 165	-035	. 023	. 015
6	- 200	. 310	.612	-1)23	. 363	. 149	市*****	. 112	. 031	. 020	.012
7	. 250	.007	. 009	. 019	.072	. 179	. 073	. 126	. 024	.017	. 017
8	. 300	.007	. 010	.023	.068	. 131	- 693	.102	.026	.017	
9	. 400	.006	******	.02?	. 047	. 291	. 079	******	44****	. 011	******
10	. 500	. 006	******	.019	******	** ${ }^{\text {+ }}$ ***	.063	*4****	. 024	- 215	. 6.3
11	. 650	******	. 016	.224	.024	. 079	. 087	. 045	. 027	. 215	. 029
12	.780	. 016	. 023	. 024	. 026	.043	. 092	. 055	. 023	. 003	.012
13	. 900	. 026	. 030	. 045	. 040	. 028	. 050	. 067	. 822	.013	. 977
14	. 020	. 290	. 175	. 225	. 087	.2 .35	. 132	.346	.017	. 016	. 017
15	.100	.127	. 1378	.153	. 234	. 397	. 097	. 033	. 015	. 012	.025
16	- 200	-131	. 039	.103	.077	. 077	. 056	. 034	. 007	. 212	.009
17	- 300	.057	-025	. 094	. 089	.359	. 035	. 046	-038	-1003	. 008
18	. 500	. 050	. 031	. 040	.1026	. 034	. 060	. 041	. 0.37	. 036	.035
19	. 650	******	.047	. 052	. 044	. 099	. 071	. 059	.012	.007	. 005
20	.780	. .081	. 051	. 284	. 258	.079	. 068	. 056	. 000	.009	. 007
21	.902	-.082	. 0.65	.074	. 083	.035	.067	. 371	.014	. 017	. 214

THE MAX STANOARD DEVIATION IS . 52 OCCURRINGATI $\quad 2$ AND $\sqrt{2}=16$.

TABLE A．4．－CONTINUED

RUN 61 STANOARD DEVIATIDNS

	$\underline{1}$	x	$Y=-.95$	$\gamma=-85$	$Y=-.75$	$y=-.59$	$Y=-.40$	$Y=-25$	$Y=-10$	$y=-.06$	$Y=0$.	
	1	0.000	． 023	． 830		． 068	＊＊＊＊＊＊	． 382	． 044	． 036	． 008	
	2	． 025	.035	． 044	． 038	． 223	． 220	.027	.020	． 215	.213	
	3	． 0.50	． 024	． 024	.027	． 027	． 020	． 023	．028	.016	． 013	
	4	． 100	.017	． 026	.027	．02？	． 218	－020	． 013	.015	.027	
	5	． 150	.013	． 018	.023	． 010	． 020	.012	.011	． 003	－．013	
	6	． 200	.013	．014	.013	． 016	.011	.012	． 009	.027	.007	
	7	． 250	.013	.013	－ 13	.017	.317	． 315	． 015	． 013	.011	
	8	． 300	． 006	． 011	.013	.012	.011	． 008	． 058	． 057	＊＊＊＊＊＊	
	－ 9	.400	． 106	． 010	.913	． 338	－J6a	． 003	.004	.004	＊ 4 tit ${ }^{\text {a }}$	
	10	． 500	.004	． 0037	． 910	． 36.7	． 030	－033	－ 204	． 006	． 005	
	11	.650	＊＊＊＊＊＊	.005	.005	.007	． 355	－ $0^{0} 06$	． 009	． 007	.007	
	12	.780	． 008	． 009	.015	.023	． 023	． 016	.010	.006	.005	
	13	． 900	.003	． 007	.207	． 034	． 335	.011	． 057	．023		
	14	.250	． 034	． 040	－ 050	． 047	． 058	.089	． 039	． 024		
	15	.100	.018	． 035	． 043	． 937	.060	.020	． 067	． 016		
	16	.200	． 010	． 015	.024	． 230	． 020	． 019	． 014	． 015		
	17	． 300	． 016	． 023	． 021	． 018	． 024	． 019	． 028	.028		
	19	－ 500	． 321	． 6123	． 011	． 010	． 309	－ 206	． 019	＊＊＊＊＊＊		
	19	． 650	． 205	.000	． 207	.007	－1004	． 007	． 016	.013		
	20	－780	－ 046	.006	.003	． 005	． 003	． 007	． 023	． 015		
	21.	.900	． 003	.005	.007	． 005	.003	． 005	.033	． 020		
	1	x	$Y=.10$	$Y=.25$	$\gamma=.40$	$\boldsymbol{Y}=.45$	$y=.50$	$Y=.55$	$Y=.65$	$Y=.75$	Y＊． 85	$y=.95$
	1	0.000	． 091	.339	． 233	＊＊＊＊＊＊	． 055	． 067	． 094	． 072	． 058	． 030
	2	． 025	.013	． 328	． 420	．091	． 069	． 071	， 086	． 045	.063	－1039
	3	． 050	.019	.226	． 315	.097	.060	． 059	． 076	.063	． 053	． 234
	4	． 100	． 015	.341	．098	． 074	－ 336	． 027	． 032	． 049	． 340	． 016
	5	－150	． 027	． 084	． 040	.033	\cdots	． 021	． 025	． 019	． 233	． 220
	6	－ 200	． 011	． 079	.257	． 027	.013	＊＊＊＊＊${ }^{\text {\％}}$	－018	． 020	． 017	． 024
	7	－ $2 \leq 0$	． 019	． 063	． 077	． 023	． 523	． 024	． 022	． 020	． 223	.312
	8	－360	．012	． 6.82	.083	． 027	． 020	.017	． 020	． 619	． 522	い＊＊＊＊＊
	9	． 400	.012	＊4辛茥辛	． 697	.011	＋ 512	． 014	＊ 4 4＊＊	＊＊＊44＊	． 003	4＊＊＊＊＊
	10	． 500	． .008	＋辛＊＊＊＊	－112	＊＊＊＊＊＊	＊＊＊＊＊＊	.000	＊＊れが安	． 026	.007	． 007
	11	． 550		． 123	.063	． 051	． 216	.014	． 013	． 036	． 003	.005
	12	． 780	． 008	． 127	． 066	.043	． 0	． 208	． 012	． 004	．005	． 007
	13	． 900	． 007	． 073	． 057	． 001	.036	．027	.008	－005	－000	－ 35
	14	． 050	． 060	． 283	.027	． 015	.017	． 019	． 016	． 926	． 028	－ 319
	15	.100	． 101	－101	． 218	． 014	.215	－019	． 015	.023	． 023	． 020
	16	． 200	.034	． 073	． 017	． 012	.011	． 014	． 010	． 014	． 012.	．013
	17	． 300	． 022	． 295	－ 223	． 013.	． 215	． 019	． 018	． 016	．015	． 016
	28	． 500	． 019	． 029	． 011	.013	． 012	． 009	． 012	． 007	． 200	． 095
$\stackrel{\omega}{\mapsto}$	19	． 650	＋＊＋＊	． 044	.012	． 010	．012	． 008	． 008	． 006	． 053	.034
6	20	． 780	．018	． 026	－021	． 018	.015	． 010	． 007	． 025	－ COH_{4}	$.002$
	21	.900	． 008	． 012	.017	． 025	． 024	． 028	． 034	.042	.342	$.032$
	THE	STAND	DEVIAT	15	OCCURR	ATI＝	ANO J					

TABLE A.4.- CONTINUED

I	x	$\gamma=-.95$	$\gamma=-.85$	$y=-70$	$Y=-.50$	$y=-.40$	$y=-.25$	$\gamma=-.10$	$y=-.00$	$y=0$.	
1	0.000	. 048	. 049	******	. 153	******	. 113	. 112	. 185	. 008	
2	. 025	. 226	. 017	. 029	. 263	. 745	. 104	.123	. 033	. 019	
3	. 050	.016	. 214	-031	. 196	-279	.032	. 044	. 063	. 013	
4	. 100	. 017	. 013	. 029	.111	.102	. 045	. 033	. 034	. 221	
5	. 150	. 013	. 012	. 026	. 098	. 129	. 026	. 019	. 022	. 321	
6	- 200	. 009	. 611	. 018	. 083	- 140	. 111	. 014	. 017	. 013	
7	-250	. 005	. 012	. 027	. 097	. 139	. 015	. 007	. 013	. 014	
8	-350	. 007	. 003	.021	. 076	. 150	. 216	. 013	. 010	******	
9	. 400	. 034	. 203	. 022	. 382	. 172	. 316	. 010	. 006	******	
10	. 500	. 005	.209	. 025	. 079	. 122	. 025	. 014	, 012	. 0.08	
11	. 550	*****	. 313	. 026	. 281	. 051	. 041	. 015	. 011	. 008	
12	. 760	. 036	. 012	. 226	. 065	. 052	. 263	. 012	. 020	. 008	
13	-900	. 004	. 016	. 053	. 036	. 041	. 650	. 221	. 016		
14	. 050	. 224	. 049	-910	.119	. 022	.020	. 015	. 021		
15	. 100	. 023	. 091	.157	. 110	. 020	.010	. 017	. 623		
16	. 200	. 014	. 318	.057	. 072	. 022	. 013	. 013	. 018		
17	-300	. 215	. 038	. 034	- 080	. 033	. 012	. 009	. 011		
18	. 500	. 005	. 011	. 078	. 113	. 941	. 012	.037	**** ${ }^{\text {* }}$		
19	. 650	. 005	. 016	. 097	. 130	. 046	. 012	. 003	. 036		
20	. 780	. 003	. 017	.10?	.113	. 033	. 018	.03?	. 007		
21	- 760	. 005	. 012	. 077	. 076	. 024	. 010	. 038	. 035		
1	x	$\mathrm{Y}=.10$	$\mathrm{Y}=.25$	$\mathrm{Y}=.40$	$\gamma=.45$	$\gamma=.50$	$Y=.55$	$y=00$	Y = . 75	$y=.85$	$y=.75$
1	0.000	. 078	. 097	. 181	******	. 058	. 063	. 081	. 053	. 043	.022
2	. 225	. 103	- 360	. 898	- 364	. 105	. 102	. 089	. 083	. 077	. 058
3	. 050	. 049	-089	. 262	. 242	. 256	-05s	. 666	. 673	. 064	. 032
4	. 160	.048	. 048	. 284	. 071	. 053	. 063	. 042	. 050	. 023	. 236
5	. 150	. 033	. 032	. 215	. 029	. 333	. 433	. 235	. 035	. 023	. 011
6	. 200	. 020	. 916	. 019	. 014	. 010	******	. 032	.033	. 223	. 017
7	. 250	. 013	. 015	. 021	. 016	. 014	. 011	. 322	. 022	. 022	-315
8	. 300	. 010	. 213	. 019	. 018	. 219	. 005	. 009	. 015	-009	*****
9	. 400	.010	******	. 011	. 015	. 014	. 016	******	*****	-007	*ャ****
10	- 50	. 206	+*****	. 537	******	******	. 008	******	. 013	. 007	. 037
11	. 650	*****	.034	. 004	.007	. 305	. 005	. 209	. 009	. 005	. 035
12	. 780	. 007	. 007	. 004	. 203	. 003	. 000	- 0^{26}	. 305	. 003	. 035
13	. 900	. 017	.01)	.035	. 006	- JJ7	. 011	. 006	. 307	. 004	. 008
14	. 050	. 019	. 025	. 029	. 029	. 034	. 030	. 040	-639	- 33	-J24
15	-100	. 031	. 325	. 025	. 031	. 234	. 028	. 032	. $0: 6$. 031	.223
16	. 200	. 023	. 219	. 315	. 316	. 318	. 020	. 020	. 016	. 017	. 015
17	- 300	. 018	. 016	. 010	. 013	. 218	. 016	. 018	. 019	. 012	. 011
18	. 500	. 006	. 000	. 098	. 007	. 209	. 010	. 012	. 010	. 003	. 006
19	. 650	******	. 003	. 006	. 007	. 030	. 010	. 038	. 037	. 007	. 004
20	. 780	. 006	. 005	. 003	. 005	. 009	. 007	. 207	. 036	. 006	. 354
21	. 990	. 0064	.003	. 005	. 016	. 010	. 007	. 007	. 008	. 006	. 007

the max standard deviation is . 75 dceurring at 1×2 and a $=5$.

