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A b s t r a c t

In this paper an asymmetric autoregressive conditional heteroskedasticity (ARCH) 

model is applied to some well-known financial indices (DAX30, FTSE20, FTSE100 and 

SP500), using a rolling sample of constant size, in order to investigate whether the 

values of the estimated parameters of the model change over time. Although, there are 

changes in the estimated parameters reflecting that structural properties and trading 

behaviour alter over time, the ARCH model adequately forecasts the one-day-ahead 

volatility. A simulation study is run to investigate whether the time variant attitude holds 

in the case of a generated ARCH data process revealing that either in that case the 

rolling-sampled parameters are time-varying. The rolling analysis is also applied to 

estimate the parameters of a Levy-stable distribution. The empirical findings support 

that the stable parameters are also time-variant.
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1 . I n t r o d u c t i o n

In the recent literature, regarding the description of the characteristics of financial 

markets, one can find a vast number of specifications of both ARCH and Stochastic 

Volatility (SV) processes that have been considered for. However, the SV models1 are 

not as popular as the ARCH processes in applied studies. The purpose of the present 

study is to apply an asymmetric ARCH model to some well known financial indices, 

using a rolling sample of constant size, in order to observe the changes over time in the 

values of the estimated parameters. A thorough investigation is conducted by comparing 

the parameters of the full-sampled estimated model to the parameters of the rolling sub-

sample estimated models. We conclude that the values of the estimated parameters 

change over time, indicating a data set that alters across time reflecting the information 

that financial markets reveal.

In ARCH modelling, the distribution of stock returns has fat tails with finite or 

infinite unconditional variance and time dependent conditional variance. Estimation of 

stable distributions is an alternative approach in modelling the unconditional distribution 

of returns. Thus, we adopt the estimation procedure of McCulloch (1986) and the 

parameters of the Levy-stable distribution are estimated at each of a sequence of points 

in time, using a rolling sample of constant size. The empirical findings suggest that the 

parameters of the unconditional distribution are also not constant over time.

 The data set used consists of the DAX30, FTSE20, FTSE100 and SP500 

continuously compound rate of daily returns. The period covered for the DAX30 is from 

January 14th 1992, for the FTSE20 from January 3rd 1996, for the FTSE100 from 

January 9th 1992 and for the SP500 from January 7th 1992 to July 5th 2002, respectively. 

A thorough investigation is conducted by comparing the parameters of the full-sampled 

estimated model to the parameters of the rolling sub-sample estimated models.

The paper is divided in eight sections. Section 2 lays out the asymmetric ARCH 

model that is applied in the Greek stock market. In section 3 the estimated parameters

1
 The reader who is interested in SV models is referred to Barndorff-Nielsen et al. (2001), Chib et al. 

(1998), Ghysels et al. (1996), Harvey and Shephard (1993), Jacquier et al. (1994, 1999), Shephard (1996, 

2004), Taylor (1994).
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of the rolling sub-samples are presented, while the rolling-sampled parameters of the 

asymmetric ARCH model for the DAX30, FTSE100 and SP500 stock indices are 

discussed in section 4. In section 5, we examine whether the changes in the rolling-

sampled estimated parameters are related with i) the specific structure of the applied 

asymmetric ARCH model, ii) the sample size, iii) the maximum likelihood estimation 

method, or iv) the initial values of the likelihood algorithm. Also, in section 6, a simulation 

study examines whether the parameters are time-varying in the case of a generated 

ARCH process. In section 7 the unconditional distribution of returns is estimated and the 

phenomenon of time-variant parameters is observed in the Levy-stable distribution.  

Finally, in section 8 we summarize the main conclusions.

2 . A n  a s y m m e t r i c  A R C H  m o d e l  f o r  t h e  G r e e k  s t o c k  m a r k e t

A wide range of proposed ARCH models is covered in surveys such as Bera and 

Higgins (1993), Bollerslev et al. (1992), Bollerslev et al. (1994), Degiannakis and 

Xekalaki (2004), Gouriéroux (1997), Hamilton (1994), Li et al. (2001), Palm (1996) and 

Poon and Granger (2003). Unambiguously, ARCH models provide accurate volatility 

forecasts. The Nobel price award to R.F. Engle for ARCH volatility modeling is the 

uncontested proof of the contribution of ARCH models in time series and econometric 

modelling (Diebold 2003, 2004). A plethora of studies applied ARCH models to predict 

future volatility by updating the available information set at each of a sequence of points 

in time. Among others, Brooks and Persand (2003), Angelidis et al. (2004), Giot and 

Laurent (2003) predict Value-at-Risk (VaR) measures. Andersen and Bollerslev (1997a, 

1997b, 1998), Andersen et al. (1999a), Andersen et al. (1999b), Andersen et al. 

(2000a), Andersen et al. (2000b), Andersen et al. (2003), Andersen et al. (2004), 

Barndorff-Nielsen and Shephard (1998), Bollerslev and Wright (2000) and Ebens (1999) 

demonstrate that for empirically relevant ARCH specifications the forecasts correlate 

closely with the intra-day realized volatility, while Degiannakis and Xekalaki (2001), 

Engle et al. (1997) and Noh et al. (1994) use ARCH processes to forecast volatility of 

options.

An ARCH process, ( )θε t , can be presented as
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where θ  is a vector of unknown parameters, ( ).f  is the density function of tz , ( ).g  is a 

linear or non-linear functional form and tυ  is a vector of predetermined variables 

included in information set I  at time t . By definition, ( )θε t  is serially uncorrelated with 

mean zero, but with a time varying conditional variance equal to ( )θσ 2

t , or 

( ) ( )( )θσθε 2

1 ,0~| ttt fI − . Engle (1982) in his seminal study assumed that tz  are 

normally distributed, whereas Bollerslev (1987) and Nelson (1991) introduced the 

student t and the generalized error distributions, respectively, in order to model the 

leptokurtosis of the conditionally distributed ( )θε t .  In the case of modeling a 

leptokurtotic and asymmetric conditional distribution of ( )θε t , the generalized t 

(Bollerslev et al. 1994), the skewed generalized t (Theodossiou 1998), the skewed 

student t (Lambert and Laurent 2000) and the skewed generalized error (Bali 2005 and 

Theodossiou 2002) distributions were utilized. Since very few financial time series have 

a constant conditional mean of zero, an ARCH model can be presented in a regression 

form by letting tε  be the unpredictable component of the conditional mean

( ) tttt IyEy ε+= −1| , (2)

where ( )1ln −= ttt PPy  denotes the continuously compound rate of return from time 1−t

to t , and tP  is the asset price at time t .

In order to investigate the characteristics of the Athens Stock Exchange (ASE) 

market, we apply an ARCH model of the following form:

tttt yey
t
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where ( )vGED ;1,0  denotes the generalized error distribution (GED), v  is the tail 

thickness parameter of the GED, L  is the lag operator and tN  is the number of non-

trading days preceding the 
th

t  day. The density function of a GED random variable is 

given by

( )
v

ve
zf

v
v
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t

v
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12
)(
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2 1

Γ
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+

− −

λ

λ

, (4)

for ∞<<∞− z , ∞≤< v0 , where ( ).Γ  denotes the gamma function and

( )
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2
1

2

3

12
1
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












Γ

Γ
≡

−−

v

v
v

λ . (5)

The conditional variance specification has the form of the exponential GARCH, or 

EGARCH model, which is suggested by Nelson (1991). The EGARCH model captures 

the asymmetric effect exhibited in financial markets, as the conditional variance, 
2

tσ , 

depends on both the magnitude and the sign of lagged innovations. Assuming GED 

distributed innovations with EGARCH specification for the conditional variance we take 

into account that i) the unconditional distribution of innovations is symmetric but with 

excess kurtosis and ii) their conditional distribution is asymmetric and leptokurtotic. 

Parameter γ  allows for the leverage effect. The leverage effect, first noted by Black 

(1976), refers to the tendency of changes in stock returns to be negatively correlated 

with changes in returns volatility, i.e. volatility tends to rise in response to ‘bad news’ and 

to fall in response to ‘good news’. If 0=γ  then a positive surprise, ( )0>tε , has the 

same effect on volatility as a negative surprise, ( )0<tε . If 01 <<− γ , a positive 

surprise increases volatility less than a negative surprise. If 1−<γ , a positive surprise 
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actually reduces volatility while a negative surprise increases volatility. Moreover, the 

logarithmic transformation ensures that the forecasts of the variance are non-negative. 

Parameter 0δ  allows us to explore the contribution of non-trading days to volatility. 

According to Fama (1965) and French and Roll (1986) information that accumulates 

when financial markets are closed is reflected in prices after the markets reopen. The 

conditional mean is modeled such as to capture the relationship between investors’ 

expected return and risk2 ( 1µ ), the non-synchronous trading effect3 ( 2µ ), and the 

inverse relation between volatility and serial correlation4 ( 3µ ).

Model (3) is expanded in order to take into account the phenomenon of volatility 

spill over from one market to the other5. For ty  denoting the daily return of the FTSE20 

index, the conditional variance is modeled in the following form

( ) ( )
( )

( ) ( ),lnln

1

1
1lnln

2

1,302

2

1,5001

1

1

00

2

−− ++














+










−Ψ

∆−
+++=

tDAXtSP

t

t

t

t

t

t

tt LEL
L

Na

σδσδ

σ
ε

γ
σ
ε

σ
ε

δσ
(6)

where the parameters 1δ  and 2δ  account for the volatility spill over from U.S. and 

German stock markets to the ASE market, respectively. The ASE in co-operation with 

the London-based Financial Times Stock Exchange has introduced the FTSE20 index, 

which includes the 20 largest companies ranked by their capitalization and trading 

volume. The daily conditional volatilities of the SP500 and DAX30 index returns at time 

2
 The relationship between investors’ expected return and risk was presented in an ARCH framework, by 

Engle et al. (1987). They introduced the ARCH in mean model where the conditional mean is an explicit 

function of the conditional variance.
3
 According to Campbell et al. (1997), ‘The non-synchronous trading or non-trading effect arises when 

time series, usually asset prices, are taken to be recorded at time intervals of one length when in fact they 

are recorded at time intervals of other, possible irregular lengths.’
4
 LeBaron (1992) found a strong inverse relation between volatility and serial correlation for SP500, CRSP 

and Dow Jones returns. As LeBaron stated, it is difficult to estimate 
4

µ  in conjunction with 
3

µ  when 

using a gradient type of algorithm. So, 
4

µ  is set to the sample variance of the series.
5
 Engle et al. (1990) evaluated the role of the information arrival process in the determination of volatility 

in a multivariate framework providing a test of two hypotheses: heat waves and meteor showers. Using 

meteorological analogies, they supposed that information follows a process like a heat wave so that a hot 

day in New York is likely to be followed by another hot day in New York but not typically by a hot day in 

Tokyo. On the other hand, a meteor shower in New York, which rains down on the earth as it turns, will 

almost surely be followed by one in Tokyo. Thus, the heat wave hypothesis is that the volatility has only 

country specific autocorrelation, while the meteor shower hypothesis states that volatility in one market 

spills over to the next. See also Kanas (1998).
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t  are shown by 
2

,500 tSPσ  and 
2

,30 tDAXσ . These are regarded as exogenous variables that 

have been estimated according to framework (3).

The data set consists of the FTSE20 index daily returns in the period from 

January 3rd, 1996 to July 5th, 2002 and the conditional variance of the DAX30 and 

SP500 returns from January 2nd, 1996 to July 5th, 2002. In order to estimate the 

conditional variance of the DAX30 and SP500 indices, their daily returns are used for 

the periods of January 14th, 1992 to July 5th, 2002, and January 7th, 1992 to July 5th, 

2002, respectively. Figure 1a plots the FTSE20 daily returns.

INSERT FIGURE 1 ABOUT HERE

Maximum likelihood estimates of the parameters are obtained by numerical 

maximization of the log-likelihood function using the Marquardt (1963) algorithm that is 

computed as

( ) ( ) ( )( ) ( )( ) ( )

∑∑
=

−

=

+

∂

∂










Ι−

′∂

∂

∂

∂
+=

T

t

i

t
T

t

i

t

i

tii lll

1

1

1

1

θ
η

θ
θ

θ
θ

θθ , (7)

where ( )va ,,,,,,,,,,, 2,111003210 δδγδµµµµθ ∆Ψ=  is the parameter vector to be 

estimated, ( ) ( )( )( ) ( )( )θσθθ 2ln
2

1
ln ttt

zfl −=  is the log likelihood contribution for each 

observation t , Ι  is the identity matrix and η  is a positive number chosen by the 

algorithm. The process is repeated until the maximum of the percentage changes in the 

coefficients is smaller than 0.001%.

INSERT TABLE 1 ABOUT HERE

Table 1 presents the estimated parameters of model (3). The estimated risk 

premium is positively, though weakly related with the conditional variance (coefficient 

1µ ). The coefficient 2µ , which allows for first order autocorrelation, is insignificant. Daily 

serial correlation is inversely related to the conditional volatility of the FTSE20 index, 

which is consistent with the results of LeBaron (1992) (coefficient 3µ ). The estimated 

value of coefficient γ  is –0.064 and statistically insignificant, which implies that surprises 

of same magnitude but opposite signs have the same effect on volatility. The estimated 
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parameters 1δ  and 2δ  are insignificant, indicating that there is no evidence of volatility 

spillover from Frankfurt and Chicago indices to ASE market. The estimated coefficient v

is 1.335 with a standard error of 0.043, so the distribution of the standardized 

innovations is significantly thicker tailed than the normal distribution. The estimated 

value of 0δ  is about 0.187 and statistically significant. Thus, a non-trading day 

contributes less than a fifth as much to volatility as a trading day. 

3 . R o l l i n g - s a m p l e d  p a r a m e t e r s  o f  t h e  a s y m m e t r i c  A R C H  

m o d e l

Our purpose is to examine if the estimated parameters of the asymmetric ARCH model 

change over time and whether there is any impact of time-varying estimated parameters 

on volatility forecasting accuracy. The ARCH process is estimated, at each of a 

sequence of points in time, using a rolling sample of constant size equal to 1000 trading 

days, a sample size that is preferred6 by the majority of applied studies.

We produce one-day-ahead conditional volatility predictions for the trading days 

of 11th January 2000 to 5th July 2002. The daily conditional volatility of the SP500 and 

DAX30 returns, were estimated by framework (3), using, also, a rolling sample of 

constant size equal to 1000. Since the ARCH model is estimated at each point in time, 

we use the maximum likelihood estimates at time 1−t  as starting values for the iterative 

maximization algorithm at time t . Figure 2 depicts the rolling-sampled estimated 

parameters of the model as well as the 06.2±  times the conditional standard deviation 

confidence interval of the parameters estimated using the full data sample. From visual 

inspection, the estimated rolling parameters are, clearly, out of the confidence interval 

bounds in many cases. Table 2 presents the percentage of rolling-sampled estimations, 

which are outside of the 95% confidence interval. That is, the rolling estimations of 

coefficient 1∆  are outside the 95% confidence interval of the full-sampled 1∆  estimation 

in the 54.40% of the cases. An important characteristic, which is extracted from the 

6
 Engle et al. (1993), Engle et al. (1997), Noh et al. (1994), Angelidis et al. (2004) note that the size of the 

rolling sample turns out to be rather important while Frey and Michaud (1997), Hoppe (1998) and 

Degiannakis and Xekalaki (2006) comment that the use of short sample sizes generates more accurate 

volatility forecasts, since it incorporates changes in trading behaviour more efficiently.
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rolling-sampled estimated parameters, is the fact that the estimated values do not 

fluctuate in a mean reverting form but they change gradually. Sudden changes of the 

values of the rolling estimated parameters, which are characterized by a mean reverting 

form, should indicate an improperly maximum likelihood estimation procedure. On the 

other hand, gradual changes of the estimated coefficients indicate a data set that alters 

from time to time, forcing us to believe that the values of the estimated parameters 

reflect the information that financial markets reveal.

INSERT FIGURE 2 ABOUT HERE 

INSERT TABLE 2 ABOUT HERE

The percentage of estimated rolling parameters that are statistically different from the 

parameter values estimated using the full data sample, as presented in Table 3, is also 

indicative for the changes of the estimated values across time. There are four 

parameters, whose rolling-sampled estimators differ statistically significant from their 

full-sampled estimators in more than 10% of the trading days.

INSERT TABLE 3 ABOUT HERE

The values of the rolling parameters indicate that the characteristics of the ASE 

market change during the examined period. Table 4 presents the percentage of the 

trading days for which the estimated rolling parameters are statistically insignificant. The 

coefficient 0δ , which accounts for the contribution of non-trading days to volatility, is not 

statistically different to zero for the 57.07% of the rolling cases, although it is significant 

in the full sample, at 1% level of significance. Therefore, the statistical inference based 

on the estimated values of parameter 0δ  would lead to an insignificant contribution of 

non-trading days to volatility in about the half number of trading days. Moreover, in the 

full sample, FTSE20 index is characterized by an inverse relation between volatility and 

serial correlation. On the contrary, the values of rolling 3µ  are not different to zero in 

most of the cases.  However, there are parameters, such as 1Ψ , 1∆  and v , whose 

estimations are statistically significant in both full and rolling sample. On the other hand, 

the values of the coefficients 2µ , γ  and 1δ  are statistically insignificant in both rolling 
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and full sampled estimations. Hence, we may infer that the values of the estimated 

parameters change across time, reflecting the individual features of particular periods 

that characterize financial markets.

INSERT TABLE 4 ABOUT HERE

In Figure 3.a, the 95% in-sample confidence interval of the FTSE20 index of daily 

returns is plotted from 11th January 2000 to 5th July 2002. There are 31 (4.99%) 

violations of the confidence interval, which reflect a correctly specified model that fits 

data satisfactory. However, a model that uses a large number of parameters may exhibit 

an excellent in-sample fit but a poor out-of-sample performance. Studies such as 

Heynen and Kat (1994), Hol and Koopman (2000) and Pagan and Schwert (1990) 

examined a variety of volatility prediction models with in-sample and out-of-sample data 

sets. We investigate the possibility that model over-fitting can be occurred and evaluate 

the performance of the estimated ARCH model by computing the out-of-sample 

forecasts. In the sequel, the one-day-ahead 95% prediction intervals are constructed. 

Let us compute the one-day-ahead conditional mean, 
( )( )( )

t

t

ttt IyEy |1|1 θ++ ≡ , and 

conditional variance, 
( )( )( )

t

t

ttt IE |2

1

2

|1 θεσ ++ ≡ , using the following formulas:

( ) ( ) ( ) ( ) ( )

t

tt

tt

tt

tt yey
t

tt














+++=

+−

++
4

2
|1

32

2

|110|1

µ

σ

µµσµµ ,

( ) ( ) ( )( )
( )( )

( ) ( )

( ) ( ) ( ) ( ),lnln

1

1
1lnln

2

|,302

2

|,5001

|

|

|

|

1

1

010

2

|1

ttDAX

t

ttSP

t

tt

ttt

t

t

tt

ttt

t

t

t

t

tt E
L

Na

σδσδ

σ

ε
γ

σ
ε

σ

ε
δσ
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












+














−Ψ

∆−
+++= ++

(8)

where 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )ttttttttttttt

va ,,,,,,,,,,, 2111003210 δδγδµµµµθ ∆Ψ≡  is the parameter 

vector that is estimated using the sample data set which is available at time t , 

( )
tttt IE || εε ≡  denotes the prediction error conditional on the information set that is 

available at time t , and ( )
tttt IE |2

| εσ ≡  is the conditional standard deviation which is 

computed by the ARCH model, in equation (6), using the information set available at 

Page 10 of 68

Editorial Office, Dept of Economics, Warwick University, Coventry CV4 7AL, UK

Submitted Manuscript

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



F
o
r P

eer R
eview

11

time t . Note that for ( )vGEDzt ;1,0~ , the expected value of its absolute price is equal to 

( )( ) ( )( ) ( )( )( ) 2/1
1 312

−− ΓΓΓ= ttt

tt vvvE σε .

Figure 3.b plots the one-day-ahead 95% prediction interval, which is constructed 

as the one-day-ahead conditional mean ± 2.06 times the conditional standard deviation, 

both measurable to tI  information set, or 
( )( )

tt

t

tt vGEDy |1|1 025.0,;1,0 ++ ± σ , where 

( )( )avGED t ,;1,0  is the ( )a−1100  quantile of the GED distribution. Hence, each trading 

day, ( t ), the next trading day’s, ( 1+t ), prediction intervals are constructed, using only 

information available at current trading day, t . There are 29 observations (4.67%) 

outside the 95% prediction intervals.

INSERT FIGURE 3 ABOUT HERE

For a more formal method of evaluating forecasting adequacy, we apply two 

hypotheses tests that measure the forecasting accuracy in a VaR framework. One-day-

ahead VaR at a given probability level, a , is the next trading day’s predicted amount of 

financial loss of a portfolio, or ( ) ( )( )
tt

t

t avGEDaVaR |11|1 ,;1,01 ++ =− σ . Kupiec (1995) 

introduced a likelihood ratio statistic for testing the null hypothesis that the proportion of 

confidence interval violations is not larger than the VaR forecast. The test statistic, which 

is asymptotically 
2

1X  distributed, is computed as =KLR ))1()[ln((2 nNn NnNn −−

])1(ln( nNn pp −−− , where ≡n ( )( )∑ = ++ <
N

i ttt aVaRyd
1 |11 2/ ( )( )2/1|11 aVaRyd ttt −>+ ++ , for 

( )( ) 12/|11 =< ++ aVaRyd ttt  if ttt VaRy |11 ++ <  and ( )( ) 02/|11 =< ++ aVaRyd ttt  otherwise, is the 

number of trading days over the out-of-sample period N  that a violation has occurred, 

and p  is the expected frequency of violations. Christoffersen (1998) developed a 

likelihood ratio statistic that jointly investigates whether i) the proportion of violations is 

not larger than the VaR forecast and ii) the violations are independently distributed. The 

statistic is computed as =CLR ))1(2ln(- nnN pp −−

)))1()1(2ln( 11100100

11110101

nnnn ππππ −−+ , where =ijπ ∑
j

ijij nn and ijn  is the number of 
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observations with value i  followed by j , for 1,0, =ji . The values 1, =ji denote that a 

violation has been made, while 0, =ji  indicates the opposite. Under the null 

hypothesis, the CLR is asymptotically chi-squared distributed with two degrees of 

freedom. The main advantage of Christoffersen’s test is that it can reject a VaR model 

that generates either too many or too few clustered violations. The p-values in testing 

the null hypothesis of correct proportion of 95% and 99% confidence interval violations 

are 70.28% and 8.15%, respectively, whereas in the case of Christoffersen’s test the p-

values are 40.03% and 17.98% for 95%-VaR and 99%-VaR violations, respectively.

Despite the fact that the values of the estimated coefficients change over time, the 

model adequately forecasts the one-day-ahead volatility. Thus, at least in the case of 

ASE market, changes in the values of the estimated parameters do not indicate 

inadequacy of the model in describing the data. On the contrary, model’s parameters 

should be re-estimated on a daily base in order to reflect any changes that have been 

occurred in the stock market and have been incorporated in the prices of assets.

4 . T h e  a s y m m e t r i c  A R C H  m o d e l  f o r  o t h e r  s t o c k  m a r k e t s

In this section we investigate whether the values of the estimated parameters change 

over time in other stock markets as well. The asymmetric ARCH model in framework (6) 

is applied for the DAX30, FTSE100 and SP500 stock indices:

ttAtAtA yey
tA

εµµσµµ µ
σ

+









+++= −
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ttA LEL
L

Na

σδσδ

σ
ε

γ
σ
ε

σ
ε

δσ
(9)

In order to account for the volatility spill over effect from one market to the others, when 

(9) is estimated for stock market A (for instance SP500), the daily conditional volatilities 

of stock markets B and C (that is FTSE100 and DAX30 respectively) are regarded as 

exogenous variables. 
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Table 5 presents the estimated parameters of the above model (9) for each 

market separately. The data set used is from January 3rd, 1996 to July 5th, 2002. Briefly 

discussing the values of the parameters, we note that i) the relation of the conditional 

variance with the risk premium, although positive, is statistically insignificant (coefficient 

1µ ), ii) the non-synchronous trading effect is not present in the estimated models 

(coefficient 2µ ) and iii) concerning the case of the SP500 stock index, the daily serial 

correlation is inversely related to its conditional volatility (coefficient 3µ ). Moreover, the 

leverage effect is not present in the German stock market. On the contrary, for the 

SP500 and FTSE100 stock indices, the estimated value of parameter γ  is statistically 

significant at 1% level of significance. The volatility spill over effect is statistically 

significant for the U.K. stock market. Regarding the SP500 index daily returns, there is 

evidence that volatility spillovers from Frankfurt to Chicago stock market. Finally, for the 

DAX30 and SP500 cases, parameter v  is statistically different to the value of 2 at any 

level of significance, justifying the use of a thick-tailed distribution. The continuously 

compounded returns of the underlying indices are plotted in Figures 1.b to 1.d.