TABLE A．4．－CONTINUED
run 63 standard deviations

	I	X	$Y=-.95$	$Y=-.85$	$y=-75$	$Y=-.50$	$Y=-.43$	$\gamma=-.25$	$y=-.10$	$Y=-.26$	$y=3$.	
	1	0.000	．013	． 020	＊＊＊＊＊＊	． 032	＊＊＊＊＊＊	：064	.092	． 029	． 014	
	2	.025	． 031	． 037	－ 041	． 242	． 254	．038	． 231	.021	． 013	
	3	.050	． 032	． 024	． 233	． 032	． 033	．027	$.0 \geq 0$.017	． 010	
	4	.100	． 010	.024	．02？	.024	.020	． 025	． 020	． 012	.015	
	5	.150	.011	.225	． 021	1．024	． 025	.015	． 015	.015	． 013	
	6	． 200	.009	.013	． 032	． 022	.020	.017	． 016	.014	． 053	
	7	.250	.010	＊ 113	． 223	． 014	． 015	.013	． 010	． 010	．008	
	8	． 300	.009	－607	.017	.016	.024	． 010	． 012	． 014	\＄4＊44i	
	9	． 400	.005	.011	． 016	． 011	． 217	． 011	． 013	－c） 6	＊＊＊＊＊＊	
	10	． 500	．004	.006	． 008	． 008	． 306	－ 000	． 0.99	． 005	． 004	
	11	． 650	中＊＊す＊	． 000	． 0003	.007	.007	－ 607	.004	.054	． 004	
	12	． 780	．0゙28	.006	.010	． 0005	.010	． 007	.005	． 019	.007	
	13	． 980	． 053	.003	． 025	.037	． 012	． 007	.008	． 026		
	14	－ 350	． 023	． 050	． 036	． 052	.347	． 053	． 134	． 029		
	15	.160	.017	． 236	． 032	.047	． 042	． 044	.035	． 224		
	16	－200	． 213	－LiJ	． 019	． 219	． 335	． 022	． 014	． 154		
	17	． 300	． 010	． 011	．019	． 020	． 218	.014	． 027	． 043		
	18	－ 500	． 008	． 006	． 016	.012	． 315	． 019	． 027	＊＊＊＊＊＊		
	19	． 650	.006	.008	． 309	.009	． 309	.009	． 016	． 047		
	20	.780	.003	.004	.005	． 038	． 007	.005	.017	． 624		
	21	． 900	． 005	． 003	． 004	． 005	． 004	.005	． 055	－053		
	I	x	$y=.10$	$y=.25$	$Y=.40$	$r=.45$	$y=.50$	$Y=.55$	$y=.63$	$\gamma=.75$	$Y=85$	$y=-95$
	1	0.000	.116	． 197	.177	＊＊＊＊＊＊	－ 515	． 212	－628	． 032	－093	． 344
	2	． 025	． 021	． 117	.015	． 108	4307	． 395	0.346	． 052	． 036	． 057
	3	－ 050	.016	－ 017	． 230	． 123	.244	． 298	． 435	．08i	． 063	.044
	4	． 100	.014	． 313	.019	． 127	． 251	． 080	． 120	.037	． 622	． 024
	5	． 150	． 915	－1）12	． 427	． 368	． 156	.115	.131	． 019	．023	． 312
	6	－ 260	.011	． 010	． 1225	－098	． 192	＊ 4 乐＊＊＊	． 200	.025	． 215	． 013
	7	． 250	． 060	.007	． 023	． 001	． 133	． 122	.154	.620	． 015	． 0112
	8	． 300	． 010	． 112	．026	.054	． 135	． .143	.171	－61？	． 016	＊ 4 4＊＊
	9	． 400	． 022	＊＊＊＊＊＊	． 229	． 244	.111	． 157	＊ 4 ＊＊＊＊	＊＊＊＊＊＊	.015	＊＊＊＊＊＊
	10	． 500	． 006	＊＊＊＊＊＊	． 025	＊＊＊＊＊＊	＊＊＊＊＊＊	.107	4＊＊＊＊＊	． 027	.017	． 0212
	11	.650	＊＊＊＊＊＊	． 217	． 021	． 026	－356	.150	，053	． 028	． 011	． 058
	12	． 780	． 008	.015	． 024	.231	． 355	.225	． 033	． 027	－0．0	． 328
	13	． 900	.030	.032	.033	． 027	． 353	． 102	． 033	． 013	． 013	． 0.07
	14	． 050	.049	． 250	.113	． 209	． 275	． 124	－．727	． 014	． 016	－01？
	15	． 120	－Gó？	－113	－177	.192	． 219	． 120	． 032	． 012	． 015	． 013
	16	－ 200	． 938	.057	.119	.161	． 242	.075	． 041	． 011	． 009	.039
	17	－ 300	.016	． 035	.122	． 135	＋187	． 052	．032	． 037	.007	． 038
	18	－500	． 023	.037	．033	． 033	． 053	． 039	． 039	.007	． 005	． 011
N	19	． 650	＊＊＊＊＊＊	． 043	.044	.1037	． 058	． 060	． 056	． 027	． 032	． 005
$\stackrel{-}{-}$	20	． 780	． 012	． 055	． 073	． 049	.046	． 057	.045	－056	.204	－ 000
	21	． 900	． 019	． 033	． 052	． 0.057	． 053	.053	． 077	． 020	． 028	． 020
	THE	STANO	deviat	IS	BCCURR	at I＝	AND J	6.				

TABLE A.4.- CONTINUED

THE MAX STANDARD DEVIATION IS .39 DCCURRING AT I = 1 anO $\mathrm{J}=7$.

TABLE A.4.- CONTINUED

RJir Aj STANDARJ DEVIATIONS

TABLE A.4.- CONTINUED

THE MAX STENDARO DEVLAIION IS - AK UCGURRINGATI = I AND $J=12$.

TABLE A.4.- CONTINUED

U:JA 27 STANJARD DEVIATIJNS

THE MAX STANOARD DEVIATIUN IS $\quad 44$ GCOURFLISG AT I $=1$ ANJ $J=12$.

TABLE A．4．－CONTINUED

N
N
RUN SO STANGARJ UEVIATIENS

1	x	$Y=-83$	$Y=-83$	$Y=-.7$.	$Y=-9 . j$	$Y=-.4 i$	$Y=-.25$	$Y=-$ U	$Y=-.36$	$Y=0$.	
1	2.030	．\％is	． 114	＊＊＊＊＊＊	－9ゝす	＊ 4 ＊＊＊＊	－ 04	． 1263	－ 452	．003	
2	． 025	.041	－${ }^{4} 1$	－ 342	． 930	．3） 7	－\％2i	． 325	－すi	． 35	
3	． 18	．1116	．130	－．J3j	．${ }^{\text {－}}$	－U33	． 022	.013	． 021	．014	
4	． 160	.019	.334	． 017	． 121	． 30	－ 23	－027	－ij2	． 015	
5	－5：	－ 751	－ 24	． 222	．017	． 023	－نi	.213	． 412	－6i	
6	－ 266	－12	－．22	－ 14	．0．2	． 317	－ 234	． 007	． 009	－05j	
7	－ 250	． 011	． 215	． $0: 7$	．J 7	－ 3 i 2	．614	－ 31	－．2\％4	－60j	
8	－ 36	－036	． 311	.014	． 015	． 344	． 307	． 007	.007	＋ $7 * *$＋	
9	． 460	．0．：7	－cjo	． 210	． 315	－3：3	－13．3	－035	－6こ5	4＊＊＊＊＊	
10	－ 506	－ 0		.012	． 303	． 327	－UJ	． 0.33	－く）	－3\％4	
11	． 650	＊＊＊＊＊＊	$\therefore 36$	－$\therefore 17$	－10j	.026	． 00	． 038	－055	.000	
12	． 700	－ 3.4	－．13	－ 0	－$\because 3$	． 2.5	－¢0	．134	－0：25	.207	
13	.960	． 210	． .14	－\because	． 307	． 307	－ 305	0.335	－ 010		
14	． 20	－ 034	$\therefore .43$	－ ¢ $^{\text {a }}$	． 756	． 35	ค 45	． 248	． 016		
15	－． 100	．021	－ 225	－13	． 23 i	． 357	－ 341	．031	． 271		
15	－ 2.2	.612	－ 15	． 020	． 017	． 922	．010	.012	－ 270		
17.	－ 300	$\because \cdot 7$	－1：？	－19\％	． 318	．J：3	－ 12	． 323	－6ヶ3		
19	． 560	－11：7	． 05	－ T_{1}	． 012	.204	． 011	．313	\＃＊＊＊F＊		
19	． 050	－$\because 5$	$\because 8$	$\because 7$	$\because \because 7$	． $3:$	－6is	－ 42	－cos		
20	.700	－ 35	－．${ }^{\text {d }}$	－63	．307	－ 306	． 034	－ 115	．1．34		
21	－53\％	－ 3	－${ }^{\text {a }}$.304	． 00.4	． 305	． 204	． 412	－65\％		
1	X	$Y=.20$	$y=.25$	$Y=.47$	$Y=.45$	$y=.50$	$Y=.55$.	$y=.63$	$Y=.75$	Y＊． 85	$Y=.85$
1	J．${ }^{\text {r }} 0$	－201	.039	．33i	中＊＊＊＊＊＊	－234	－183	．237	．Uy 3	.072	． 044
2	－025	－35	－ 23 $^{\text {2 }}$	－ 320	． 057	． 164	－ 205	．2， 7	－E03	． 34	.340
3	－ 0 －	． 131	－$\because 17$	．634	． 397	－i59	－103．	． 123	． 065	． 241	． 330
4	． 16	－ 318	－ 23	． 643	－．875	－114	－ 73	.672	－$\because 27$	－323	－ 225
5	－\％	－ily	． 021	． 0.2	． 077	－1\％0	－iご	－026	－623	．31＊	$\therefore 105$
6	－ 2.6	－11	． .127	－\％2J	.777	.041	4tsxict	.017	－6iz	． 211	．0Jd
7	． 254	－411	0.154	－ 123	－${ }^{\text {j }} 7$	－1它	． 16.67	－ 123	－ 617	－ 058	.214
0	－300	－32：	いう	－ 20	－ 54	． 380	.101	． 041	－くさ	．01：	＊＊＊＊＊
9	－ 40	－Jie		$\because \therefore 2$	－ 3 ？	－		＊＊＊＊＊＊	＊＊ 4 444	.012	＊＊＊＊＊＊
10	． 300	． 010	＊＊＊4．＊＊	－6．1．	＊＊＊＊＊＊	4＊＊＊＊＊	． 3 ¢1	＊＊＊＊＊＊	－133	－ 512	－u． 37
11	－ 35	＊＊＊	－$\because 10$	．62s	－33；	． 073	． 007	． $63 ?$	－610	－ 5 cis	． 332
12	.780	－すご	$\because 2$	－3\％	－ 33	． 307	－ 357	－203	． 204	． 045	－ 37
13.	． 904	． 232	.147	.242	． 23 ？	． 342	－ 550	－． 375	．013	．330	． 517
14	－ 406	． 273	－ 3 ¢	$.5+1$	－ 439	－ 194	． 391	． 053	－U15	． 012	． 314
15	－100	－ 223	．123	－ 304	． 214	－ 2 ± 7	－57\％	－． 37	－$i 22$	． 313	． 013
16	$\because 20$	． 202	－037	．12？	－070	． 303	－050	－17）	．6：3	－． 11	－012
17	－ $3 \div$	－53	－ 254	－．134	． 335	.374	－ 667	． 239	． 315	． 033	．036
10	． 500	－04i	． 227	.272	－142	． 143	.367	． 330	－6iit	－3jo	－． 225
19	－ 5 y	＊＊＊＊74	$\therefore 23$	．134	． 133	．135	－083	－0」5	－0．36	－リ	－ن） 4
20	． 780	$\therefore 21$	－10	．12，	－117	－10y	－ 0 O 2	． 035	－0．3	－003	． 034
21	－v－	． 100	．10j	.132	－128	．111	． 05.	． 037	． 039	－Ј J	－034

THE MAX STANDARD DEVIATIUAI IS ． 54 JCCURRING AT I． 2 AND $J=11$.

TABLE A．4．－CONTINUED

2UN TG STANUAKIO DEVGATIUNS

	1	x	$Y=-.95$	$Y=-.35$	$Y=-.7 J$	$Y=-50$	$Y=-40$	$y=-.25$	$Y=-17$	Ya－uio		3.	
	1	3．156	－616	－•品	＊＊＊＊＊＊	－623	＊＊＊＊＊＊	－013	． 935	． 024		－ 214	
	2	－ 025	． 227	－ 272	．011	． 033	． 136	－ 042	－${ }^{\text {a }}$	．075		． 375	
	3	－ 15 ¢	－\％	$\cdots+7$		－35	－ 78	． 342	． 043	． 040		．023	
	4.	－1030	． 2 L	1：2：	－22＋	． 121	． 223	$\therefore 20$	－344	－027		－J． 3	
	5	－15；	． 010	.311	－リ3	． 007	． 225	． 304	． 213	． H ． 7		－ここ1	
	6	－ 26%	－． 27	－： 1	． 617	－ 023	． 2 c	－ 020	． 215	． 014		． 313	
	7	－2bi	－：\％	－ 0.3	．ecs	． 023	． 318	－ 093	． 0.37	． 315		． 120	
	8	－346	． 915	－ 21		． 314	． 314	． 000	． 035	－ن114		\＃ \＃*＊	
	9	－4うく	－نus	－ 307	． 32	－0．73	－ 2.7	－ 127	．01）	．ず）		＊＊＊	
	10	． 500	.311	．004	.007	． 012	.012	－215	－01：	． 250		． 0.44	
	11	－ 05	＊＊＊＊＊＊	－いう	．93＇	，J3？	． 303	－くid	－Di	． 0.34		． 307	
	12	－760	． 0.33	． 203	－ن）	．002	． 304	． 005	－13	－0s4		． 042	
	13	－ 3.0	$\therefore \mathrm{C}$	－ 2.3	－1：	$\because 5$	． 007	． 004	． 032	． 003			
	14	－ 250	．028	－ijs	－${ }^{3}$	． 942	－	． 325	－ 022	． 027			
	15	.100	． 000	． 016	． 323	． 314	－ 320	－ 331	． 022	－017			
	16	－130	－ 3 y	．，1）	． 315	－3：3	． 323	． 020	． 013	． 224			
	17	.300	.008	－1．0．	.312	－023	－ 300	－ 3 Ce	． 12 ；	－ 53			
	10	． 3 i.	－6\％	－\％ 2	$\because 15$	． 005	.010	－0uo	．13）				
	19	．030	－92	－ 3.6	．$\because 8$	－3is	－ 322	－فio	．03）	－0いう			
	20	． 780	．©c3	． 37	.094	－ 025	． 317	． 604	．232	．0：3			
	21	． 460	－Lic 5	－ins	． 364	． 067	－ 3 U9	． 409	． 009	． 004			
	1	x	$\gamma=.12$	$Y=.38$	$Y=.4!$	$\mathrm{Y}=.43$	$\gamma=.20$	$y=.5 j$	$Y=.60$	$r=.75$	$r=$	－ $8 j$	$Y * .75$
	1	3.600	－1：くi	0.018	． 027	＊＊＊＊＊＊	． 314	．414	． 035	． 011		． 204	． 000
	2	． 325	． 045	．363	．975	． 270	． 378	－165	－ 35	． 621		－235	－ 148
	3	－AER	－1530	．． 33	． 953	． 020	． 227	－ 03	． 1045	.104		－ 355	.327
	4	－1 un	－1．12	－ 31	． 337	． 345	－ 12	． 043	． 023	． 022		－223	． 022
	5	－150	． 288	． 213	－224	． 634	． 332	－ 014	， 026	－0くら		－ 315	－6i5
	6	－ 26	－ 57	－¢2，	．62？	． 025	． $31=$		． 013	．013		.037	．037
	7	－zivi	． 019	－ 13	－ 214	． 1.97	.913	－ 07	－ 22.	－100		－1．0	－320
	8	－36．	.016	.015	．0．33	.323	． 314	－61	． 013	．195		．329	\＃ちゃ\＃＊＊
	9	－ 46	$\therefore \therefore 29$	＊4＊＊＊＊	$\because \because 14$	． 011	． 205	－063		4＊＊＊4．		．023	＊＊＊4＊＊
	10	． 560	－ 35		． 123	＊＊＊＊＊＊	4＊＊＊4＊＊	－ 123		． 615		． 20	－ココ？
	11	－ 0	＊＊	． 203	－Bio	． 307	． 208	． 005	． 0.95	－し23		－ 043	． 032
	12	． 780	－1： 10	$\because 3$	$\because 3$	－ロ3j	－ 1.3	－ 11.14	－ 202	－CO2		． 003	－U＇2
	13	－ 70	－ 0 O	． 3.3	－ $23+$	－ 233	－3． 3	－ 204	． 0.17	－ 0		－132	－3 3
	14	－j三0	－ $1+2$	$\because 24$	． 04.4	． 333	． 1347	． 215	． 025	－013		－03j	． 325
	15	． 100	$\cdots \dot{i}$	－${ }^{-2}$	－ 2 ？ 3	－ 25	． 397	.241	.034	． 020		－ 223	． 319
	26	－ 240	． 026	.012	－05	－ 029	.017	． 907	． 017	－ $1: 6$		－ 203.	－ 017
	17	－ 30	－小き	$\cdots ?$		． 212	． 013	． 018	－ 123	． 6.15		－2．3	－033
	18	． 50.1	－\therefore ct	－$\because, 7$	－．ij	－ 280	． 2.4	－ 6	－〕J7	． 005		－U心う	－0uj
\ldots	19	－ 550		－23）	.313	． 230	－355	.275	． 317	$\cdots{ }^{\circ}$		－25	． 134
N	2%	－78．	$\therefore 3$	$\because 3$	． $2: 0$.353	－ 245	－303	－J3	．204		．005	． 003
\checkmark	21	.800	． 006	．207	－ 210	－ 065	． 3134	－itio	．034	．6．3		－ 55	． 316
	THE	stand	deviat	IS	UCCURR	Ar I＝	AIVJ J						

TABLE A．4．－CONTINUED

1
N
∞
∞
RUN 71 STANOARJ JEVIATIUVS

I	x	$Y=-.95$	$Y=-35$	$Y=-.10$	Ya＝．${ }^{\text {a }}$	$Y=-.40$	$Y=-.25$	$Y=-19$	$Y 0=.36$	$y=0$.	
1	0.000	． 047	． 034	＊＊＊＊＊＊	． 035	＊＊＊＊＊＊	． 051	． 040	.073	． $31+$	
2	－1；？	． 2.27	－143	． 175	． 293	．．665	． 042	． 064	． 073	． 311	
3	－ 0	． 023	－ 344	． 023	． 343	1．3？	． 315	． 275	－642	－315	
4	－180	－18	．034	． 324	． 245	． 211	． 034	－ 0.30	． 017	－094	
5	－130	－011	－ $\mathrm{j}^{\text {o }}$	－0．40	． 634	． 025	．028	．011	． 224	． 026	
6	．260	． 017	． 013	． 0.94	.005	.311	.006	．113	－612	． 1111	
7	－ 250	－65	－uld	－．095	． 010	.007	． 021	． 311	． 013	.037	
8	． 300	－ 0.5	－611	．3！	． 212	． 215	－ 014	.212	.010	＊＊4＊＊＊	
9	.400	－010	． 45	.013	． 204	－ 312	－U0゙？	． 011	－：23	＊＊＊＊＊＊＊	
10	－ 30	．id 7	－$\because 07$	－J）	．． 077	． 304	.004	－034	． 005	． 007	
11	． 650	＊＊＊＊＊＊	－ 303	．033	． 035	． 033	． 0.01	0.315	－1， 7	－＇8： 4	
12	． 760	．135	$\cdots 2$	．0．5？	.005	． 003	.004	． 092	． 063	． 203	
13	－9．．	－$\because 14$	－W2	－0゙っ	． 333	－ 203	．905	.003	． 003		
14	－ 35	－34．	0.17	－ 0.3	－927	． 225	． 018	． 337	． 62		
1\％	－\therefore ：	－ $3.4{ }^{\text {a }}$	－． $\mathrm{L}^{\text {J }}$	． 2.4	． 217	． 227	－ $22 ?$	． 022	.013		
16.	－ 200	． 125	$.11+$	－． 3	． 3.3	－ 34	－くい	－ 22	－i 2 ？		
17	－ 30	．932	． 007	． 045	． 312	． 110	$0 \because 7$	0.123	－－\％		
18	－ 500	－6゙つ	－¢？${ }^{\text {a }}$	． 2.27	． 3.34	． 1.2	． 225	n．）12	＊＊＊＊＊		
19	． 550	－ 203	． 004	－335	.317	.302	． 304	－．）25	$\cdots 1$		
20	． 730	． 22	．034	． 0.24	． 044	． 254	.002	． 002	．203		
21	.900	．1363	． 205	． 2.47	． 235	． 0.33	－ 67	． 324	－ 2 3		
I	X	$Y=.10$	$Y=.25$	$Y=.43$	$Y=.45$	$\gamma=.50$	$Y=.55$	$Y=0.3$	$Y=.75$	$Y=.85$	$y=.45$
1	2.000	． 050	． 960	－ 2 l	＊＊＊＊＊＊	.932	－23	． 374	．028	．055	． 016
2	.025	． 072	． $4>7$	－ 804	－ 3 c 7	． 348	． 236	． 347	． 522	．：347	．351
3	－． 50	．C61	－ 223	－047	＝ 033	． 050	． 040	． 033	． 070	． 022	－035
4	－ 10.6	－ 028	－©53	－．35？	． 351	－ $2 \geq 3$	． 344	． 050	－リ33	－ 31	－ 0.9
5	－250	． 037	$\therefore 11$.011	． 015	．011	． 02.4	.325	． 027	． 322	．3）4
6	． 260	－ 221	－：15	． $5: 7$	． 007	． 312	＊＊＊＊＊＊	.013	． 214	． 223	． 912
7	－ $2=0$	－621	$\because 3$	． 027	． 014	－ 2.2	－ 095	.0 .37	－is 5	－13	－ 313
E	－ 300	． 01.1	． 213	－012	－ 020	． 035	． 329	－ 225	.3 .34	－3）4	＊＊＊＊＊＊
9	． 4.60	． 107	4＊4＊＊＊	． 3.17	．009	．024	－ 303	＊ 4 ＊＊＊	＊＊＊＊＊＊	． 003	＊＊＊＊＊＊
10	－560	.005	－＊4＊＊＊	． 275	47＊＊＊＊	＊＊が＊＊	.803	＊＊～＊＊＊	．i． 3	－6is	． 915
12	． 5.	4＊＊＊＊＊	－1．j3	－+2	.004	． 003	－605	． 3.35	． 003	－002	－1］ 3
12	． 7 sc	－001	－19	－ 3	－1163	．033	－ 563	． 003	．002	－ 3 J	． 303
13	.900	． 203	－6．5	－05？	． 235	． 233	－ 263	． 333	．034	－321	－3J4
14	.250	－$\because \cdot 5$	． 124	－ 127	．012	． 213	.114	－1027	． 016	.020	． 313
15	． 100	． 027	－ن̇23	－1）13	． 731	． 217	． 222	． 223	． 237	－ 37	－© ${ }^{\text {a }}$
16	－20，	． 615	－01j	．025	． 212	－． 23	． 617	．01\％	－011	－ग3．	－J）9
17	－ 30.3	－6．：	－112	． 715	837	－Jig	． 067	． 013	．035	－コこう	－037
18	－ 500	－Jus	－\％${ }^{\text {at }}$	－037	． 23.14	． 337	－icia	－323	－008	－203	－033
19	． 650	＊＊＊＊＊＊	． 063	． 231	． 004	－203	． 005	． 020	－ 00	－ $3 \dot{4} 3$	．033
20	.700	－DC5	－¢3	－6， 63	. .93	－ 14	－j05	． 3.35	.003	． 005	． 032
21	.900	． 361	.193	.203	． 004	． 3.4	－\％ 0	． 0.94	． 634	． 353	.303