INSERT TABLE 5 ABOUT HERE

Following the approach presented in section 3, the rolling parameters of the 

ARCH models are estimated using a rolling sample of 1000 observations7. As in the 

case of the ASE market, the values of the rolling parameters differ from their full-

sampled estimations. Table 6 presents the percentage of rolling parameters, which are 

outside the 95% confidence interval of the full-sampled parameters. Characteristic 

examples of the change in the parameter values are 1Ψ  and v  for DAX30 as well as 1∆

for SP500. However, there are rolling parameters which do not change significantly 

across time, such as γ  (leverage effect), and 0δ  (contribution of non-trading days to 

volatility).

INSERT TABLE 6 ABOUT HERE

7
 Figures of the estimated rolling parameters for the DAX30, FTSE100 and SP500 indices, similar to 

Figure 2, are available upon request.
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Table 7 presents the percentage of rolling-sampled parameters that are statistically 

different from the parameter values estimated using the full data sample. Although, in 

the case of the FTSE100 index, only the rolling estimators of 1∆  parameter differ 

statistically from their full data sample estimator, in the case of the SP500 index the 

there are four parameters, which show a statistically significant difference from their full-

sampled estimators in more than 20% of the trading days.

INSERT TABLE 7 ABOUT HERE

According to Table 8, which presents the percentage of trading days that the 

rolling parameters are statistically insignificant, there are parameters whose rolling-

sampled estimations are statistically insignificant while their full-sampled estimations are 

significant. For example, parameters 3µ  and 1δ  for the SP500 index, as well as 

parameter γ  for FTSE100 index, although they appear to be significant in the full 

sample, almost all their rolling-sampled estimations are insignificant at 5% level of 

significance. Of course, there are parameters whose estimations are statistically 

different to zero in both the full sample and the rolling samples (i.e. the parameter 1∆  for 

the DAX30 and SP500 indices).

INSERT TABLE 8 ABOUT HERE

Hence, a change in the values of the estimated parameters of the asymmetric 

ARCH model does not characterize only the Greek stock market. However, although the 

estimated parameters are time varying, the in-sample and out-of-sample forecasting 

ability of the model is accurate. There are 19, 17 and 29 cases, or 2.99%, 2.66% and 

4.57%, observed returns outside the 95% confidence intervals for the DAX30, FTSE100 

and SP500 indices, respectively. On the other hand, the one-day-ahead 95% prediction 

intervals exclude 22, 21 and 32 observations, or 3.46%, 3.29% and 5.04% for the 

DAX30, FTSE100 and SP500 indices, respectively8. As far as the adequacy in one-day-

ahead VaR forecasting is concerned, both Kupiec’s and Christoffersen’s tests do not 

reject the null hypothesis of correct proportion of violations in all the cases, except for 

8
 Figures, similar to Figure 3, that depict the in-sample 95% confidence interval and the one-day-ahead 

95% prediction intervals for the DAX30, FTSE100 and SP500 indices are also available upon request.
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the 95%-VaR of the FTSE100 index. In the case of Kupiec’s test the p-values are 

6.08%, 3.45% and 96.37% for 95%-VaR and 13.63%, 56.56% and 52.70% for 99%-

VaR, for the DAX30, FTSE100 and SP500 indices, respectively. Testing the null 

hypothesis of whether the violations are equal to the expected ones as well as if they 

are independent, we observe that the relative p-values are 16.42%, 0.15% and 95.19% 

in the 95%-VaR case and 32.51%, 7.10% and 73.92% in the 99%-VaR case, for the 

DAX30, FTSE100 and SP500 indices, respectively. So, in most of the cases, the 

examined model produces adequate VaR forecasts.

5 . E x t e n s i o n s

In order to investigate whether the phenomenon of time-variant values of estimated 

parameters, in the four stock markets considered, is related to a specific structural 

characteristic of the model specification, we estimate another ARCH specification. 

Degiannakis (2004) and Giot and Laurent (2003) used an ARCH model with the 

APARCH volatility specification of Ding et al. (1993) and the skewed student-t 

distribution for the standardized innovations. We estimated such a model for our 

datasets and found similar qualitative results. The estimated parameters are time 

varying.

We have also re-estimated model (9) using alternatively i) larger sample sizes of 

rolling parameters, ii) the BHHH algorithm (Berndt et al. 1974) instead of the Marquardt

algorithm in estimating the maximum likelihood parameters and iii) the same starting 

values at each point in time, instead of the estimates at time 1−t  as starting values for 

the likelihood algorithm at time t . Despite the slight changes occurred in each case, the 

rolling parameters are time-variant for all cases.

6 . R o l l i n g - s a m p l e d  p a r a m e t e r s  f r o m  s i m u l a t e d  p r o c e s s e s

A simulation study could shed light in rolling-sampled estimated parameters behaviour. 

A series of simulations is run in order to investigate if the time-variant attitude holds 

even in the case of an ARCH data generating process. We generate a series of 32000 

values from the standard normal distribution, ( )1,0~
...

Nz
dii

t . Then an AR(1)GARCH(1,1) 
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process is created, { }32000

1=tty , where ttt yy ε++= −115.00005.0 , by multiplying the i.i.d. 

process with a specific conditional variance form 
2

ttt z σε = , for 

2

1

2

1

2 90.005.00005.0 −− ++= ttt σεσ . The AR(1)GARCH(1,1) model is applied on the 

{ }32000

1002=tty  generated data. Dropping out the first 1001 data, maximum likelihood rolling-

sampled estimates of the parameters are obtained by numerical maximization of the log-

likelihood function, using a rolling sample of constant size equal to 1000. According to 

Table 9, about 58% of the 30000 conditional variance rolling-sampled parameters are 

outside the 95% confidence interval of the parameters estimated using the whole 

sample set of the 30000 simulated data. The procedure is repeated for an 

AR(1)EGARCH(1,1) conditional variance form, 

( ) ( )2

11

1

1

1

1

10

2 lnln −

−

−

−

− +−+= t

t

t

t

t

t aa σβ
σ

ε
γ

σ

ε
σ , but the results are robust to the choice of 

the conditional variance specification.

A series of 32000 values from the first order autoregressive process are also 

produced. The AR(1) process is created as ttt zyy ++= −112.00001.0 , for ( )1,0~
...

Nz
dii

t . 

Dropping out the first 1001 data, 30000 maximum likelihood rolling-sampled estimates of 

the parameters are also obtained. As far as the case of the AR(1) process is concerned, 

we infer that the rolling estimated parameters are time-invariant, as on average the 5% 

of the estimated rolling parameters are outside the 95% confidence levels. 

Both the AR(1)GARCH(1,1) and the AR(1) processes were simulated for various 

sets of parameters, but there are no qualitative differences to the fore mentioned 

conclusions. Moreover, a series of simulations were repeated i) for ARCH volatility forms 

without any conditional mean specification, ii) based on estimation procedures of the 

most well known packages, EVIEWS® 4.1 and OX-G@ARCH® 3.4, iii) for larger rolling 
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samples of 5000 values, iv) for non-overlapping data samples, but there are no 

qualitative differences in any of these cases9.

So, the simulation study provides evidence that the time-variant attitude of 

rolling-sampled parameters estimations characterizes not only the examined data sets 

but the ARCH data generating process itself as well. 

INSERT TABLE 9 ABOUT HERE

7 . R o l l i n g - s a m p l e d  p a r a m e t e r s  f r o m  a  L e v y - s t a b l e  

d i s t r i b u t i o n

The study of the shape of stock returns can be dated back to 1900 where Louis 

Bachelier in his Ph.D. Thesis, ‘The Theory of Speculation’, first presented it – see 

Bachelier (1900). Mandelbrot (1963) and Fama (1965) made the first re-examination of 

the unconditional distribution of stock returns. Mandelbrot (1963) concluded that price 

changes can be characterized by a stable Paretian distribution with a characteristic 

exponent, a , less than two, thus exhibiting fat tails and infinite variance. Fama (1965) 

examined the distribution of thirty stocks of the Dow Jones Industrial Average; his 

results were consistent with Mandelbrot’s. Thereafter, it has been accepted that the 

stock returns distributions are fat-tailed and peaked. In an attempt to model the 

unconditional distribution of stock returns several researchers have considered 

alternative approaches. See for example, Blattberg and Gonedes (1974), Bradley and 

Taqqu (2002), Clark (1973), Kon (1984), McDonald (1996), Mittnik and Rachev (1993), 

Rachev and Mittnik (2000). De Vries (1991), Ghose and Kroner (1995) and Groenendijk 

et al. (1995) demonstrate that ARCH models share many of the properties of Levy-

stable distribution but the true data generating process for an examined set of financial 

data is more likely ARCH than Levy-stable. A number of studies, such as Liu and 

Brorsen (1995), Mittnik et al. (1999), Panorska et al. (1995), Tsionas (2002), examined 

the properties of ARCH models with Levy-stable distributed innovations.

9
 All the simulation studies are available to the readers upon request.
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The probability density function of a stable distribution cannot be described in a 

closed mathematical form. By definition, a univariate distribution function is stable if and 

only if its characteristic function has the form

( ) ( )



































−−= at

t

t
ittit

a
,1exp ωβγδϕ , (10)

where 1−=i , Rt ∈  with

( )










=
−

≠








=

.1,log
2

1,
2

tan

,

at

a

at

π

πα

ω

The particular distribution represented by its characteristic function is determined by the 

values of four parameters: a , β , γ  and δ . The parameter a , 20 ≤<α , is called the 

characteristic exponent. It measures the thickness of the tails of a stable distribution. 

The smaller the value a , the higher the probability in the distribution tails. If 2<a  then 

we have thicker tails than the tails of normal distribution. Thus, stable distributions have 

thick tails and consequently increase the likelihood of the occurrence of large shocks. 

The skewness parameter β , 11 ≤≤− β , is a measure of the asymmetry of the 

distribution. The distribution is symmetric, if 0=β . For 0>β , the distribution is skewed 

to the right and for 0<β , the distribution is skewed to the left. As β  approaches one, 

the degree of skewness increases. The scale parameter γ , 0>γ , is a measure of the 

spread of the distribution. It is similar to the variance of the normal distribution, 

2σγ = . However, the scale parameter γ  is finite for all stable distributions, despite 

the fact that the variance is infinite for all 2<a . The location parameter δ , 

+∞<<∞− δ , is the mean of the distribution, when 1>a , and the median for 10 ≤< a . 

The case of 2=a , 0=β  corresponds to the normal distribution, while 1=a , 0=β

corresponds to the Cauchy distribution.

In estimating the parameters of the stable distribution of index returns, we adopt 

the estimation procedure suggested by McCulloch (1986). The estimation procedure is a 
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quantile method and works for 26.0 ≤≤ a  and any value of the other parameters. 

Essentially, McCulloch suggests that if we have a random variable x , which follows a 

stable distribution and denote the 
thp  quantile of this distribution by ( )px , then the 

population quantile can be estimated by the sample quantile ( )px̂ . McCulloch’s 

estimator uses five quantiles to estimate a  and β  as follows:

( )
( ) ( )
( ) ( )25.0ˆ75.0ˆ

05.0ˆ95.0ˆ
ˆ

xx

xx

−
−

=αν (11)

( )
( ) ( ) ( )

( ) ( )05.0ˆ95.0ˆ

50.0ˆ205.0ˆ95.0ˆ
ˆ

xx

xxx

−
−+

=βν  . (12)

Since ( )aν  is monotonic in a  and ( )βν  is monotonic in β , we are able to find a  and 

β  by inverting ( )aν  and ( )βν :

( ) ( )( )βνν ˆ,ˆˆ
1 aga = , (13)

( ) ( )( )βννβ ˆ,ˆˆ
2 ag= . (14)

McCulloch tabulated 1g  and 2g  for various values of ( )aν  and ( )βν . A similar 

procedure is also applied for the scale and location parameters. An alternative 

procedure to estimate the parameters of the stable distribution is the regression method 

proposed by Koutrouvelis (1980).

Following a procedure similar to that of ARCH modelling, the parameters of the 

stable distribution are estimated, at each of a sequence of points in time, using a rolling 

sample of constant size equal to 1000 trading days. Thus, the rolling-sampled 

parameters are estimated for the trading days of January 1996 to July 2002 for the 

DAX30, FTSE100 and SP500 indices and from January 2000 to July 2002 for the 

FTSE20 index.

The empirical findings, for the case of the Greek stock market, are graphically 

summarized in Figure 4, which plots the rolling-sampled estimates of parameters along 

with the 95% confidence interval of the parameters estimated using the full data sample. 

Inspection of Figure 4 shows that the estimates of a  are less than two. The case of 

FTSE20 reveals that 92% of the a ’s rolling-sampled estimates are between 1.44 and 
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1.55. The parameter β  is greater than zero, which implies skewness to the right. The 

rolling values of β  are positive and range from 0.003 to 0.22 but there are not outside 

the 95% confidence interval for any case10. 