THE MAK STANDARD DEVIAILOA IS ． 10 JCCINRINGATI 2 ANO $\mathrm{J}=13$.

TABLE A．4．－CONTINUEY
RUN ？STAVOARU DEV，ATIONS

	I	X	$Y=-.55$	$y=-.85$	$Y=-.7)$	Y＝－－5	$r=-4.4$	$Y=-.25$	$Y=-0.3$	$Y=-.26$	$\gamma=0$.	
	1	コ．ここ0	． 246	． 7 ci	4＊＊＊44	． 282	＊ 4 4＊＊	－052	－12）	－ 263	． 215	
	2	－ 225	． 035	－．je3	－0：7	． 063	． 384	－083	124	－ 675	． 34	
	3	－ 253	－边？	－139	－$\therefore .7$	． 372	． 235	． 590	． 031	－© 1	． 335	
	4	． 26	． 015	.334	－023	.033	．359	.037	． 028	－ti？	.317	
	5	－」ジ	$\therefore 2 \%$	－1i	－：1？3	－\％${ }^{3}$	． 019	． 021	．011	－6．15	． 117	
	6	． 280	－608	－ 2.1	－ 112	－2il	－$) .5$	． 015	． 310	． 011	．013	
	7	． 250	．014	.207	－934	． 207	－Jió	－ 0 － 7	． 0.99	－6j4	.207	
	8	． 326	－1．27	$\because 4$	－！ 03	．015	． 02	－¢jo	． 205	－こ05	4＊か＊${ }_{\text {a }}$	
	9	． 400	． 004	－0．0	－625	． 027	． 339	． 30	． 114	． 074	＊＊＊＊＊＊	
	10	－54：	－$\because 4$	0.91	－． 202	－10？	．Jj2	． 004	． 0.93	． 000	．00？	
	11	－ 6	4＊＊＊＊＊	－$\because 3$	－$: ~$ ？	－3：	－322	－． 63	.005	－605	.003	
	12	－700	． 034		－5ご	$\because \%$	． 334	－ 3 ¢4	$\because \because 3$	C）	－Ju゙	
	13	． 916	－B4		．0．1	． 304	． 213	．601	－93）	． $0 \cup 7$		
	14	－030	．01\％	．1．1	－ 037	－ 31	－ 32	－318	． $1: 1$	－ 23		
	15	－1：	－\sim^{4}	.017	．01．	－） 3	－J26	－0ご	.015	－ 25		
	16	－ 36	－ノ5	－い。 7	－ 1 j	－23）	． 710	.020	.017	－ 122		
	17	－ 30 C	－6．3	．05	－！${ }^{\prime}$	．1939	． 3.35	． 2 O	－．913	． 21.		
	18	－bit	－心63	． 1114	－ 3.9	－．304	． 236	． 008	． 003	\＃＊ 4 4＊		
	19	． 550	－ 0.2	－uju	－ 312	－ 387	． 2.1	－ 263	－C．$) 1$	－633		
	20	－ 7 c ：	－$\because 1$	－ CO 2	． 203	－ $3: 3$	－3＞8	－6i？	． 302	－ 02		
	21	－ 76.5	－以1	－． 3	． 13	－ $5: 3$	． $2: 5$	． 001	． 002	． 0.33		
	L	x	$y=.12$	$\mathrm{Y}=.25$	$Y=.4 .2$	$Y=.45$	$\gamma=.50$	$Y=.55$	$Y=.63$	$\gamma=.75$	$Y=.83$	$\gamma=.73$
	1	3.332	－ 144	． 163	－18＇		．1：2	－ 0.95	． 264	－634	． 050	． 042
	$?$	－ 25	． 1049	． 0.09	－034	－ 344	． 238	－ 161	－623	－65	－635	－． 323
	3	－$\%$.937	－． 31	－925	－¢59	． 254	.243	． 564	－いう	． 011	． 037
	4	． 100	.021	－ 122	－01\％	.1945	． 317	． 015	． .139	． 415	．353	． 33
	5	－とち，	$\therefore 23$	－ 37	\cdots	． 214	． 317	．017	． 21.	． 310	． 317	－ 25
	6	． 2.20	－U4 ${ }^{\text {a }}$	$\ldots{ }^{\text {a }}$＋	－$\because:$	－ $2: 7$	－3－2	＋4＊＊＊4	． 315	－ 60.1	－0u2	． 033
	7	． 250	－ 307	－$\because 12$	－31．	． 314	． $3: 2$	－0：1	． 115	． 012	－ 50	－6ij
	8	－35i．	$\because 3$	． 13	－ 3.13	＝ 35.3	． 312	－U59	． 211	． 205	． 002	＊＊＊＊＊
	9	． 400	.232	－ $4+44 \%$	－6：7	． 10.4	－ 5	． 30	4＊＊＊＊4	444444	－3jo	＊＊＊＊＊＊
	15	－${ }^{\prime \prime}$	$\cdots ?$	4444＊＊	－ 034	＊＊＊＊＊＊	$4 * 74 x^{*}$.004		－103	－ 32	－ 203
	11	－650	あ＊＊＊が	－1：3	－3．j	－）？	．034	． 001	． 233	－034	．032	－032
	12	． 780	－50	－ 3 ¢	－$: 1 .: 7$	． 33	． 2144	－：03	． 173	－¢\％	． 062	．034
	13	－ 7.0	－61	－＇以く	－202	． 201	－ 302	． 002	－ 0.3	． 002	． 004	.032
	14	－Jic	． 110	－$\because 1$	． 3 ？	$\therefore 22$	． 233	－ 29	－ 12 S	.011	．015	． 021
	15	． 160	－ن゙こ？	－ぐっ	－ 3.	．313	.387	． 625	． 22	－ 2.29	．3i7	－ 123
	16.	－2：5	－ 314	－122	－02．	． 212	． 238	.011	.014	－らう」	． 217	－ 35
	17	－3nc	－ 010	.157	－ $3: 1+$	－ $3: 5$	．） 37	.012	． 270	－635	． 613	． 634
	18	－らすい	－0．1	． 007	.034	－ 202	． 203	－cos	． 005	． 1.7	－621．	－6j3
	19	－356	＋4＊＊＊	－I－1	\cdots i？	－ $2: 3$.109	． 003	.003	－00．5	.203	． 234
N	20	－780	－53	－ 92	． 3 j	－$\therefore 2$	－ 102	－ 0.3	． 032	－693	.203	－ 0.93
10	21	．+20	．006	． 10.3	． 2.33	－0゙5	－ 303	－${ }^{\text {¢ }}$	． 083	－623	.202	． 201

THE MAX STAHDARU DEVIATIUNIS－ZO ICCJRRIJJ ATI＝ 1 AND J．E．

TABLE A．4．－CONTINUED
$\stackrel{\rightharpoonup}{\omega}$
RUH 73 STAYDARO DEVLATIJ：S

1	x	$Y x-85$	$Y B=.35$	$Y=-.7 \mathrm{~J}$	$y=-.5)$	$Y=-10$	$Y=-2$.	$Y=-.1{ }^{\prime}$	$Y=-.26$	$Y=3$.	
2	2，i， 0	．844	－$\dot{\square}$	＊＊＊＊＊＊	.049	4＊＊＊＊＊	． 000	． 343	.202	． 225	
2	．J2：	－c32	－ 23	－ 573	． 1357	． 123	－ 245	． 733	． 012	．03．	
3	． 050	－054	－ 220	．0．3	.342	． 370	． 637	－945	． 043	． 333	
4	． 3 L	． 377	－\％	． 021	． 221	． 337	.217	． 215	． 019	．032	
5	.150	－01E	－ 0	． 211	.017	．32\％	． 1524	－ご）	．6．8	－ 35	
6	． $2: 30$	$\therefore \because 7$	－$\quad 7$.015	.019	．01）	． 216	．013	．0：3	． 34	
7	．2：0	－	－17	－01；	.013	． 3.17	－665	． 007	.034	． 305	
8	－ 300	－0．0．	． 193	－0）3	． 135	． 235	． 047	－ 09.9	．ij4	＊＊＊＊＊＊	
9	－+0	． 214	． 05	－\because ？	． 305	．3こ4	－${ }^{\text {cos }}$	． 024	－ 0 io	＊ 4 4＋4＊	
10	－Ju	． 3.54	－！	． 232	． 064	．1ヶ3	－-2	． 373	－i：3	－ 03	
11	－ 5 －	＊＊＊＊＊＊	． 022	－035	． 306	．035	－ios	．37	．01）	－3．32	
12	－7らう	－1）	．13	－i：？	． 303	－ $3 \cdot 4$.003	． 002	－ 00	． 007	
13	． 920	． 022	．05？	－6．3	－ .12	． 232	－$\because 2$	． 393	． 53		
14	－ 55	.014	．is 9	． 3.7	． 523	． 225	． 014	． 012	． 007		
15	． 100	－j！	.127	． 13.3	． 321	－ 34.	－119	．317	－ 27		
16	－	－057	． 097	－ 221	－34\％	． 239	． 0008	－ 012	．0i3		
17	． 310	． 0.9	－ IF^{+}	－61	． 112	－35	． 0 ud	． 236	．037		
18	． 200	．0．32	－．${ }^{2}$	－${ }^{\text {a }} 3$.314	． 395	－ $0^{\text {a }}$	－ 37	＊＊＊＊＊＊		
19	．656	．0） 1	－1．2？	． 2.3	.203	． 034	． 004	． 0.33	． 092		
20	． 780	－$\because 3$	－Ju3	．7！？	－ 7 ？	． 313	－vol	.393	－ 614		
21	． 400	－002	－002	． 2.14	． 0.3	.0 .33	． 203	－3 33	－ن） 7		
I	X	$\gamma=.19$	$Y=.23$	$y=0.7$	$Y=.45$	$Y=.50$	$Y=.5 ;$	$Y=.6 i$	$Y=.75$	$\gamma=.87$	Y＝．45
$\frac{1}{1}$	3．16is	． 6.95	．039	． 023		．174	－ 383	． 1.97	－ 555	－ 251	－217
2	－Jご	$\cdots 44$	－4．95	． 135	． 347	－ 567	． 074	． 083	－Cob	．035	－216
3	－ $3=0$	． 234	$\cdots \pm 7$	－$\because 3$	－13j	． $3+4$	－ 37	．054	．055	．05j	． 315
4	－130	－$\because 33$	－154	.217	． 330	． 315	－ 434	． 016	－i．うs	． 023	． 393
5	－120	．615	－$\because 13$	－1！	． 121	．221	－ 25	．：23．	－23	．03？	－0．）
6	． 200	－014	．0： 0	－ 21.4	． 314	． 320	\＄4＊＊＊＊	－ 9 －${ }^{\text {a }}$	． 611	－037	－jo
7	． 250	－$\because 11$	－． 7	－ 519	． 023	． 306	． 017	－035	－010	． 307	－$-\sqrt{5}$
8	－ 300	－6， 7	－ 19		－ 1 \％	.304	－ 9.97	． 210	．097	．005	＊＊＊＊＊＊
9	．430	． 6.65	－ $4.74+4$	－：35	． 303	． 235	－020	＊＊ 4 ＊＊	4＊＊4＊＊	． 5.23	＊＊＊＊＊＊
10	－ $5: 0$	$\because \therefore 6$	＋＋＋＋＋ 4	－ sit	＊＊＊＊＊＊＊	$4 * * * 4 *$	－\therefore 19	\＃4004\％	．031	－ 004	． 292
11	．650	＊＊＊＊＊＊	－ 09	－913	－3：？	－らら3	－61\％	－ 373	－C． 3	－こ：3	． 004
12	． 7013	． 1002	－10？	．035	－ 002	－ 302	－002	－394	－035	－$\because 2$	－6j3
13	－ジせ	－1！ 5	－ 13	－．1．3 3	．0．3	－J 3	－503	－233	－053	． 061	－002
14	－320	.019	.021	－12\％	． 212	－0：9	－ 017	． $2: 3$	－t．7	－ $2+5$	－ 312
15	－$\because 6$	． 221	．．14	.824	.014	． 315	－ 41	． 027	． 613	－ 209	－． 37
16	－2 U	． 214	－113	－322	－ 220	．$) 15$	$\therefore 7 \% 7$	－2\％	． 012	－コゴ	． 0.7
17	－300	．01\％	．131	－ 300	－007	． 200	－ 1 ó	－311	－6゙す	－ 20.3	－6，5
16	－ 8 \％	－．7．4	－ 32	.847	.003	． 234	． 365	－00．5	． 037	． 005	． 024
19	． 630	＊4＊4＊	． 034	－033	－ 964	－り 2	．\because	－ 2.83	－6．12	． 033	－0．）1
28	． 7 स19	．003	．003	． 092	． 030	．032	． 001	．023	－D¢9	－ 3 O	． 021
21	－ 9 －	． 176	． 012	－7：3	．j） 1	.002	.005	． 322	－ 02	． 001	． 022

THE MAX STAMDARD DEVIATIUR IS ．i7 UCCURRIVGATI＝I AND J $\quad 14$.

TABLE A．4．－CONCLUDED

RUUTH STANDARO DEVSATIUNS

	I	x	$Y=-.70$	$Y=-. E ;$	$Y=-.7 ?$	$Y=-.9 \%$	$r=-.40$	$Y=-.23$	$Y=-.10$	$Y=-.06$	$y=2$.	
	1	2．300	． 045	－23		． $2 \times$	＊＊＊＊＊＊	． 0.39	． 273	－15？	． 333	
	2	． 225	．034	.643	．132	.117	． 147	1.640	． 513	． 0^{4}	－52	
	3	－ 295	． 749	－$\because 3$	－135	． 217	． 293	． 030	.013	． 005	． 025	
	4	.100	－） 25	－13	． 237	．2こう	－3：3	－1＇25	．113	． $2: 7$	－）	
	5	－らう	－\therefore 方	－$\because 7$	－315	.014	． 322	． 212	． 005	－6こ1	． 211	
	6	－2in	． 212	－${ }^{\prime}$	－$\because 2$	． 212	． 3.35	－ 13	．01）	－Cuj	．20＇	
－ 6	7	－ 250	－ 30	－$\because 14$	－035	－Sit	－Jó	－307	－21）	$\therefore \therefore 2$	－ 30	
Q	8	－ 360	－${ }^{\circ}$	－\％3	－20． 3	－ 327	． 305	－307	.012	．025	＊＊＊＊＊＊	
	9	． 480	－ 0 －	－	．054	． 23	－ $3: 2$	． 303	－5！ 3	－ 225		
	10	－3，	$\because \because 4$	－i）${ }^{\text {a }}$	－003	． 0.3	－ 3	－joij	． 223	－39	． 2.97	
	11	－553	＊+ ＋ 4×4	$\because{ }^{*}$	－ 315	． $2: 7$	－ 3.2	－ 309	． 007	－C． 3 s	． 234	
E	15	． 130	－ 36	－20！	． 315	\cdots	－2is	－نuit	．019	． 32	－6さ7	
	\cdots	． 400	． 206	－ 22	－ 0.1	－『3	－．302	． 007	.017	－623		
E	14	． 9 ¢	． 014	－134	－+2	－ 3_{1} ？	－jus	－ 28	． 215	－ilj		
雪	15	－ $1 i^{\circ}$.010	－ 0	． 113	．31\％	.310	－ $2: 7$	－315	－ $1: 1$		
	16	． 20	．636	－तo	$\because \therefore$.016	． 314	． 005	.217	．015		
	17	－ 300	． 005	$\because 3$	：こ2	． 33	． 313	． 97	－ $0: 3$	0.013		
	18	－36	－こう2	． 8	\because	． 304	－003	． 805	． 004	4＊＊＊＊＊		
	19	－ 0 灾	－？23	． 22	－ジ．	－343	．31i	－di3	c 233	－bioj		
	20	． 780	．063	． 301	－＇）${ }^{\text {a }}$ ？	－ 37	． 3.3	－らご	－\％\％	－6．2		
	21	－ 0.0	－ $3 \cdot 2$	－\therefore ？	.914	.003	．0U1	． 200	．CJj	． 011		
	I	x	$Y=.1 .15$	$Y=.2 j$	$Y=.49$	$Y=.45$	$Y=.51$	$Y=.55$	$Y=0.03$	$Y=.75$	$Y=.25$	$Y=.45$
	1	3.180	．957	－ニ゙ ${ }^{\text {a }}$	13：5	4＊＊＊4＊	－：\％	．103	－197	．072	．127	． 114
	2	－ 325	－ 115	－ 033	．032	．059	－374	． 132	－093	． 241	－ 373	． 325
	3	－\％2	－ 32	－．33	． 15	－8is	． 216	－ 51	－323	． 6.60	． 009	，043
	4	.100	． 01.10	－ 419	． 013	． 317	． 327	－＊is	－\％）	－ 30	－ 3 35	－． 112
	5	－15		－${ }^{-1}$	．${ }^{\text {c }} 3$	． 263	.307	－ 115	． 520	－615	． 213	－S）
	b	－200	$\because 2.1$	－：i ；	． 214	． 313	． $2: 3$	＊4＊＊＊＊	． 007	． 021	． 207	－Uuo
	7	．250	．011	． 415	－ 35	，1）	－小さ	－ 03	.303	－635	． 2.15	－3） 7
	8	－36	－ 14	－ 2.4	－$\because: 4$	．305	． 329	.309	－0こう	．033	－ 512	＊＊＊p＊
	9	－ 40	－1．37		－ 34	－ 93	． 315	－3：－${ }^{\text {a }}$	＊＊4＊4＊	＊44＊＊＊	－ 2.3	＊4＊＊ら4
	10	.3 .0	．．013		－33	4＊＊＊＊＊	＊＊＊＊＊＊	－ 05	444．4\％4	－7：3	－ $2=$	． 230
	$1 i$	． 557	＊$+4 * 44$	－$\because 3$	－j3j	． 0.02	．033	.003	． 004	． 004	－231	． 022
	12	． 750	－$\because 5$	－$\therefore^{1} 2$	－ 0.3	$\because 3$	． 212	－ 202	．0．22	． 0.14	－cot	． 034
	13	－ 70	． 15	－1：17	$\because 33$.302	.001	． 0104	． 233	－004	． 333	． 2.22
	14	－\％ 0	，17	．117	$\because 3$	． $01 . j$	－） 17	－64	.017	． 005	． 013	． 313
	15	． 160	$\therefore 12$	－107	． 221	． 322	－ 122	． 213	.210	－［23	－31：	－ 113
	16	， 210	－$\because 17$	－133	－03）	．2ij	－627	． 224	．21\％	－ 05	． $3: 3$	－U10
	17	－ 361	$0 \cdot 94$	－ 20	． 116	－ $11:$	－$\stackrel{\wedge}{ } 7$	． 005	． 027	－0．3	－ 03	－0J6
	16	－ 2 cc	． 003	． 803	．07\％	－ 03	－907	． 005	－0）	－\％	． 3.3	－1；${ }^{\text {a }}$
－	19	－75＂	＊＊＊＊＊	－！	－ 3	． 205	． 203	－ن． 03	． 834	．0．7	． 301	． 273
$\underset{\omega}{\omega}$	20	.700	－	0	1．23	－シi： 2	，i） 2	． 623	．002	． 032	．002	．UJ2
	23	． 700	－c00	． 322	． 0.04	． 273	． 322	.004	9．35	－ 21	－i3？	－1）3
	THE	S SAMO	Oc．viai	15 i	4 EこCJSK	AT I＝	4，J	6.				