INSERT FIGURE 4 ABOUT HERE

In Table 10, we present the estimates of the parameters of stable distribution 

based on all data available as well as the standard deviation of the rolling-sampled 

estimated parameters. The estimates of a  do not approach two in any of the examined 

indices. However, there are estimated rolling parameters that are statistically different 

from the parameter values estimated using the full data sample. For example, the 

rolling-sampled estimates of the tail index ( a ) are statistically different to the full sample 

estimated parameter in the 51.46% of the trading days for the case of the SP500 index. 

In 9.59% and 9.42% of the trading days the rolling estimates of parameter β  are 

statistically different to the relevant full-sampled values for the DAX30 and FTSE100 

indices, respectively, whereas the location (δ ) parameters are time-variant in none of 

the cases. Another important parameter of the stable distribution, from the point of view 

of portfolio theory, is the scale parameter, γ . As far as the FTSE20 index is concerned, 

the rolling-sampled estimates of the scale parameter differ statistically from its full-

sampled value in the 56.48% of the trading days. Hence, the parameter estimates, using 

the full data sample are statistically different from the parameter values estimated using 

the rolling samples of constant size for one parameter in each index.

INSERT TABLE 10 ABOUT HERE

8 . D i s c u s s i o n

We estimated an asymmetric ARCH model using daily returns of the FTSE20, DAX30, 

FTSE100 and SP500 indices and concluded that although the estimated parameters of 

the model change over time, the model does not lose its ability to forecast the one-day-

ahead volatility accurately. Gallant et al. (1991), Stock (1988), Lamoureux and 

10
 Figures depicting the rolling-sampled estimates of the parameters for the DAX30, FTSE100 and SP500 

indices are available upon request.
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Lastrapes (1990) and Schwert (1989) among others have aimed at explaining the 

economic interpretation of the ARCH process. As Engle et al. (1990) and Lamoureux 

and Lastrapes (1990) have noted, the explanation of the ARCH process must lie either 

in the arrival process of news or in market dynamics in response to the news. Based on 

some earlier work by Clark (1973) and Tauchen and Pitts (1983), Gallant et al. (1991) 

provided a theoretical interpretation of the ARCH effect. They assumed that the asset 

returns are defined by a stochastic number of intra-period price revisions and 

information flows into the market in an unknown rate. As the daily information does not 

come to the stock market in a constant and known rate, the estimation of the ARCH 

stochastic process that explains the dynamics of the stock market could be revised at 

regular time intervals. In our case the ARCH process is estimated using daily returns. 

Thus, the parameters of the model may be revised on a daily base, because of the 

observed phenomenon of changes in the estimated parameters. If we used data of 

higher frequency, i.e. ten-minutes intra-daily returns, the estimated model may be 

revised more frequent than on a daily base. The change of the estimated values of the 

parameters has to be further examined in intra-daily high-frequency data sets, on a 

future research.

Furthermore, the rolling parameter analysis was applied to the unconditional 

distribution of returns. The empirical results indicate that in all cases - DAX30, FTSE20, 

FTSE100 and SP500 - the parameters of the asymmetric stable distribution of stock 

returns change across time. We observed the phenomenon of parameter changing 

across time for both the conditional (ARCH process) and the unconditional (Levy-stable) 

distribution of returns. 

Altering the method of model estimation, the rolling-sampled parameters remain 

time-variant. Even in the case of a simulated ARCH process, the property of time 

varying rolling-sampled parameters holds. To the best of authors’ knowledge, this is the 

first study that investigates the phenomenon of time varying estimated parameters either 

i) in real-world financial data or ii) in a simulated data generating process. However, the 

theoretical interpretation of this phenomenon has to be further investigated.
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T a b l e s  a n d  F i g u r e s

Table 1. Parameter estimates for the FTSE20 index returns using 

data from January 3rd, 1996 to July 5th, 2002.

Parameter Coefficient Standard error
Coefficient /

Standard error

0µ -0.000980 0.000516 -1.898440

1µ 2.852553 1.744956 1.634742

2µ 0.053237 0.048253 1.103283

3µ 0.317119 0.112867 2.809660

0a -6.832800 1.077622 -6.340627

0δ 0.187064 0.055310 3.382094

1Ψ 0.394402 0.019925 19.79393

1∆ 0.919999 0.023994 38.34286
γ -0.064062 0.061404 -1.043284

1δ 0.010323 0.024886 0.414812

2δ 0.002381 0.023214 0.102560

v 1.335436 0.042741 -15.54980

Notes: With v =1.335, the 97.5% point of the generalized error 

distribution is 2.06. With v =1.335, the 99.5% point of the generalized 

error distribution is 2.94.

Table 2. Percentage of rolling-sampled estimated parameters that are outside 

the 95% confidence interval.

Parameter Lower/Upper 
Bound

Percent of 
estimations below 

the lower limit 

Percent of 
estimations above 

the upper limit

0µ (-0.002 0.000) 56.48% 0.00%

1µ (-1.780 7.485) 0.00% 7.04%

2µ (-0.075 0.181) 0.00% 0.00%

3µ (0.017 0.617) 0.00% 0.32%

0a (-9.694 -3.972) 14.40% 0.48%

0δ (0.040 0.334) 0.48% 0.64%

1Ψ (0.342 0.447) 12.80% 0.32%

1∆ (0.856 0.984) 54.40% 0.00%
γ (-0.227 0.099) 0.00% 0.00%

1δ (-0.056 0.076) 0.00% 5.12%

2δ (-0.059 0.064) 32.16% 0.00%
v (1.222 1.449) 0.48% 26.40%
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Table 3. Percentage of rolling-sampled estimated parameters that are 

statistically different from the parameter values estimated using the full data 

sample.

Parameter
5% sign. 

Level
1% sign. 

Level
Parameter

5% sign. 
Level

1% sign. 
Level

0µ 21.86% 1.29% 1Ψ 7.40% 0.00%

1µ 0.96% 0.00% 1∆ 18.97% 10.13%

2µ 0.00% 0.00% γ 0.00% 0.00%

3µ 0.00% 0.00% 1δ 0.00% 0.00%

0a 17.20% 3.86% 2δ 12.54% 0.16%

0δ 0.00% 0.00% v 1.29% 0.00%

Table 4. Percentage of rolling-sampled estimated parameters that are statistically 

insignificant at 5% and 1% levels of significance.

Parameter
5% sign. 

Level
1% sign. 

Level
Parameter

5% sign. 
Level

1% sign. 
Level

0µ 30.06% 76.21% 1Ψ 0.00% 0.00%

1µ 32.80% 97.11% 1∆ 0.00% 0.00%

2µ 99.84% 100% γ 100% 100%

3µ 65.11% 87.78% 1δ 100% 100%

0a 0.00% 0.48% 2δ 89.55% 99.84%

0δ 27.65% 57.07% v 0.00% 0.00%
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Table 5. Parameter estimates for the DAX30, FTSE100 and SP500 index daily returns (January 3rd, 1996 

to July 5th, 2002).

Parameter Coefficient Standard error Coefficient / 
Standard error

DAX30 FTSE100 SP500 DAX30 FTSE100 SP500 DAX30 FTSE100 SP500

0µ 0.000 -0.000 -0.001 0.001 0.000 0.001 0.596 -0.067 -1.027

1µ 1.995 1.251 4.297 2.709 3.924 4.013 0.736 0.319 1.071

2µ 0.024 0.005 -0.100 0.061 0.060 0.062 0.398 0.078 -1.620

3µ -0.075 0.144 0.333 0.138 0.126 0.121 -0.544 1.140 2.745

0a -9.858 -1.326 -4.059 0.919 0.522 0.685 -10.727 -2.538 -5.929

0δ 0.095 0.012 0.039 0.050 0.036 0.040 1.880 0.342 0.956

1Ψ 0.190 0.056 0.060 0.007 0.062 0.044 27.847 0.892 1.378

1∆ 0.973 -0.001 0.785 0.013 0.185 0.028 73.455 -0.003 28.040
γ -0.068 -0.108 -0.236 0.079 0.036 0.079 -0.856 -2.969 -2.975

1δ -0.008 0.694 0.081 0.012 0.144 0.035 -0.688 4.822 2.295

2δ 0.004 0.201 0.041 0.012 0.095 0.031 0.386 2.116 1.314

v 1.735 1.858 1.689 0.029 0.095 0.038 -9.137 -1.495 -8.184

Notes: With v =1.735, v =1.858, v =1.689, the 97.5% point of the generalized error distribution are 2.00, 

1.98 and 2.00, respectively. With v =1.735, v =1.858, v =1.689, the 99.5% point of the generalized error 

distribution are 2.70, 2.65 and 2.72, respectively. For the DAX30 index, parameters 1δ  and 2δ  present 

the volatility spillover from the FTSE100 and SP500 indices, respectively. For the FTSE100 index, 

parameters 1δ  and 2δ  present the volatility spillover from the DAX30 and SP500 indices, respectively. 

For the SP500 index, parameters 1δ  and 2δ  present the volatility spillover from the DAX30 and 

FTSE100 indices, respectively.
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Table 6. Percentage of rolling-sampled estimated parameters that are outside the 

95% confidence interval. (Values in parenthesis present the lower and upper bounds 

of the 95% confidence interval).

DAX30 FTSE100 SP500

0µ (-0.001 0.002) 33.18% (-0.001 0.001) 24.11% (-0.002 0.001) 20.66%

1µ (-4.989 8.978) 0.00% (-8.762 11.263) 0.80%
(-5.978 
14.572)

16.48%

2µ (-0.133 0.182)
0.00%

(-0.148 0.157) 1.28% (-0.258 0.058) 0.00%

3µ (-0.431 0.281)
0.00%

(-0.178 0.465)
12.32

%
(0.022 0.644) 0.48%

0a
(-12.227 -

7.489)
  3.20% (-2.659 -0.007) 16.64% (-5.812 -2.306) 24.00%

0δ (-0.035 0.224)
0.00%

(-0.080 0.105) 0.00% (-0.065 0.142) 0.00%

1Ψ (0.172 0.207) 62.24% (-0.104 0.215) 0.00% (-0.052 0.173) 20.96%

1∆ (0.939 1.007) 22.08% (-0.472 0.471) 1.12% (0.713 0.857) 60.48%

γ (-0.271 0.136)
0.00%

(-0.201 -0.015) 1.12% (-0.439 -0.033) 0.48%

1δ (-0.038 0.022)  3.04% (0.327 1.062)  0.48% (-0.009 0.171) 0.00%

2δ (-0.025 0.034)  1.60% (-0.041 0.444) 0.00% (-0.039 0.121) 35.36%

v (1.660 1.811) 46.72% (1.616 2.100)  0.48% (1.591 1.787) 9.44%

Table 7. Percentage of rolling-sampled estimated parameters that are statistically 

different from the parameter values estimated using the full data sample.

DAX30 FTSE100 SP500

Parameter
5% sign. 

Level
1% sign. 

Level
5% sign. 

Level
1% sign. 

Level
5% sign. 

Level
1% sign. 

Level

0µ 13.67% 0.80% 4.02% 0.00% 14.15% 4.34%

1µ 0.00% 0.00% 0.16% 0.00% 8.52% 0.64%

2µ 0.00% 0.00% 1.13% 0.00% 0.00% 0.00%

3µ 0.00% 0.00% 3.22% 0.64% 0.00% 0.00%

0a 16.72% 7.40% 0.48% 0.00% 24.28% 6.59%

0δ 0.00% 0.00% 0.00% 0.00% 2.73% 0.00%

1Ψ 0.00% 0.00% 0.00% 0.00% 7.56% 0.00%

1∆ 2.57% 0.00% 14.47% 5.79% 31.67% 3.54%
γ 5.14% 0.00% 4.50% 0.00% 36.17% 10.13%

1δ 0.00% 0.00% 0.80% 0.32% 0.00% 0.00%

2δ 0.00% 0.00% 0.16% 0.00% 24.92% 0.00%
v 16.72% 0.32% 0.00% 0.00% 0.00% 0.00%
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Table 8. Percentage of the rolling-sampled estimated parameters that are 

statistically insignificant at 5% and 1% levels of significance.

DAX30 FTSE100 SP500

Parameter
5% sign. 

Level
1% sign. 

Level
5% sign. 

Level
1% sign. 

Level
5% sign. 

Level
1% sign. 