TAELE A．5．－TARE RUN（RUN 69）－PRESSURE MODEL
（a）Integrated results．

RU：E9 section boirficients						
」	γ	LFFT	ALPTASJas	LIFT FKOY	ALPHAJUSS	CL LOI．u EJGE
1	－． 96	－\therefore－ 4	－17：		．10；8	－：0？
2	－． 50	． 3.7	－1：4		． 012	$\therefore 33$
3	－．7\％	$\therefore 1$	－128		． 014	． 203
4	－． 5.4	0%	． 188		－1．07	－ 02
，	－．45：	．．025	－162		． 317	－ 034
t	－．205	\cdots	－ 59		－230	． 004
7	－． 100	－ 3	－ 970		－u32	． 6.67
0	－．	$\therefore+$	\therefore－tob		．0＇s2	． 312
9	O，\because \％	． 136	4＋4＊＊＊＊		＊＊＊＊＊＊	\％＊＊＊
15	－$\because:$	．． 117	－176		－6j3	－ 212
\because	－6：	－．．44	－ 44		－6，？	． 611
12	－40\％	－ 514	－+67		－ib！	$\because \because 11$
13	－45，	－034	－458		－64	－ il $^{\text {a }}$
24	－リ！	－132	． 455		－ 0 at	． 012
13	－ 0	． 337	－477		．C53	－212
10	－ 0.	$\therefore 37$.+74		－6is	－ $31 ?$
17	－ 10.5	$\therefore 5$	－+13		－6\％ 4	\cdots
15	－	． $0 \cdot 4$	－309		． 042	－
19	－92r	－$\because 19$	－409		－6シ	－621
lond coefficients						
		Liff	vg mJMENT			
Left widg		－ 6	． 2017			
RICHI WInc		－9\％	－．6333			
total		． 020	－．0．23			
FEDSA ALPriasubs		． 034	－． 0.940			
OAVE $=3301.97$	PSF					
TEMP $=28$. DEG	－cent	Barli ：	29.91 ［H．			

（b）Surface pressure coefficients．

	1	y	$r=-.95$	$Y=-.0 .5$	$Y=-.7$.	$Y=-59$	$Y=-40$	$Y=-2 ;$	$y=-13$	$Y=-.36$	$\gamma=3$.	
	1	2.000	2．0゙2	2． 3	＊＊＊＊＊＊	：．O． 3	＊＊＊が如	1024	． 9 9\％	．833	． 112	
	2	－ 20	－． 245	－-73	－．223	－－321	－． 297	－．3j	－．341	－．530	$-.527$	
	3	－」と	－． 3 \％	－．3：3	－．330	－．3．3	－．301	－． 344	－．432	－． 498	－．5う5	
	4		－．33\％	－．377	－．35゙	$-.103$	－．413	－． 305	$-.+15$	－．472	－．jı）	
	5	－ 5 ¢	－．3？4	－．te7	－． 373	－． 275	$\cdots .381$	－．363	－．39，	－．430	－．443	
9	6	－23\％	－．らす。	－． 143	－．15；	－．3：？	－． $\mathrm{j}_{5}^{5} 3$	－．53	－．3ni	－23i	－．4J3	
	7	－ $2:$ ：	－．2u＇	－． 3 － 1	－． 334	－．332	－．350	－．337	$-.343$	－．3i9	－． $37 ?$	
08	8	－Si．j	－．24：	－．37\％	－．2\％？	－29\％	－．295	－ 303	－． 315	－．32i	＊＊＊＊4＊	
	9	－4c．	－． 274	－．211	－．23i	－． 234	－． 234	－．232	－． 233	－．24：	¢ $4 * * * *$	
\Rightarrow	20	－5：	－．－ 74	－． 2.4	－． 317	－？ 27	－．$\because 2$	－． 205	－． 198	－．20．34	－．337	
	11	－ 56	W＊＊＊＊＊	－．1．s，	－． 3 ？	－ 233	－－ 3	－0．21	－． 212	－\＆\％	－0090	
¢	12	． 76.	－．054	－． 05	－．j13	－．972	－． 361	$-.053$	－． 123	－13	． 37	
2	13	－\％－	－\because－	－ c^{7}	－us	．1．3	－394	．362	． $1: 2$	－ 5 ： 3		
	24	－356	－． 299	－． 1.35	－．332	－．321	－3こう	－． 274	－．234	－－ 5 ± 3		
	25	－．\quad－	－． 3	－． 172	－．37．	－．372	－． 3 t 2	－．3E3	－ 3 H7	－． 347		
－85	16	－ 200	－． 274	－0．$\square_{\text {c }}$ l	－．3．2	－．33\％	－ 329	－－ご	－4377	－．3y1		
	17	－sus	－． 275	－．31？	－．3．1	－．312	－． 365	－．323	－．372	－． $3: 5$		
	18	－ $3:$	－ $2 \div 6$	$\rightarrow \therefore$ ？	－． 3.5	－．．275	－．153	－． 290	－．152	＋7＋44＊		
	19	． 050	－．0゙ら1	$\rightarrow-\mathrm{SC}_{4}$	－．113	－． 103	－． 359	－．000	－． 814	－． 0.41		
	23	4.7	$\cdots 3$	$\cdots \because$	－．143	$-.073$	－． 372	－．032	－．071	－＊＊？		
	21	－4C	－วล3	．－7．	$\cdots=$ ？	． 224	．0．03	． 96.	． 131	． $1 \leq 7$		
	I	x	$Y=.10$	$Y=.2 i$	$y=.4 y$	$y=.4 ;$	$\gamma=.59$	$Y=.5 ;$	$Y=.53$	$y=.75$	$Y=-8 ;$	$Y=.75$
	1	0.35	1． 20.3		－．111	4＊＊44＊	1.911	－an ：	20：？${ }^{\text {a }}$	j．LuI	1．i．：	1．220
	2	－12\％	－． 447	－．533．	－． 51%	－． 375	－．363	－．38j	－． $3+2$	－． 35	－． 341	－．237
	3	－．．＂	－． 4%	－．4．．$)$	－．44\％	－．65．	－． 240	－．454	－．－37	－．4．4	－． 363	－．370
	4	－ 20.1	－．423	－．，is 3	－．4：3	－．412	$\cdots .4<3$	－．41\％	－． 410	－ジッ	－41）	－． 97
	5	－－－	－$\because 7$	－．124	－0， 3	－．3）4	－．302	－．35i	－． 305	－． 375	－． 371	－．331
	6	－2is	－． 575	－．353	－．3．7	－ 303	－． 30 ？	＊い84＊＊	－．303	－ 342	－ 3 3？	－．237
	7	－250	－．347	－． 314	－． 334	－． 331	－．35	－． 334	$-.33+$	－．3こと	－ 0.15	－．254
	8	． 2.0	－． 33.	－．1．7	－．314	－． 234	－．315	－－35	－． 111	－．323	－．317	＊＋＋＋＋
	9	． 400	－． 241	$47+108$	－． 6.95	\cdots	－． 243	－ 642	＊＊＊＊＊＊	＊＊＊＊＊4	－020	＊＊＊＊＊＊
	13	－5i：	－． 220	＊＊＊＊＊＊	－ 292	＊＊＊4＊＊	＊＊＊＊＊＊	－．Cij	$* * * * * *$	－ 2979	－．140	－ijo
	11	－3ti	4444＊＊	－． 21	－． 2.20	－．12）	－．+32	－．14）	－． 137	－．137	－．137	－ 111
	22	－ 700	－0．13？	－0．23		－-275	－．j35	－vir		－．301	－027	－．033
	13	－96\％	． 23	－to？	． 193	． 042	－ 535	－． 192	． 385	． 232	－69＋	－ 717
	14	－i	－．27	－032	－．207	－． 273	－－ 70	－． 20 ，	－255	－ 23	－．221	－ 1274
	15	． 160	－．35\％	－．1E）	－．3）	－． 332	－．3\％3	－93う	－．303	－ 37	－．377	－．337
	$i 6$	． 213	－． 353	－．311	－．323	－． 323	－． 344	－． 344	－． 331	－ 5 E	－．315	－．275
	17	－ 366	－． 257	－－¢	－ 23.3	－． 292	－． 2 － 9	－． 293	－． 257	－．305	－． 341	－． 262
	18	． 56	－．jol	－． 203	－． 1 ci 3	－． 174	－．175	－183	－． 182	－． 145	－ 543	－－jう
	19	－35	＊＊＊＊＊＊	－ 39	－ 84	－．197	－． 297	－．103	－． 105	－．124	－．112	－．．3）
ω	20	． 780	－．3u7	－03？	－．152	－．653	－． 255	$-2.29 ?$	－．73\％	－． 236	$-.043$	－．034
ω	21	． 760	． 18.5	． 12 J	． 114	．072	． 074	－60\％	．070	． 6.52	．341	.379

TABLE A．5．－CONCLUDED．
（c）Standard deviations for pressure coefficients．
RJN 3 StaNLANO JEVIATLUVS
134

1	λ	$Y=-.58$	$Y=-.6 ;$	$Y=-.7$ ：	$Y=-0.2$	$y=-97$.	$Y=-.25$	$Y=-i j$	$Y=-\cdots 3$	$Y=0$.	
1	0.000	－ 910	． 37	＊ 4 ＊＊＊${ }^{\text {a }}$	． 10^{4}	＊4＊＊＊＊	－它	0.97	－ 67	$\therefore 97$	
2	－ C	－ 22	.042	－ごう	－3セ1	． 343	－ 0 － 1	．3ラ5	． 3 － 2	－ 2.7	
3	－1 0	$\because \because$	－． 27	－3j	－30	． 34	－． 44	－ 64	． 629	－033	
4	－160	．017	．01）	－J22	． 324	－ 322	．032	－024	－632	$\therefore 21$	
\pm	－＂t：	－$\because 6$	－$\because 7$	－1：	． 113	． 329	． 033	． 31.3	－ijo	－3：3	
6	－く00	－いらす	－．13	$\therefore \therefore$	－$\because \%$	－$)^{5}$	－517	．324		－0：3	
7	－ 230	－ 007	－ 114	． 313	.011	－ $3+1$	．125	097	－ 317	． 1.32	
8	－ 304	－ 6	$\therefore \therefore 4$.017	． 017	． 314	－－ 3	． 212	． 611	4－4＊＊＊	
9	． 400	.004	－ 27	－ 111	－ing	． 110	－15．${ }^{\text {a }}$	． 311	． 11 ：	＊＊＊＊＊＊	
10	－ 3 in．	－$\because 2$	－． 0.3	．00，	． 00 e	.207	． 207	－637	－L35	． 0.37	
11	－ら¢		－1\％	－－ 7	$\therefore \therefore 7$	－） 5	． 007	－ 303	－635	－ 200	
12	－760	－い55	－0\％	－0：3	． 3.9	．310	－ C －	－130	－$\because 14$	－234	
13		－ 133	－こう	－．： 5	． $2 \cdot 3$	．3， 5	－003	．337	－ 03		
14	－60	－い 3	－ 327	． 237	－1：32	． 334	－ 3 y	－ 243	－ 29		
15	－ 1.1	$\therefore 22$	．1）？ 1	－0．33	.230	－J37	． 331	． 337	．1．5）		
16	－ $2 \cdot 0$	$\because 4$	－．1．	． T － 5	$\because \because 3$	－ 233	－3i\％	． 012	－6゙く		
17	－ 50	． CH	－6ら）	－921	－ 25	． 3.4	－3i5	． 311	－213		
19.	－	－＊ン	－us	－．j\％	． 2.3%	.310	.007	.010	＊＊＊＊＊		
19	－	－ 26	－\％o	－．．		． 6.14	－\therefore C）	－\because	－$\therefore: 3$		
26	.700	$\therefore \mathrm{O} 2$	－ひへさ	－ 22	．3c．		－60	－ 3	－＊） 3		
21	－ 9 －	－\therefore－	－$\cdot, 2$	－6：4	.212	． 355	－003	． 203	－503		
1	x	$y=.10$	$Y=. \geq 5$	$Y=.4:$	$Y=.45$	$Y=. \dot{3}$	$Y=.55$	$Y=.63$	$Y=.75$	$Y=.05$	$Y=.95$
1	0.30	． 60.0	． 95	－3：7	＊ 4 ＋4＊＊	－ 2.05	－32	．3．3	． 5.94	－235	． 000
2	－uç	.004	－0゙引	－030	．045	． 3.4	． 204	．Joj	．153	－342	$\therefore 27$
3	－）f：	－$: 4$	－＋10	－ 17	， 343	． 356	－ 30	－032	． CH_{4}	－ 22 ？	． 037
4	． 100	－6き	－ 043	－＇3＇	．023	－ 310	－こと	－53：	－ 021	－ 25	－15 5
5	－ 156	$\cdots \mathrm{A}$	－-13	$\cdots \leq 1$	．032	． 023	－124	－213	－いこう	．223	－6：6
0	－	－22．	－12？	－ 31	－32？	－jく1	－404＊4	． 315	－010	－021	－011
7	． 230	－ 112	－ 221	$\because \because 7$	－ 315	－31 6	－ 217	－ 117	－$\because 7$	－ $3: 1$	－j10
8	－ 30%	． .12	． H_{4}	．$\because 3$	－ 213	． 313	．612	． 010	－605	－61：	＋4＊＊＊＊
9	－+CO	$\because 13$	＊＊＊＊＊＊	． 5	－ 3 2	，．）．	－ 土 2	＊＊4＊＊＊	があっが	－ －$^{\text {a }}$	
10	． 310	． 607	4＊0＊＊\％	． 175	＊＊＊＊${ }^{\text {＋}}$	4＊94＊${ }^{\text {a }}$	－いご	＊＊＊＊＊＊	－\because	－ivs	－： 55
11	－6：		－： 7	－$\therefore 6$	． 260	－027	－307	－دコ）	－GJe	－1029	－う） 3
12	－700	\therefore	－ 3 l	－． 7	－ $5 \cdot 7$	－1：5	－${ }^{\text {a }}$	－ 218	－CJ6	－6：？	－¢ ¢
13	－H＇s	． 5.5	－．${ }^{\text {j }}$	． 1.3	． 003	－37	－Uú	－235	． 673	．003	－$\because 13$
14	． 050	$\cdots+9$	－ 37	－\because 29	． 10.	－13	－ 33	－ 0	${ }^{27}$	－02j	－ 34
15	． 100	． .350	－． 3	． 133	－625	－：27	－${ }^{\text {c }}$	－ $22 \pm$	\therefore	－3i？	－ 217
16	－ 30	－$\because 14$	－ف23	． 020	． 423	－ 319	－ 13	． 015	－＇8，	－2：5	－vi？
17	． 30	：$: 2$	－1：${ }^{\text {j }}$	． $1:+$	． 217	．Did	－1313	． 313	－Cil	． $6: 3$	－007
10	－boc	－ 32	． 312	．2i）	－© ）	－Jio	－くら3	.357	－ $0: 7$	－2．3	＊${ }^{\text {a }}$
19	－		－ 3.3	$\therefore \therefore 3$	－\％ if $^{\text {d }}$	－$\therefore \therefore$ a	．0Ju	.005	－いご	－205	－ 2 l
20	． 7 t 3	－こ2	－○ち	－$\because 3$	． 515	－134	－نす3	－Jj	－i）	－003	－027
21	.700	－064	－JJ7	－6．2	.200	． 264	－じ：	． 950	－6J4	035	－J33