Level

0µ 88.36% 99.37% 94.69% 100.00% 66.35% 84.28%

1µ 93.87% 100.00% 99.22% 100.00% 57.08% 87.26%

2µ 100.00% 100.00% 99.22% 100.00% 100.00% 100.00%

3µ 100.00% 100.00% 79.69% 96.56% 92.77% 100.00%

0a 0.00% 0.00% 17.81% 40.78% 1.57% 18.08%

0δ 81.45% 100.00% 100.00% 100.00% 100.00% 100.00%

1Ψ 0.00% 0.00% 100.00% 100.00% 100.00% 100.00%

1∆ 0.00% 0.00% 31.25% 38.91% 0.00% 0.00%
γ 100.00% 100.00% 100.00% 100.00% 0.00% 44.18%

1δ 100.00% 100.00% 0.00% 0.16% 94.03% 100.00%

2δ 100.00% 100.00% 67.97% 96.56% 59.91% 91.19%

v 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Table 9. AR(1)GARCH(1,1) simulated process. Percentage of rolling-

sampled estimated parameters that are outside the 95% confidence 

interval.

ttt yy εµµ ++= −110

2

ttt z σε = , ( )1,0~
...

Nz
dii

t

2

12

2

110

2

−− ++= ttt aaa σεσ

0µ 1µ 0a
1a 2a

Simulated Values 0.005 0.150 0.040 0.0500 0.900

Estimated Values
(Full Data Sample)

-0.003 0.158 0.037 0.0138 0.895

Rolling parameters
outside the 95% c.i.

11.70% 3.32% 73.17% 30.88% 72.17%
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Table 10. Stable parameter estimates, using the full data sample, of the 

FTSE20, DAX30, FTSE100 and SP500 index daily returns, their standard 

errors and the percentage of rolling-sampled estimated parameters that are 

statistically different from the parameter values estimated using the full data 

sample at 5% level of significance.

Tail index
a

Skewness

β
Location

δ
Scale

γ
FTSE20

Coefficient 1.48303 0.07799 -0.00033 0.01005
Standard error 0.05606 0.07965 0.00143 0.00081
5% sign. Level 0.32% 0.00% 0.00% 56.48%

DAX30

Coefficient 1.58306 -0.14798 0.00101 0.00754
Standard error 0.15725 0.18828 0.00069 0.00217
5% sign. Level 1.53% 9.59% 0.12% 0.00%

FTSE100

Coefficient 1.68238 -0.06489 0.00046 0.00591
Standard error 0.10944 0.25581 0.00039 0.00165
5% sign. Level 2.13% 9.42% 0.49% 0.00%

SP500

Coefficient 1.49172 -0.11841 0.0005 0.00525
Standard error 0.07160 0.09609 0.00052 0.00218
5% sign. Level 51.46% 5.00% 0.00% 0.00%
Notes: The standard error of parameter a  is computed as the standard 

deviation of the rolling-sampled estimated parameters, ( )t
â , for Tt ,...,1=

trading days, i.e. ( ) ( ) ( )( )∑
=

− −−
T

t

Tt aaT
1

21
ˆ1 , where ( ) ( )∑

=

−
=

T

t

tT
aTa

1

1 ˆ .
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Figure 1. FTSE20, DAX30, FTSE100 and SP500 continuously 

compounded daily returns from January 3rd, 1996 to July 5th, 

2002.
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Figure 2. The rolling-sampled estimated parameters of the ARCH model and the 95% confidence 

interval of the parameters estimated using the full data sample.
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Figure 3.a. In-sample 95% confidence interval of the FTSE20 index daily returns for the 

ARCH model (11th January 2000 to 5th July 2002).
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Figure 3.b. One-step-ahead 95% prediction interval of the FTSE20 index daily returns 

for the ARCH model (11th January 2000 to 5th July 2002).
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Figure 4. FTSE20 index daily returns. The rolling-sampled 

estimated parameters of the stable distribution and the 95% 

confidence interval of the parameters estimated using the full 

data sample.
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Rol l i ng - samp led  parame te r s  o f  ARCH and  Levy - s tab l e  

mode l s   
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A b s t r a c t  

In this paper an asymmetric autoregressive conditional heteroskedasticity (ARCH) model and 

a Levy-stable distribution are applied to some well-known financial indices (DAX30, FTSE20, 

FTSE100 and SP500), using a rolling sample of constant size, in order to investigate whether 

the values of the estimated parameters of the models change over time. Although, there are 

changes in the estimated parameters reflecting that structural properties and trading 

behaviour alter over time, the ARCH model adequately forecasts the one-day-ahead volatility. 

A simulation study is run to investigate whether the time variant attitude holds in the case of a 

generated ARCH data process revealing that even in that case the rolling-sampled 

parameters are time-varying.  

 

Keywords: ARCH model, GED distribution, Leverage effect, Levy-stable distribution, Rolling 
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1 .  I n t r o d u c t i o n  

In the recent literature, regarding the description of the characteristics of financial markets, 

one can find a vast number of specifications of both ARCH and Stochastic Volatility (SV) 

processes that have been considered for. However, the SV models1 are not as popular as the 

ARCH processes in applied studies. The purpose of the present study is to apply an 

asymmetric ARCH model to some well known financial indices, using a rolling sample of 

constant size, in order to observe the changes over time in the values of the estimated 

parameters. A thorough investigation is conducted by comparing the parameters of the full-

sampled estimated model to the parameters of the rolling sub-sample estimated models. We 

conclude that the values of the estimated parameters change over time, indicating a data set 

that alters across time reflecting the information that financial markets reveal. The analysis is 

extended to simulated time series indicating that the time-varying estimated coefficients 

characterize the ARCH data generating process itself.   

In ARCH modelling, the distribution of stock returns has fat tails with finite or infinite 

unconditional variance and time dependent conditional variance. Estimation of stable 

distributions is an alternative approach in modelling the unconditional distribution of returns. 

Thus, we adopt the estimation procedure of McCulloch (1986) and the parameters of the 

Levy-stable distribution are estimated at each of a sequence of points in time, using a rolling 

sample of constant size. The empirical findings suggest that the parameters of the 

unconditional distribution are also not constant over time.  

Reviewing the relevant literature we notice absence of studies showing that although 

the parameters of a well-specified model vary significantly over time, their time varying attitude 

does not influence model’s forecasting ability. The main object of our study is to provide 

evidence that model’s parameters should be re-estimated on a frequent base in order to 

reflect any changes that have been occurred in the stock market and have been incorporated 

in the prices of assets.  

                                                 
1 The reader who is interested in SV models is referred to Barndorff-Nielsen et al. (2002), Chib et al. (1998), 
Ghysels et al. (1996), Jacquier et al. (1999), Shephard (2004), Taylor (1994). 
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The paper is divided in six sections. Section 2 lays out the asymmetric ARCH model 

that is applied in the FTSE20, DAX30, FTSE100 and SP500 stock indices. In section 3, the 

estimated rolling-sampled parameters of the asymmetric ARCH model are discussed. In 

section 4, a simulation study examines whether the parameters are time-varying in the case of 

a generated ARCH process. In section 5, the unconditional distribution of returns is estimated 

and the phenomenon of time-variant parameters is investigated in the Levy-stable distribution.  

Finally, in section 6 we summarize the main conclusions. 

2 .  A n  a s y m m e t r i c  A R C H  m o d e l  

A wide range of proposed ARCH models is covered in surveys such as Andersen and 

Bollerslev (1998), Bera and Higgins (1993), Bollerslev et al. (1992), Bollerslev et al. (1994), 

Degiannakis and Xekalaki (2004) and Poon and Granger (2003). The Nobel price award to 

R.F. Engle for ARCH volatility modeling is the uncontested proof of the contribution of ARCH 

models in time series and econometric modelling (Diebold 2003). A plethora of studies applied 

ARCH models to predict future volatility by updating the available information set at each of a 

sequence of points in time. Among others, Balaban and Bayar (2005) tested in 14 countries 

the relationship between stock market returns and their forecast volatility, Blair et al. (2001) 

compared the information content of implied volatilities and intraday returns in the context of 

forecasting S&P100 volatility, Wei (2002) forecast China’s weekly stock market volatility and 

Yu (2002) predicted stock price volatility using daily New Zealand data. Angelidis et al. (2004), 

Degiannakis (2004), Brooks and Persand (2003) and Giot and Laurent (2003) predicted 

Value-at-Risk (VaR) measures, while Degiannakis and Xekalaki (2001), Engle et al. (1997) 

and Noh et al. (1994) used rolling ARCH models to forecast volatility of options. 

An ARCH process, ( )θε t , can be presented as 

( ) ( )

( ) ( )( )
( ) ( ),,...,,...;,,...;,

1,0~

212121
2

...

−−−−−−=

==

=

ttttttt

tt

dii

t

ttt

g

zVzEfz

z

υυεεσσθσ

θσθε

 (1)

where θ  is a vector of unknown parameters, ( ).f  is the density function of ,  is a linear 

or non-linear functional form and 

tz ( ).g

tυ  is a vector of predetermined variables included in 
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information set I  at time t . Since very few financial time series have a constant conditional 

mean of zero, an ARCH model can be presented in a regression form by letting tε  be the 

unpredictable component of the conditional mean 

( ) tttAtA IyEy ε+= −1,, | , (2)

where ( )1,,, ln −= tAtAtA PPy  denotes the continuously compound rate of return from time 1−t  

to , and  is the asset price A at time . In order to investigate the characteristics of stock 

market A, we apply an ARCH model of the following form: 

t tAP , t

ttAtAtA yey
tA

εμμσμμ μ
σ

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+++= −

−

1,32
2

,10,
4

2
,

, 

tAtt z ,σε = , 

( )vGEDz
dii

t ;1,0~
...
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( ) ( ) ( ) ⎟
⎟
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⎜
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⎜
⎜
⎝

⎛
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σ
εγ

σ
ε

σ
εδσ , 

(3)

where  denotes the generalized error distribution (GED), v  is the tail thickness 

parameter of the GED, 

( vGED ;1,0 )

L  is the lag operator and  is the number of non-trading days 

preceding the  day. The density function of a GED random variable is given by 

tN

th
t

( )
v

ve
zf

v
v

z

t

v

t

12
)(

1

2 1

Γ
=

+

− −

λ

λ

, (4)

for , ∞<<∞− z ∞≤< v0 , where ( ).Γ  denotes the gamma function and 

( )
( )

2
1

2

3

12
1

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

Γ

Γ
≡

−−

v

v
v

λ . (5)

The conditional variance specification has the form of the exponential GARCH, or EGARCH 

model, which is suggested by Nelson (1991). The EGARCH model captures the asymmetric 

effect exhibited in financial markets, as the conditional variance, , depends on both the 
2
tσ
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magnitude and the sign of lagged innovations. Assuming GED distributed innovations with 

EGARCH specification for the conditional variance we take into account that i) the 

unconditional distribution of innovations is symmetric but with excess kurtosis and ii) their 

conditional distribution is asymmetric and leptokurtotic. Parameter γ  allows for the leverage 

effect. The leverage effect, first noted by Black (1976), refers to the tendency of changes in 

stock returns to be negatively correlated with changes in returns volatility, i.e. volatility tends to 

rise in response to ‘bad news’ and to fall in response to ‘good news’. Moreover, the logarithmic 

transformation ensures that the forecasts of the variance are non-negative. Parameter 0δ  

allows us to explore the contribution of non-trading days to volatility. According to Fama 

(1965) and French and Roll (1986) information that accumulates when financial markets are 

closed is reflected in prices after the markets reopen. The conditional mean is modeled such 

as to capture the relationship between investors’ expected return and risk2 ( 1μ ), the non-

synchronous trading effect3 ( 2μ ), and the inverse relation between volatility and serial 

correlation4 ( 3μ ). 

Model (3) is expanded in order to take into account the phenomenon of volatility spill 

over from one market to the other5: 

( ) ( ) ( )
( ) ( . lnln

1

1
1lnln

2
1,2

2
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⎠
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⎜
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⎜
⎜
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⎛
−Ψ
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tCtB
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t
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t
ttA LEL
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σ
εγ

σ
ε

σ
εδσ
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 (6) 

 
2 The relationship between investors’ expected return and risk was presented in an ARCH framework, by Engle et 
al. (1987). They introduced the ARCH in mean model where the conditional mean is an explicit function of the 
conditional variance. 
3 According to Campbell et al. (1997), ‘The non-synchronous trading or non-trading effect arises when time 
series, usually asset prices, are taken to be recorded at time intervals of one length when in fact they are recorded 
at time intervals of other, possible irregular lengths.’ 
4 LeBaron (1992) found a strong inverse relation between volatility and serial correlation for SP500, CRSP and 
Dow Jones returns. As LeBaron stated, it is difficult to estimate 4μ  in conjunction with  when using a gradient 

type of algorithm. So, 
3

μ

4μ  is set to the sample variance of the series. 
5 Engle et al. (1990) evaluated the role of the information arrival process in the determination of volatility in a 
multivariate framework providing a test of two hypotheses: heat waves and meteor showers. Using meteorological 
analogies, they supposed that information follows a process like a heat wave so that a hot day in New York is 
likely to be followed by another hot day in New York but not typically by a hot day in Tokyo. On the other hand, 
a meteor shower in New York, which rains down on the earth as it turns, will almost surely be followed by one in 
Tokyo. Thus, the heat wave hypothesis is that the volatility has only country specific autocorrelation, while the 
meteor shower hypothesis states that volatility in one market spills over to the next. See also Kanas (1998). 
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where the parameters 1δ  and 2δ  account for the volatility spill over from B and C stock 

markets to the A stock market, respectively. In order to account for the volatility spill over 

effect from one market to the others, when (6) is estimated for stock market A, the daily 

conditional volatilities of stock markets B and C are regarded as exogenous variables that 

have been estimated according to framework (3)6. 