The max standaro deviatigr $15 \quad \because 0$ accurrlidi at i $=2410 \mathrm{a}=10$.

APPENDIX B

SLENDER-BCDY ESTIMATE OF THE CONTRIBUTIONS TO SURFACE PRESSURE OF VORTEX BENDING AND . IVONLINEAR VELOCITY TERMS

Consider a general planar wing at zero angle of attack under the influence of a potential vortex at Y_{v}, z_{v} in a sree stream of velocity V_{∞}. In general, the velocity potential on the wing will have the functional form

$$
\begin{equation*}
\phi_{W}=\phi_{W}\left(x, y, s, Y V_{V}, Z_{V}\right) \tag{B,1}
\end{equation*}
$$

The velocity components are

$$
\begin{align*}
u=\frac{\partial \phi_{w}}{\partial x}+\frac{\partial \phi_{w}}{\partial s} \frac{d s}{d x} & +\frac{\partial \phi_{w}}{\partial y_{v}} \frac{d y_{v}}{d x}+\frac{\partial \phi_{w}}{\partial z_{v}} \frac{d z_{v}}{d x} \tag{B.2}\\
v & =\frac{\partial \phi_{w}}{\partial y} \tag{B.3}\\
w & =\frac{\partial \phi_{w}}{\phi z} \tag{B.4}
\end{align*}
$$

The condition $w=0$ depresents the boundary condition for the planar lifting surface. The derivatives $d y_{V} / d x$ and $d z_{v} / d x$ in equation (B.2) can be written

$$
\left.\begin{array}{l}
\frac{d y_{v}}{d x}=\frac{d y_{v}}{d t} \frac{d t}{d x}=\frac{v_{v}}{v_{\infty}} \tag{B.5}\\
\frac{d z_{v}}{d x}=\frac{d z_{v}}{d t} \frac{d t}{d x}=\frac{w_{v}}{v_{\infty}}
\end{array}\right\}
$$

where v_{v} and w_{v} are the components of the velocity of the vortex in the crossflow plane. For a rectangular wing, equation (B.2) becomes

$$
\begin{equation*}
u=\frac{\partial \phi_{w}}{\partial x}+u_{v} \tag{B.6}
\end{equation*}
$$

where

$$
\begin{equation*}
u_{v}=\frac{\partial \phi_{w}}{\partial y_{v}} \frac{v_{v}}{v_{\infty}}+\frac{\partial \phi_{w}}{\partial z_{v}} \frac{w_{v}}{v_{\infty}} \tag{B.7}
\end{equation*}
$$

The pressure coefficient can be calculated from these velocity components using either the linearized relation

$$
\begin{equation*}
c_{p}=-\frac{2 u}{V_{\infty}} \tag{B.8}
\end{equation*}
$$

or the Bernoulli relation

$$
\begin{equation*}
c_{p}=-\frac{2 u}{V_{\infty}}-\frac{\left(v^{2}+w^{2}\right)}{v_{\infty}^{2}} \tag{B.9}
\end{equation*}
$$

In the foilowing, the contribution to either pressure coefficient of $u v$ (vortex bending) and the contribution of the nonlinear terms in equation (B.9) are evaluated, using a slender-body solution for ϕ_{W}. It is shown that these contributions are of the same order. Thus, if either contribution is included in an analysis, both should be. Note that this conclusion cannot be assumed to hold if the presence of the wing appreciably modifies the vortex structure from that used here; that is, if the point vortex becomes a cloud of distributed vorticity.

The potential ϕ_{W} is solved for by application of the methods of conformal transformation. In the crossflow plane, we have the lifting surface lying along the y-axis on the interval $-s \leq y \leq s$ with a vortex of strength Γ at $\left(y_{v}, z_{v}\right)$. We will transform the lifting surface from a line into a circle with the flow undistorted at infinity.

$$
\begin{equation*}
\sigma=\xi+i \eta=r e^{i \theta} \quad \tau=y+i z \tag{B.10}
\end{equation*}
$$

The equations of the transformations are (ref. 19)

$$
\left.\begin{array}{l}
s=2 r_{0} \\
\tau=\sigma+\frac{r_{0}^{2}}{\sigma} \tag{B.11}\\
\frac{\sigma}{r_{0}}=\frac{\tau}{s}+\sqrt{\frac{\tau^{2}}{s^{2}}}-1
\end{array}\right\}
$$

The vortex at $\rho e^{i \phi}$ in the σ plane is related to that in the τ plane as follows:

$$
\begin{equation*}
y_{v}+i z_{v}=\rho e^{i \dot{\phi}}+\frac{r_{0}^{2}}{\rho} e^{-i \phi} \tag{B.12}
\end{equation*}
$$

$$
\left.\begin{array}{l}
y_{V}=\left(\rho+\frac{r_{0}^{2}}{\rho}\right) \cos \phi \tag{B.1.3}\\
z_{V}=\left(\rho-\frac{r_{0}^{2}}{\rho}\right) \sin \phi
\end{array}\right\}
$$

A point on the lifting surface is related to one on the circle through the relationship

$$
\begin{equation*}
y=2 r_{0} \cos \theta \tag{3.14}
\end{equation*}
$$

It is simple to write down the complex potential in the σ plane. The vortex at σ_{v} in the σ plane has an image rortex at r_{0}^{2} / σ of opposite sign with a vortex at the center of the circle to preserve the circulation at infinity. The entire complex potential is thus

$$
\begin{equation*}
W(\sigma)=-\frac{i \Gamma}{2 \pi}\left[\ln \left(\sigma-\sigma_{v}\right)-\ln \left(\sigma-\frac{r_{o}^{2}}{\sigma_{v}}\right)+\ln \sigma\right] \tag{B.1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi(\sigma)=\frac{\Gamma}{2 \pi}\left[\arg \left(\sigma-\sigma_{V}\right)-\arg \left(\sigma-\frac{r_{0}^{2}}{\bar{\sigma}_{V}}\right)+\arg \sigma\right] \tag{B.16}
\end{equation*}
$$

On the wing

$$
\sigma=r_{0} e^{i \theta}
$$

so that

$$
\begin{align*}
\arg \left(\sigma-\sigma_{v}\right) & =\arg \left(r_{0} e^{i \theta}-\rho e^{i \phi}\right) \\
& =\tan ^{-1}\left(\frac{r_{0} \sin \theta-\rho \sin \phi}{r_{0} \cos \theta-\rho \cos \phi}\right) \tag{B.I7}
\end{align*}
$$

$$
\begin{align*}
\arg \left(\sigma-\frac{r_{0}^{2}}{\bar{\sigma}}\right) & =\arg \left(r_{0} e^{i \theta}-\frac{r_{0}^{2}}{\rho} e^{i \phi}\right) \\
& =\arg r_{0}+\arg \left(\rho e^{i \theta}-r_{o} e^{i \phi}\right) \\
& =\tan ^{-1}\left(\frac{\rho \sin \theta-r_{0} \sin \phi}{\rho \cos \theta-r_{0} \cos \phi}\right) \tag{B.18}
\end{align*}
$$

On the wing the potential is thus

$$
\begin{align*}
\Phi_{\mathrm{w}}= & \frac{\Gamma}{2 \pi}\left[\tan ^{-1}\left(\frac{r_{0} \sin \theta-\rho \sin \phi}{r_{0} \cos \theta-\rho \cos \phi}\right)\right. \\
& \left.-\tan ^{-1}\left(\frac{\rho \sin \theta-r_{0} \sin \phi}{\rho \cos \theta-r_{0} \cos \phi}\right)+\theta\right] \tag{B.19}
\end{align*}
$$

After a considerable amount of algebra, the derivatives $\partial \phi_{\mathrm{w}} / \partial y_{v}$ and $\partial \phi_{W} / \partial z_{V}$ appearing in equation (B.7) are

$$
\left.\begin{array}{l}
\frac{\partial \Phi_{w}}{\partial y_{V}}=\left(\frac{\Gamma}{2 \pi}\right) \frac{\rho\left(\rho^{2}-r_{0}^{2}\right)\left[2 r_{0} \rho \sin (\theta-\phi) \cos -\left(\rho^{2}+r_{0}^{2}\right) \sin \phi\right]}{\left[r_{0}^{2}+\rho^{2}-2 r_{0} \rho \cos (\theta-\phi)\right]\left(r_{0}^{4}+\rho^{4}-2 r_{0}^{2} \rho^{2} \cos 2 \phi\right)} \\
\frac{\partial \phi_{w}}{\partial z_{v}}=\left(\frac{\Gamma}{2 \pi}\right) \frac{\rho\left[2 r_{0} \rho\left(\rho^{2}+r_{0}^{2}\right) \sin (\theta-\phi) \sin \phi+\left(\rho^{2}-r_{0}^{2}\right) 2 \cos \phi\right]}{\left[r_{0}^{2}+\rho^{2}-2 r_{0} \rho \cos (\theta-\phi)\right]\left(r_{0}^{4}+\rho^{4}-2 r_{0}^{2} \rho^{2} \cos 2 \phi\right)} \tag{B.20}
\end{array}\right\}(:
$$

If the conjugate of the complex velocity of the vortex in the σ plane is denoted $v_{v}-i W_{v}$, then

$$
\begin{equation*}
v_{v}-i W_{v}=\lim _{\sigma \rightarrow \sigma_{V}} \frac{d}{d \sigma}\left[W(\sigma)+\frac{i \Gamma}{2 \pi} \ln \left(\sigma-\sigma_{v}\right)\right] \tag{B.21}
\end{equation*}
$$

The vortex velocity in the τ plane is not related to that in the 0 plane by the usual conformal transformation, but is given by the following expression from reference 19.

$$
v_{v}-i w_{v}=\left.\left(v_{v}-i w_{v}\right) \frac{d \sigma}{d \tau}\right|_{\tau=\tau v}-\left.\frac{i \Gamma}{4 \pi} \frac{d^{2} \sigma / d \tau^{2}}{d \sigma / d \tau}\right|_{\tau=\tau_{v}}
$$

or

$$
\begin{aligned}
v_{v}-i w_{v}=\left\{\frac{i \Gamma}{2 \pi} \frac{d \sigma}{d \tau} \frac{d}{d \sigma}\left[\ln \left(\sigma-\frac{r_{0}^{2}}{\bar{\sigma}_{v}}\right)-\ln \sigma\right]-\frac{i \Gamma}{4 \pi}\left(\frac{d \tau}{d \sigma}\right)\left(\frac{d^{2} \sigma}{d \tau^{2}}\right)\right\}_{\tau \rightarrow \tau} \\
\sigma \rightarrow v_{v}
\end{aligned}
$$

It can be shown that

$$
\begin{align*}
v_{v}= & \frac{\Gamma}{2 \pi}\left[\frac{\rho}{\left(\rho^{2}-r_{0}^{2}\right)\left(\rho^{4}+r_{0}^{4}-2 r_{0}^{2} \rho^{2} \cos 2 \phi\right)^{2}}\right]\left\{\left[\left(\rho^{2}+r_{0}^{2}\right)\left(\rho^{6}+r_{0}^{6}\right)\right.\right. \\
& \left.\left.+r_{0}^{2} \rho^{2}\left(\rho^{4}+r_{0}^{4}\right)\right] \sin \phi-2 r_{0}^{4} \rho^{4} \sin 3 \phi\right\}-\frac{\Gamma \rho}{2 \pi} \frac{\left(\rho^{2}+r_{0}^{2}\right) \sin \phi}{\left(\rho^{4}+r_{0}^{4}-2 r_{0}^{2} \rho^{2} \cos 2 \phi\right)} \tag{B.23}
\end{align*}
$$

and

$$
\begin{align*}
w_{v}= & \frac{-\Gamma}{2 \pi} \rho \cos \phi \frac{\left(\rho^{2}+r_{0}^{2}\right)\left(\rho^{4}+r_{0}^{4}\right)}{\left(\rho^{4}+r_{0}^{4}-2 r_{0}^{2} \rho^{2} \cos 2 \phi\right)^{2}} \\
& \left.+\frac{\Gamma \rho}{2 \pi} \frac{\left(\rho^{2}-r_{0}^{2}\right) \cos \phi}{\left(\rho^{4}+r_{0}^{4}-2 r_{0}^{2} \rho^{2} \cos 2 \phi\right.}\right) \tag{B.24}
\end{align*}
$$

Substituting equations (B.20), (B.23) and (B.24) into the definition of u_{v}, equation ($B, 7$), we find

$$
\begin{align*}
& \frac{u_{v}}{V_{\infty}}=\left(\frac{\Gamma}{2 \pi V_{\infty}}\right)^{2} \frac{\rho^{2}\left[4 r_{0}^{3} \rho^{3} \sin (\epsilon-\phi) \sin \phi \cos \phi-\left(\rho^{2}+r_{0}^{2}\right)\left(\rho^{4}+r_{0}^{4}-2 r_{0}^{2} \rho^{2} \cos ^{2} \phi\right)\right]}{\left[\rho^{2}+r_{0}^{2}-2 r_{0} \rho \cos (\theta-\phi)\right]\left(\rho^{4}+r_{0}^{4}-2 r_{0}^{2} \rho^{2} \cos 2 \phi\right)^{2}} \\
&+\left(\frac{\Gamma}{2 \pi V_{\infty}}\right)^{2} \frac{\rho^{2}\left(\rho^{2}-r_{0}^{2}\right)}{\left[\rho^{2}+r_{0}^{2}-2 r_{0} \rho \cos (\theta-\phi)\right]\left(\rho^{4}+r_{0}^{4}-2 r_{0}^{2} \rho \cos ^{2} \cos 2 \phi\right)} \tag{B.25}
\end{align*}
$$

To allow calculation of the contribution to pressure of the squared terms, we need v. Now,

$$
\begin{equation*}
\mathrm{v}=\frac{\partial \phi_{\mathrm{w}}}{\partial Y}=\left.\frac{\partial \phi_{\mathrm{w}}}{\partial \theta} \frac{\partial \theta}{\partial Y}\right|_{\mathrm{r}_{0}}=-\frac{I}{2 r_{0} \sin \theta} \frac{\partial \phi_{\mathrm{w}}}{\partial \theta} \tag{B.26}
\end{equation*}
$$

so

$$
\begin{equation*}
\frac{\mathrm{v}}{\mathrm{~V}_{\infty}}=\left(\frac{\Gamma}{2 \pi V_{\infty}}\right)\left(\frac{1}{2 r_{0} \sin \theta}\right)\left\{\frac{\left(\rho^{2}-r_{0}^{2}\right)}{\left[r_{0}^{2}+\rho^{2}-2 r_{0} \rho \cos (\theta-\phi)\right]}-1\right\} \tag{B.27}
\end{equation*}
$$

The relations just derived were used in an illustrative calculation. The case considered was for $y_{V} / s=0.5, z_{v} / c=0.25$. This choice of $z_{v /} / c$ eliminates complications brought about by the use of the potential vortex model, for it removes the vortex core from contact with the wing.

The surface pressure distribution due to vortex bending has been calculated by means of equations (B.25) and the relation

$$
\begin{equation*}
c_{p_{u_{v}}}=-\frac{2 u_{v}}{v_{\infty}} \tag{B.28}
\end{equation*}
$$

The surface pressure distribution associated with $-v^{?} / v_{\infty}^{2}$ as calculated from equations (B.9) and (B.27) has also been determined. The results are shown in figure 19.

It is noted that the surface pressure distribution for vortex hending produces uniformly positive pressure on the upper surface of the right half of the wing with a peak at the lateral vortex position. The distribution due to $-v^{2} / V_{\infty}^{2}$ is negative everywhere; the negative pressure peak is about twice the magnitude of the positive pressure peak, but it is about half the breadth. Thus, these effects are of comparable order.

REFERENCES

1. Smith, W. G. and Lazzeroni, F. A.: Experimental and Theoretical Study of a Rectangular wing in a Vortical Wake at Low speed. NASA TN D-339, Oct. 1960.
2. NASA/Ames Research Center: Ames Research Facilities Sumnary, 1974.
3. Spivey, W. A.: A Study to Investigate the Aerodynamics of Rotor Blade Tip Shapes. Bell Helicopter Company Report No. 299-099-468, Jan. 1970.
4. Orloff, K. L. and Grant, G. R.: The Application of Laser Doppler Velocimetry to Trailing Vortex Definition and Alleviation. NASA TN X-62, 243, Feb. 1973.
5. Fage, A. and Simmons, I. F. G.: An Investigation of the Air-Flow Pattern in the Wake of an Aerofoil of Finite Span. Philosophical Transactions, Series A, vol. 225, no. 7, Jan. 1926.
6. El-Ramly, Z., Rainbird, W. J., and Earl, D. G.: Some Wind Tunnel Measurements of the Trailing Vortex Development Behind a Swept-Back Wing: Induced Rolling Moments on Intercepting Wings. AIAA Paper No. 75-884, June 1975.
7. El-Ramly, Z.: Investigation of the Development of the Trailing Vortex System Behind a Swept-Back Wing. Carleton University, Report No. ME/A 75-3, Oct. 1975.
8. El-Ramly, Z. M. and Rainbird, W. J.: Computer Controlled System for the Investigation of the Flow Behind a Swept-Back Wing. Proceedings, AIAA 9th Aerodynamic Testing Confere.ce, June 1976.
9. Chigier, N. A. and Corsiglia, V. R.: Tip Vortices-Velocity Distributions. Preprint No. 522, 27 th Annual National V/STOL Forum of the American Helicopter Society, May 1971.
10. Riegels, F. W.: Aerofoil Sections. Butterworths, 1961.
11. DeYoung, J. and Harper, C. W.: Theoretical Symmetric Span Loading at Subsonic Speeds for Wings Having Arbitrary Plan Form. NACA Report No. 921, 1948.
12. Jacobs, E. N. and Sherman, A.: Airfoil Section Characteristics as Affected by Variations of the Reynolds Number. NACA Report Nio. 586, June 1936.
13. Patel, M. H. and Hancock, G. J.: Some Experimental Results of the Effect of a Streamwise Vortex on a Two-Dimensional Wing. Aeronautical Journal, Apr. 1974.
14. Iversen, J. D. and Bernstein, S.: Trailing Vortex Effects on Following Aircraft. J. Aircraft, vol. 11, no. 1, Jan. 1974.
15. Rossow, V. J., Corsiglia, V. R., Schwind, R. J., Frick, J. K. 1)., and Lemmer, O. J.: Velocity and Rolling-Moment Measurements in the Wake of a Swept-Wing Model in the 40- by 80-Foot Wind Tunnel. NASA TM X-62414, Apr. 1975.
16. Spangler, S. B. and Dillenius, M. F. E.: Tmvestigation of Aerodynanic: Loads at Spin Entry. Report ONR-CR212-225-2, May 1976.
17. Spangler, S. B. and Nielsen, J. N.; Exploratory Study of Aerodynamic Loads on a Fighter-Bomber at Spin Entry. NEAR TR-87, May 1975.
18. Heaslet, M. A. and Spreiter, J. R.: Reciprocity Relations in Aecodynamics. NACA Report 1119, 1953.
19. Nielsen, J. N.: Missile Aerodynamics. McGraw Hillo, 1960.
20. Nielsen, J. N., Hemsch, M. J., and Dillenius, M. F. E.: Further Studies of the Induced Rolling Moments of Canard-Cruciform Missiles as Influenced by Canard and Body Vortices. NEAR TR 79, Jan. 1975.
21. Nielsen, J. N., Spangler, S. B., and Hemsch, M. J.: A Study of Induced Rolling Moments for Cruciform-Winged Missiles. NEAR TR 61, Dec. 1973.

[^0]: ${ }^{*}$ This procedure cannot be applied at the fuselage location ($y / s=0$). No C_{ℓ} is calculated there.

[^1]: *The estimated uncertainty in the unperturbed vortex position is ± 0.02
 for $Y_{V} / \mathrm{s}, \pm 0.07$ for $\mathrm{z}_{\mathrm{v}} / \mathrm{c}$. Movement of the vortex induced by the presence of the wing depends, of course, on the proximity to the wing. . At $z_{v} / c=1.73$, figure 9 indicates very little lateral movement of the vortex.