The data set used in this paper consists of the Financial Times Stock Exchange 20 

(FTSE20) index for Greece, the Deutscher Aktien Index 30 (DAX30) for Germany, the 

Financial Times Stock Exchange 100 (FTSE100) index for U.K. and the Standard & Poor's 

500 (SP500) index for U.S.A. The period covered for the FTSE20, DAX30, FTSE100 and 

SP500 is from January 3rd 1996, January 14th 1992, January 9th 1992 and January 7th 1992 to 

July 5th 2002, respectively. A thorough investigation is conducted by comparing the 

parameters of the full-sampled estimated model to the parameters of the rolling sub-sample 

estimated models. Maximum likelihood estimates of the parameters are obtained by numerical 

maximization of the log-likelihood function using the Marquardt (1963) algorithm. 

INSERT TABLE 1 ABOUT HERE 

Table 1 presents the estimated parameters of model (6) for each market separately. 

The standardized residuals, , and their squared values, , from all models obey the 

standard assumptions of autocorrelation and heteroskedasticity absence. Indicatively, we 

present the Ljung-Box Q-statistic for the null hypothesis that there is not autocorrelation up to 

20

1
,

−
tAtσε

2
,

2 −
tAt σε

th order computed on  and . Briefly discussing the values of the parameters, we 

note that i) the relation of the conditional variance with the risk premium, although positive, is 

statistically insignificant (coefficient 

1
,

−
tAtσε

2
,

2 −
tAt σε

1μ ), ii) the non-synchronous trading effect is not present 

in the estimated models (coefficient 2μ ) and iii) concerning the cases of the FTSE20 and 

SP500 stock indices, the daily serial correlation is inversely related to its conditional volatility 

(coefficient 3μ ). Moreover, the leverage effect is not present in the Greek and German stock 

                                                 
6 For example, in the case of the FTSE20 index daily returns, the conditional variance of the DAX30 and SP500 
returns were regarded as exogenous variables. In order to estimate the conditional variance of the DAX30 and 
SP500 indices, their daily returns were used for the period of January 1992 to July 2002, or 1000 trading days 
prior January 3rd, 1996. 
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markets. On the contrary, for the SP500 and FTSE100 stock indices, the estimated value of 

parameter γ  is statistically significant at 1% level of significance. The volatility spill over effect 

is statistically significant for the U.K. stock market. Regarding the SP500 index daily returns, 

there is evidence that volatility spillovers from Frankfurt to Chicago stock market. Finally, for 

the FTSE20, DAX30 and SP500 cases, parameter v  is statistically different to the value of 2 

at any level of significance, justifying the use of a thick-tailed distribution. The estimated value 

of 0δ  is about 0.187 and statistically significant only in the case of the Greek market indicating 

that a non-trading day contributes less than a fifth as much to volatility as a trading day. 

3 .  R o l l i n g - s a m p l e d  p a r a m e t e r s  o f  t h e  a s y m m e t r i c  A R C H  m o d e l  

Our purpose is to examine if the estimated parameters of the asymmetric ARCH model 

change over time and whether there is any impact of time-varying estimated parameters on 

volatility forecasting accuracy. The ARCH process is estimated, at each of a sequence of 

points in time, using a rolling sample of constant size equal to 1000 trading days, a sample 

size that is preferred7 by the majority of applied studies. 

We produce one-day-ahead conditional volatility predictions for the trading days of 11th 

January 2000 to 5th July 2002. Since the ARCH model is estimated at each point in time, we 

use the maximum likelihood estimates at time 1−t  as starting values for the iterative 

maximization algorithm at time . Figure 1 depicts the rolling-sampled estimated parameters 

for the FTSE20 index as well as the 

t

06.2±  times the conditional standard deviation 

confidence interval of the parameters estimated using the full data sample8. From visual 

inspection, the estimated rolling parameters are, clearly, out of the confidence interval bounds 

in many cases. Table 2 presents the percentage of rolling-sampled estimations, which are 

outside of the 95% confidence interval of the full-sampled parameters. Characteristic 

examples of the change in the parameter values are 1Ψ  and  for DAX30 as well as v 1Δ  for 

FTSE20 and SP500. However, there are rolling parameters which do not change significantly 

                                                 
7 Engle et al. (1993), Engle et al. (1997), Noh et al. (1994), Angelidis et al. (2004) note that the size of the rolling 
sample turns out to be rather important while Frey and Michaud (1997), Hoppe (1998) and Degiannakis and 
Xekalaki (2006) comment that the use of short sample sizes generates more accurate volatility forecasts, since it 
incorporates changes in trading behaviour more efficiently. 
8 Figures of the estimated rolling parameters for the DAX30, FTSE100 and SP500 indices, similar to Figure 1, are 
available upon request. 
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across time, such as γ  (leverage effect), and 0δ  (contribution of non-trading days to 

volatility). An important characteristic, which is extracted from the rolling-sampled estimated 

parameters, is the fact that the estimated values do not fluctuate in a mean reverting form but 

they change gradually. Sudden changes of the values of the rolling estimated parameters, 

which are characterized by a mean reverting form, should indicate an improperly maximum 

likelihood estimation procedure. On the other hand, gradual changes of the estimated 

coefficients indicate a data set that alters from time to time, forcing us to believe that the 

values of the estimated parameters reflect the information that financial markets reveal. 

INSERT FIGURE 1 ABOUT HERE  

INSERT TABLE 2 ABOUT HERE 

The percentage of estimated rolling parameters that are statistically different from the 

parameter values estimated using the full data sample, as presented in Table 3, is also 

indicative for the changes of the estimated values across time. There are four parameters, in 

the case of the Greek market, whose rolling-sampled estimators differ statistically significant 

from their full-sampled estimators in more than 10% of the trading days. Although, in the case 

of the FTSE100 index, only the rolling estimators of 1Δ  parameter differ statistically from their 

full data sample estimator, in the case of the SP500 index there are four parameters, which 

show a statistically significant difference from their full-sampled estimators in more than 20% 

of the trading days. 

INSERT TABLE 3 ABOUT HERE 

The values of the rolling parameters indicate that the characteristics of the markets 

change during the examined period. According to Table 4, which presents the percentage of 

trading days that the rolling parameters are statistically insignificant, there are parameters 

whose rolling-sampled estimations are statistically insignificant while their full-sampled 

estimations are significant. For example, parameters 3μ  and 1δ  for the SP500 index, as well 

as parameter γ  for FTSE100 index, although they appear to be significant in the full sample, 

almost all their rolling-sampled estimations are insignificant at 5% level of significance.  

Therefore, in the full sample, an inverse relation between volatility and serial correlation 
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characterizes FTSE20 index, but the values of rolling 3μ  are not different to zero in most of 

the cases. Of course, there are parameters whose estimations are statistically different to zero 

in both the full sample and the rolling samples (i.e. the parameter 1Δ  for the FTSE20, DAX30 

and SP500 indices). Hence, we may infer that the values of the estimated parameters change 

across time, reflecting the individual features of particular periods that characterize financial 

markets. 

INSERT TABLE 4 ABOUT HERE 

However, although the estimated parameters are time varying, the in-sample and out-

of-sample forecasting ability of the model is accurate. There are 31, 19, 17 and 29 cases, or 

4.99%, 2.99%, 2.66% and 4.57%, observed returns outside the 95% confidence intervals for 

the FTSE20, DAX30, FTSE100 and SP500 indices, respectively. In Figure 2.a, the 95% in-

sample confidence interval of the FTSE20 index of daily returns is plotted from 11th January 

2000 to 5th July 2002. However, a model that uses a large number of parameters may exhibit 

an excellent in-sample fit but a poor out-of-sample performance. Studies such as Heynen and 

Kat (1994), Hol and Koopman (2000) and Pagan and Schwert (1990) examined a variety of 

volatility prediction models with in-sample and out-of-sample data sets. We investigate the 

possibility that model over-fitting can be occurred and evaluate the performance of the 

estimated ARCH model by computing the out-of-sample forecasts. In the sequel, the one-day-

ahead 95% prediction intervals are constructed. Let us compute the one-day-ahead 

conditional mean, 
( )( )( )t

t

ttt IyEy |1|1 θ++ ≡ , and conditional variance, 
( )( )( )t

t

ttt IE |2
1

2
|1 θεσ ++ ≡ , 

using the following formulas: 
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|
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(7) 
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where 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )ttttttttttttt

va ,,,,,,,,,,, 2111003210 δδγδμμμμθ ΔΨ≡  is the parameter vector 

that is estimated using the sample data set which is available at time , t ( )tttt IE || εε ≡  

denotes the prediction error conditional on the information set that is available at time t , and 

( )ttttA IE |2
|, εσ ≡  is the conditional standard deviation which is computed by the ARCH 

model, in equation (6), using the information set available at time t . Note that for 

, the expected value of its absolute price is equal to ( vGEDzt ;1,0~ )

( )( ) ( )( ) ( )( )( ) 2/11
, 312

−− ΓΓΓ= ttt

tAt vvvE σε . 

Figure 2.b plots the one-day-ahead 95% prediction interval, which is constructed as the 

one-day-ahead conditional mean ± 2.06 times the conditional standard deviation, both 

measurable to  information set, or tI
( )( ) ttA

t

ttA vGEDy |1,|1, 025.0,;1,0 ++ ± σ , where 
( )( )avGED
t ,;1,0  

is the  quantile of the GED distribution. Hence, each trading day, ( ), the next 

trading day’s, ( ), prediction intervals are constructed, using only information available at 

current trading day, t . There are 29, 22, 21 and 32 observations or 4.67%, 3.46%, 3.29% and 

5.04% for the FTSE20, DAX30, FTSE100 and SP500 indices, respectively, outside the 95% 

prediction intervals

( a−1100 ) t

1+t

9. 

INSERT FIGURE 2 ABOUT HERE 

For a more formal method of evaluating forecasting adequacy, we apply two 

hypotheses tests that measure the forecasting accuracy in a VaR framework. One-day-ahead 

VaR at a given probability level, , is the next trading day’s predicted amount of financial loss 

of a portfolio, or 

a

( ) ( )( ) ttA

t

t avGEDaVaR |1,1|1 ,;1,01 ++ =− σ . Kupiec (1995) introduced a likelihood 

ratio statistic for testing the null hypothesis that the proportion of confidence interval violations 

is not larger than the VaR forecast. The test statistic, which is asymptotically  distributed, 

is computed as 

2
1X

])1(ln())1()[ln((2 nNnnNn

K ppNnNnLR
−− −−−= , where 

≡n ( )( )∑ = ++ <
N

i ttt aVaRyd
1 |11 2/ ( )( )2/1|11 aVaRyd ttt −>+ ++  is the number of trading days over 

                                                 
9 Figures, similar to Figure 2, that depict the in-sample 95% confidence interval and the one-day-ahead 95% 
prediction intervals for the DAX30, FTSE100 and SP500 indices are also available upon request. 
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the out-of-sample period  that a violation has occurred, for N ( )( ) 12/|11 =< ++ aVaRyd ttt  if 

 and ttt VaRy |11 ++ < ( )( ) 02/|11 =< ++ aVaRyd ttt  otherwise, and p  is the expected frequency of 

violations. Christoffersen (1998) developed a likelihood ratio statistic that jointly investigates 

whether i) the proportion of violations is not larger than the VaR forecast and ii) the violations 

are independently distributed. The statistic is computed as  

, where 

=CLR ))1(2ln(- nnN
pp

−−

)))1()1(2ln( 11100100

11110101

nnnn ππππ −−+ ∑=
j

ijijij nnπ and  is the number of 

observations with value i  followed by 

ijn

j , for 1,0, =ji . The values  denote that a 

violation has been made, while 

1, =ji

0, =ji  indicate the opposite. Under the null hypothesis, the 

 is asymptotically chi-squared distributed with two degrees of freedom. The main 

advantage of Christoffersen’s test is that it can reject a VaR model that generates either too 

many or too few clustered violations. Both tests do not reject the null hypothesis of correct 

proportion of violations in all the cases, except for the 95%-VaR of the FTSE100 index. In the 

case of Kupiec’s test the p-values are 70.28%, 6.08%, 3.45% and 96.37% for 95%-VaR and 

8,15%, 13.63%, 56.56% and 52.70% for 99%-VaR, for the FTSE20, DAX30, FTSE100 and 

SP500 indices, respectively. Testing the null hypothesis of whether the violations are equal to 

the expected ones as well as if they are independent, we observe that the relative p-values 

are 40.03%, 16.42%, 0.15% and 95.19% in the 95%-VaR case and 17.98%, 32.51%, 7.10% 

and 73.92% in the 99%-VaR case, for the FTSE20, DAX30, FTSE100 and SP500 indices, 

respectively.  

CLR

Despite the fact that the values of the estimated coefficients change over time, the 

model adequately forecasts the one-day-ahead volatility. Thus, changes in the values of the 

estimated parameters do not indicate inadequacy of the model in describing the data. On the 

contrary, model’s parameters should be re-estimated on a daily base in order to reflect any 

changes that have been occurred in the stock market and have been incorporated in the 

prices of assets10. 

                                                 
10 In order to investigate whether the phenomenon of time-variant values of estimated parameters is related to a 
specific structural characteristic of the model specification, we estimate another ARCH specification. Degiannakis 
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4 .  R o l l i n g - s a m p l e d  p a r a m e t e r s  f r o m  s i m u l a t e d  p r o c e s s e s  

A simulation study could shed light in rolling-sampled estimated parameters’ behaviour. A 

series of simulations is run in order to investigate if the time-variant attitude holds even in the 

case of an ARCH data generating process. We generate a series of 32000 values from the 

standard normal distribution, . Then an AR(1)GARCH(1,1) process is created, 

, where 

( 1,0~
...

Nz
dii

t )

{ }32000

1=tty ttt yy ε++= −115.00005.0 , by multiplying the i.i.d. process with a specific 

conditional variance form 
2
ttt z σε = , for . The 

AR(1)GARCH(1,1) model is applied on the 

2
1

2
1

2 90.005.00005.0 −− ++= ttt σεσ

{ }32000

1002=tty  generated data. Dropping out the first 

1001 data, maximum likelihood rolling-sampled estimates of the parameters are obtained by 

numerical maximization of the log-likelihood function, using a rolling sample of constant size 

equal to 1000. According to Table 5, about 58% of the 30000 conditional variance rolling-

sampled parameters are outside the 95% confidence interval of the parameters estimated 

using the whole sample set of the 30000 simulated data. The procedure is repeated for an 

AR(1)EGARCH(1,1) conditional variance form, ( ) ( )2
11

1

1

1

1
10

2 lnln −
−

−

−

− +−+= t

t

t

t

t

t aa σβ
σ
ε

γ
σ
ε

σ , 

but the results are robust to the choice of the conditional variance specification. 

A series of 32000 values from the first order autoregressive process are also 

produced. The AR(1) process is created as ttt zyy ++= −112.00001.0 , for . 

Dropping out the first 1001 data, 30000 maximum likelihood rolling-sampled estimates of the 

parameters are also obtained. As far as the case of the AR(1) process is concerned, we infer 

that the rolling estimated parameters are time-invariant, as on average 5% of the estimated 

rolling parameters are outside the 95% confidence levels.  

( )1,0~
...

Nz
dii

t

                                                                                                                                                           

1−

(2004) and Giot and Laurent (2003) used an ARCH model with the APARCH volatility specification of Ding et 
al. (1993) and the skewed student-t distribution for the standardized innovations. We estimated such a model for 
our datasets and found similar qualitative results. The estimated parameters are time varying. We have also re-
estimated model (6) using alternatively i) larger sample sizes of rolling parameters, ii) the BHHH algorithm 
(Berndt et al. 1974) instead of the Marquardt algorithm in estimating the maximum likelihood parameters and iii) 
the same starting values at each point in time, instead of the estimates at time t  as starting values for the 
likelihood algorithm at time t . Despite the slight changes occurred in each case, the rolling parameters are time-
variant for all cases. 
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Both the AR(1)GARCH(1,1) and the AR(1) processes were simulated for various sets 

of parameters, but there are no qualitative differences to the fore mentioned conclusions. 

Moreover, a series of simulations were repeated i) for ARCH volatility forms without any 

conditional mean specification, ii) based on estimation procedures of the most well known 

packages, EVIEWS® 4.1 and OX-G@ARCH® 3.4, iii) for larger rolling samples of 5000 values, 

iv) for non-overlapping data samples, but there were no qualitative differences in any of these 

cases11. 

So, the simulation study provides evidence that the time-variant attitude of rolling-

sampled parameters estimations characterizes not only the examined data sets but the ARCH 

data generating process itself as well.  

INSERT TABLE 5 ABOUT HERE 

5 .  R o l l i n g - s a m p l e d  p a r a m e t e r s  f r o m  a  L e v y - s t a b l e  d i s t r i b u t i o n  

In this section, we investigate whether the phenomenon of parameter changing across time is 

related with the unconditional distribution of returns also. Mandelbrot (1963) and Fama (1965) 

made the first re-examination of the unconditional distribution of stock returns. Mandelbrot 

(1963) concluded that price changes can be characterized by a stable Paretian distribution 

with a characteristic exponent, , less than two, thus exhibiting fat tails and infinite variance. 

Fama (1965) examined the distribution of thirty stocks of the Dow Jones Industrial Average; 

his results were consistent with Mandelbrot’s. Thereafter, it has been accepted that the stock 

returns distributions are fat-tailed and peaked. In an attempt to model the unconditional 

distribution of stock returns several researchers have considered alternative approaches. See 

for example, Blattberg and Gonedes (1974), Bradley and Taqqu (2002), Clark (1973), Kon 

(1984), McDonald (1996), Mittnik and Rachev (1993), Panas (2001), Rachev and Mittnik 

(2000).

a

12  

                                                 
11 All the simulation studies are available to the readers upon request. 
12 De Vries (1991), Ghose and Kroner (1995) and Groenendijk et al. (1995) demonstrate that ARCH models share 
many of the properties of Levy-stable distribution but the true data generating process for an examined set of 
financial data is more likely ARCH than Levy-stable. A number of studies, such as Liu and Brorsen (1995), 
Mittnik et al. (1999), Panorska et al. (1995), Tsionas (2002), examined the properties of ARCH models with 
Levy-stable distributed innovations. 
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The probability density function of a stable distribution cannot be described in a closed 

mathematical form. By definition, a univariate distribution function is stable if and only if its 

characteristic function has the form 

( ) ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−= at

t

t
ittit

a
,1exp ωβγδϕ , (8)

where 1−=i , Rt∈ , ( ) ⎟
⎠
⎞

⎜
⎝
⎛=

2
tan,

παω at  if 1≠a  and ( ) tat log
2

,
π

ω −
=  if 1=a . The 

particular distribution represented by its characteristic function is determined by the values of 

four parameters: , a β , γ  and δ . The parameter , a 20 ≤<α , is called the characteristic 

exponent. It measures the thickness of the tails of a stable distribution. The smaller the value 

, the higher the probability in the distribution tails. If a 2<a  then we have thicker tails than the 

tails of normal distribution. Thus, stable distributions have thick tails and consequently 

increase the likelihood of the occurrence of large shocks. The skewness parameter β , 

11 ≤≤− β , is a measure of the asymmetry of the distribution. The distribution is symmetric, if 

0=β . As β  approaches one, the degree of skewness increases. The scale parameter γ , 

0>γ , is a measure of the spread of the distribution. It is similar to the variance of the normal 

distribution, 2σγ = . However, the scale parameter γ  is finite for all stable distributions, 

despite the fact that the variance is infinite for all 2<a . The location parameter δ , 

+∞<<∞− δ , is the mean of the distribution, for , and the median for 1>a 10 ≤< a . The 

case of , 2=a 0=β  corresponds to the normal distribution, while , 1=a 0=β  corresponds 

to the Cauchy distribution. 

In estimating the parameters of the stable distribution of index returns, we adopt the 

estimation procedure suggested by McCulloch (1986). The estimation procedure is a quantile 

method and works for 26.0 ≤≤ a  and any value of the other parameters. Essentially, 

McCulloch suggests that if we have a random variable x , which follows a stable distribution 

and denotes the  quantile of this distribution by 
th

p ( )px , then the population quantile can be 

estimated by the sample quantile ( )px̂ . McCulloch’s estimator uses five quantiles to estimate 
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a  and β  as ( ) ( ) ( )
( ) ( )25.0ˆ75.0ˆ

05.0ˆ95.0ˆ
ˆ

xx

xx

−
−

=αν  and ( ) ( ) ( ) (
( ) ( )

)
05.0ˆ95.0ˆ

50.0ˆ205.0ˆ95.0ˆ
ˆ

xx

xxx

−
−+

=βν . Since ( )aν  is 

monotonic in  and a ( )βν  is monotonic in β , we are able to find a  and β  by inverting ( )aν  

and ( )βν , thus ( ) ( )( )βνν ˆ,ˆˆ
1 aga =  and ( ) ( )( )βννβ ˆ,ˆˆ

2 ag= . McCulloch tabulated  and  for 

various values of 

1g 2g

( )aν  and ( )βν . A similar procedure is also applied for the scale and 

location parameters. An alternative procedure to estimate the parameters of the stable 

distribution is the regression method proposed by Koutrouvelis (1980). 

Following a procedure similar to that of ARCH modelling, the parameters of the stable 

distribution are estimated, at each of a sequence of points in time, using a rolling sample of 

constant size equal to 1000 trading days. The empirical findings, for the case of the Greek 

stock market, are graphically summarized in Figure 3, which plots the rolling-sampled 

estimates of parameters along with the 95% confidence interval of the parameters estimated 

using the full data sample. Inspection of Figure 3 shows that the estimates of  are less than 

two. The case of FTSE20 reveals that 92% of the a ’s rolling-sampled estimates are between 

1.44 and 1.55. The parameter 

a

β  is greater than zero, which implies skewness to the right. 

The rolling values of β  are positive and range from 0.003 to 0.22 but there are not outside the 

95% confidence interval for any case13.  

INSERT FIGURE 3 ABOUT HERE 

In Table 6, we present the estimates of the parameters of stable distribution based on 

all data available as well as the standard deviation of the rolling-sampled estimated 

parameters. The estimates of  do not approach the value of two in any of the examined 

indices. However, there are estimated rolling parameters that are statistically different from the 

parameter values estimated using the full data sample. For example, the rolling-sampled 

estimates of the tail index ( ) are statistically different to the full sample estimated parameter 

in the 51.46% of the trading days for the case of the SP500 index. The rolling estimates of 

parameter 

a

a

β  are statistically different to the relevant full-sampled values in 9.59% and 9.42% 

                                                 
13 Figures depicting the rolling-sampled estimates of the parameters for the DAX30, FTSE100 and SP500 indices 
are available upon request. 
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of the trading days for the DAX30 and FTSE100 indices, respectively, whereas the location 

(δ ) parameters are time-variant in none of the cases. Another important parameter of the 

stable distribution, from the point of view of portfolio theory, is the scale parameter, γ . As far 

as the FTSE20 index is concerned, the rolling-sampled estimates of the scale parameter differ 

statistically from its full-sampled value in the 56.48% of the trading days. Hence, the 

parameter estimates, using the full data sample are statistically different from the parameter 

values estimated using the rolling samples of constant size for one parameter in each index. 

INSERT TABLE 6 ABOUT HERE 

6 .  D i s c u s s i o n  

We estimated an asymmetric ARCH model using daily returns of the FTSE20, DAX30, 

FTSE100 and SP500 indices and concluded that although the estimated parameters of the 

model change over time, the model does not lose its ability to forecast the one-day-ahead 

volatility accurately. Furthermore, the rolling parameter analysis was applied to the 

unconditional distribution of returns. We observed the phenomenon of parameter changing 

across time for both the conditional (ARCH process) and the unconditional (Levy-stable) 

distribution of returns. Even in the case of a simulated ARCH process, the property of time 

varying rolling-sampled parameters holds. One possible reason for parameter instability might 

be that the behaviour of the market participants has undergone fundamental changes. 

Parameters instability indicates a change in market behavior but we can not determine the 

source of that change. The term ‘a data set that alters’, could incorporate a wide range of 

possible sources, i.e. financial legislation, market microstructure, market participants’ 

perspective, technological revolution or even macroeconomic policy.  

Gallant et al. (1991), Stock (1988), Lamoureux and Lastrapes (1990) and Schwert 

(1989) among others have aimed at explaining the economic interpretation of the ARCH 

process. As Engle et al. (1990) and Lamoureux and Lastrapes (1990) have noted, the 

explanation of the ARCH process must lie either in the arrival process of news or in market 

dynamics in response to the news. Based on some earlier work by Clark (1973) and Tauchen 

and Pitts (1983), Gallant et al. (1991) provided a theoretical interpretation of the ARCH effect. 

They assumed that the asset returns are defined by a stochastic number of intra-period price 
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revisions and information flows into the market in an unknown rate. As the daily information 

does not come to the stock market in a constant and known rate, the estimation of the ARCH 

stochastic process that explains the dynamics of the stock market could be revised at regular 

time intervals. In our case the ARCH process is estimated using daily returns. Thus, the 

parameters of the model may be revised on a daily base, because of the observed 

phenomenon of changes in the estimated parameters. If we used data of higher frequency, i.e. 

ten-minutes intra-daily returns, the estimated model might be revised more frequent than on a 

daily base. 

To the best of authors’ knowledge, this is the first study that investigates the 

phenomenon of time varying estimated parameters either i) in real-world financial data or ii) in 

a simulated data generating process. A natural extension of this study would be to analyse the 

change and the relative economic interpretation of the estimated values of the parameters in 

intra-daily high-frequency data sets. 
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T a b l e s  a n d  F i g u r e s  

Table 1. Parameter estimates for the FTSE20, DAX30, FTSE100 and SP500 index daily returns 

(January 3rd, 1996 to July 5th, 2002). 

     

Parameter Coefficient Coefficient / Standard error 

 FTSE20 DAX30 FTSE100 SP500 FTSE20 DAX30 FTSE100 SP500

0μ  -0.001 0.000 -0.000 -0.001 -1.898 0.596 -0.067 -1.027 

1μ  2.853 1.995 1.251 4.297 1.634 0.736 0.319 1.071 

2μ  0.053 0.024 0.005 -0.100 1.103 0.398 0.078 -1.620 

3μ  0.317b -0.075 0.144 0.333a 2.809 -0.544 1.140 2.745 

0a  -6.833a -9.858a -1.326b -4.059a -6.341 -10.727 -2.538 -5.929 

0δ  0.187a 0.095 0.012 0.039 3.382 1.880 0.342 0.956 

1Ψ  0.394a 0.190a 0.056 0.060 19.79 27.847 0.892 1.378 

1Δ  0.920a 0.973a -0.001 0.785a 38.34 73.455 -0.003 28.040
γ  -0.064 -0.068 -0.108a -0.236a -1.043 -0.856 -2.969 -2.975 

1δ  0.010 -0.008 0.694a 0.081b 0.415 -0.688 4.822 2.295 

2δ  0.002 0.004 0.201b 0.041 0.103 0.386 2.116 1.314 

v  1.335a 1.735a 1.858 1.689 -15.540 -9.137 -1.495 -8.184 

20Q  20.065 22.597 23.913 24.090 [0.391] [0.256] [0.200] [0.193]
2
20Q  16.663 23.747 24.696 13.003 [0.615] [0.206] [0.171] [0.838]

Notes: With =1.335, =1.735, =1.858, =1.689, the 97.5% point of the generalized error distribution 

are 2.06, 2.00, 1.98 and 2.00, respectively. With =1.335, =1.735, =1.858, =1.689, the 99.5% point 

of the generalized error distribution are 2.94, 2.70, 2.65 and 2.72, respectively. For the FTSE20 index, 

parameters 

v v v v
v v v v

1δ  and 2δ  present the volatility spillover from the SP500 and DAX30 indices, respectively. For 

the DAX30 index, parameters 1δ  and 2δ  present the volatility spillover from the FTSE100 and SP500 

indices, respectively. For the FTSE100 index, parameters 1δ  and 2δ  present the volatility spillover from 

the DAX30 and SP500 indices, respectively. For the SP500 index, parameters 1δ  and 2δ  present the 

volatility spillover from the DAX30 and FTSE100 indices, respectively.  and  are the Q-statistics of 

order 20 computed on the standardized residuals and their squared values, respectively. The relative p-
values are presented in brackets. 

20Q 2
20Q

a 
Indicates that the coefficient is statistically significant at 1% level of significance. 

b 
Indicates that the coefficient is statistically significant at 5% level of significance. 
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Table 2. Percentage of rolling-sampled estimated parameters that are outside the 95% 

confidence interval. (Values in parenthesis present the lower and upper bounds of the 95% 

confidence interval). 

 FTSE20 DAX30 

0μ  (-0.002 0.000)  56.48% (-0.001 0.002) 33.18% 

1μ  (-1.780 7.485)  7.04% (-4.989 8.978) 0.00% 

2μ  (-0.075 0.181)  0.00% (-0.133 0.182) 0.00% 

3μ  (0.017 0.617)  0.32% (-0.431 0.281) 0.00% 

0a  (-9.694 -3.972)  14.88% (-12.227 -7.489) 3.20% 

0δ  (0.040 0.334)  1.12% (-0.035 0.224) 0.00% 

1Ψ  (0.342 0.447)  13.12% (0.172 0.207) 62.24% 

1Δ  (0.856 0.984)  54.40% (0.939 1.007) 22.08% 

γ  (-0.227 0.099)  0.00% (-0.271 0.136) 0.00% 

1δ  (-0.056 0.076)  5.12% (-0.038 0.022) 3.04% 

2δ  (-0.059 0.064)  32.16% (-0.025 0.034) 1.60% 

v  (1.222 1.449)  26.88% (1.660 1.811) 46.72% 

 FTSE100 SP500 

0μ  (-0.001 0.001) 24.11% (-0.002 0.001) 20.66% 

1μ  (-8.762 11.263) 0.80% (-5.978 14.572) 16.48% 

2μ  (-0.148 0.157) 1.28% (-0.258 0.058) 0.00% 

3μ  (-0.178 0.465) 12.32% (0.022 0.644) 0.48% 

0a  (-2.659 -0.007) 16.64% (-5.812 -2.306) 24.00% 

0δ  (-0.080 0.105) 0.00% (-0.065 0.142) 0.00% 

1Ψ  (-0.104 0.215) 0.00% (-0.052 0.173) 20.96% 

1Δ  (-0.472 0.471) 1.12% (0.713 0.857) 60.48% 

γ  (-0.201 -0.015) 1.12% (-0.439 -0.033) 0.48% 

1δ  (0.327 1.062) 0.48% (-0.009 0.171) 0.00% 

2δ  (-0.041 0.444) 0.00% (-0.039 0.121) 35.36% 

v  (1.616 2.100) 0.48% (1.591 1.787) 9.44% 
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Table 3. Percentage of rolling-sampled estimated parameters that are statistically different 

from the parameter values estimated using the full data sample. 

 FTSE20 DAX30 FTSE100 SP500 

Parameter 
5% 

sign. 
Level 

1% 
sign. 
Level 

5% 
sign. 
Level 

1% 
sign. 
Level 

5% 
sign. 
Level 

1% 
sign. 
Level 

5% 
sign. 
Level 

1% 
sign. 
Level 

0μ  21.86% 1.29% 13.67% 0.80% 4.02% 0.00% 14.15% 4.34% 

1μ  0.96% 0.00% 0.00% 0.00% 0.16% 0.00% 8.52% 0.64% 

2μ  0.00% 0.00% 0.00% 0.00% 1.13% 0.00% 0.00% 0.00% 

3μ  0.00% 0.00% 0.00% 0.00% 3.22% 0.64% 0.00% 0.00% 

0a  17.20% 3.86% 16.72% 7.40% 0.48% 0.00% 24.28% 6.59% 

0δ  0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 2.73% 0.00% 

1Ψ  7.40% 0.00% 0.00% 0.00% 0.00% 0.00% 7.56% 0.00% 

1Δ  18.97% 10.13% 2.57% 0.00% 14.47% 5.79% 31.67% 3.54% 
γ  0.00% 0.00% 5.14% 0.00% 4.50% 0.00% 36.17% 10.13% 

1δ  0.00% 0.00% 0.00% 0.00% 0.80% 0.32% 0.00% 0.00% 

2δ  12.54% 0.16% 0.00% 0.00% 0.16% 0.00% 24.92% 0.00% 
v  1.29% 0.00% 16.72% 0.32% 0.00% 0.00% 0.00% 0.00% 

 
 
 

Table 4. Percentage of the rolling-sampled estimated parameters that are statistically insignificant at 5% 

and 1% levels of significance. 

 FTSE20 DAX30 FTSE100 SP500 

Parameter 
5% sign. 

Level 
1% sign. 

Level 
5% sign. 

Level 
1% sign. 

Level 
5% sign. 

Level 
1% sign. 

Level 
5% sign. 

Level 
1% sign. 

Level 

0μ  30.06% 76.21% 88.36% 99.37% 94.69% 100% 66.35% 84.28% 

1μ  32.80% 97.11% 93.87% 100% 99.22% 100% 57.08% 87.26% 

2μ  99.84% 100% 100% 100% 99.22% 100% 100% 100% 

3μ  65.11% 87.78% 100% 100% 79.69% 96.56% 92.77% 100% 

0a  0.00% 0.48% 0.00% 0.00% 17.81% 40.78% 1.57% 18.08% 

0δ  27.65% 57.07% 81.45% 100% 100% 100% 100% 100% 

1Ψ  0.00% 0.00% 0.00% 0.00% 100% 100% 100 100 

1Δ  0.00% 0.00% 0.00% 0.00% 31.25% 38.91% 0.00% 0.00% 
γ  100% 100% 100% 100% 100% 100% 0.00% 44.18% 

1δ  100% 100% 100% 100% 0.00% 0.16% 94.03% 100% 

2δ  89.55% 99.84% 100% 100% 67.97% 96.56% 59.91% 91.19% 

v  0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 
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Table 5. AR(1)GARCH(1,1) simulated process. Percentage of rolling-

sampled estimated parameters that are outside the 95% confidence 

interval. 

ttt yy εμμ ++= −110  

2
ttt z σε = ,  ( )1,0~

...

Nz
dii

t

2
12

2
110

2
−− ++= ttt aaa σεσ  

 0μ  
1μ  0a  

1a  2a  

Simulated Values 0.005 0.150 0.040 0.0500 0.900 

Estimated Values 
(Full Data Sample) 

-0.003 0.158 0.037 0.0138 0.895 

Rolling parameters 
outside the 95% c.i. 

11.70% 3.32% 73.17% 30.88% 72.17%

 
 

Table 6. Stable parameter estimates, using the full data sample, of the 

FTSE20, DAX30, FTSE100 and SP500 index daily returns, their standard 

errors and the percentage of rolling-sampled estimated parameters that are 

statistically different from the parameter values estimated using the full data 

sample at 5% level of significance. 

 Tail index
a  

Skewness

β  
Location 

δ  

Scale 
γ  

FTSE20 

Coefficient 1.48303 0.07799 -0.00033 0.01005
Standard error 0.05606 0.07965 0.00143 0.00081
5% sign. Level 0.32% 0.00% 0.00% 56.48% 

DAX30 

Coefficient 1.58306 -0.14798 0.00101 0.00754
Standard error 0.15725 0.18828 0.00069 0.00217
5% sign. Level 1.53% 9.59% 0.12% 0.00% 

FTSE100 

Coefficient 1.68238 -0.06489 0.00046 0.00591
Standard error 0.10944 0.25581 0.00039 0.00165
5% sign. Level 2.13% 9.42% 0.49% 0.00% 

SP500 

Coefficient 1.49172 -0.11841 0.0005 0.00525
Standard error 0.07160 0.09609 0.00052 0.00218
5% sign. Level 51.46% 5.00% 0.00% 0.00% 
Notes: The standard error of parameter  is computed as the standard deviation 

of the rolling-sampled estimated parameters, 

a
( )t

â , for Tt ,...,1=  trading days, i.e. 

( ) ( ) ( )( )∑
=

− −−
T

t

Tt
aaT

1

21 ˆ1 , where 
( ) ( )∑

=

−=
T

t

tT
aTa

1

1 ˆ . 
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Figure 1. The rolling-sampled estimated parameters of the ARCH model and the 95% confidence 

interval of the parameters estimated using the full data sample. 
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Notes: The 95% confidence interval is constructed as ( ) 10001621ˆ025.0,335.1;1,0ˆ
θθ SGED± , where  denotes 

the parameter vector estimated using the full data sample,  is the standard deviation of  and 

θ̂

θŜ θ̂ ( )avGED ,;1,0  

is the  percentile of the GED distribution, with ( a−1 ) v  denoting the tail thickness parameter.  
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Figure 2.a. In-sample 95% confidence interval of the FTSE20 index daily returns for the 

ARCH model (11th January 2000 to 5th July 2002). 
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Figure 2.b. One-step-ahead 95% prediction interval of the FTSE20 index daily returns for 

the ARCH model (11th January 2000 to 5th July 2002). 
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Figure 3. FTSE20 index daily returns. The rolling-sampled 

estimated parameters of the stable distribution and the 95% 

confidence interval of the parameters estimated using the full 

data sample. 
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