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Abstract

Classical multi-image super-resolution (SR) algorithms,

designed for CCD cameras, assume that the motion among

the images is global. But CMOS sensors that have increas-

ingly started to replace their more expensive CCD counter-

parts in many applications do not respect this assumption

if there is a motion of the camera relative to the scene dur-

ing the exposure duration of an image because of the row-

wise acquisition mechanism. In this paper, we study the

hitherto unexplored topic of multi-image SR in CMOS cam-

eras. We initially develop an SR observation model that

accounts for the row-wise distortions called the “rolling

shutter” (RS) effect observed in images captured using non-

stationary CMOS cameras. We then propose a unified RS-

SR framework to obtain an RS-free high-resolution image

(and the row-wise motion) from distorted low-resolution im-

ages. We demonstrate the efficacy of the proposed scheme

using synthetic data as well as real images captured using

a hand-held CMOS camera. Quantitative and qualitative

assessments reveal that our method significantly advances

the state-of-the-art.

1. Introduction

With the evergrowing capabilities of high-resolution dis-

plays, super-resolution (SR) continues to be an active area

of research as it offers a signal processing solution to the

inherent problem of resolution limitation in low-cost imag-

ing sensors (e.g., cell phone cameras). The goal of multi-

image SR methods is to recover a high-resolution (HR) im-

age from a set of low-resolution (LR) input images. The

basic principle being that changes in the LR images caused

by the motion of the camera and/or the scene provides ad-

ditional information that can be utilized to reconstruct the

HR image. Based on prior knowledge about the observation

model that maps the HR image to the LR ones, multi-image

SR algorithms attempt to recover the HR image under the

constraint that the recovered image should result in the ob-

served LR images upon applying the same model. Classical

SR algorithms formulate this observation model so as to ex-

plain the image formation process in CCD cameras where

the data is acquired by the sensor array all at once during the

exposure time. Hence, CCD cameras are also called global

shutter (GS) cameras because all elements in the sensor ar-

ray are exposed at the same time. However, cameras em-

ploying CMOS sensors have a significantly different cap-

ture mechanism as compared to GS cameras. Each row in

the CMOS sensor array has its own unique exposure dura-

tion, and the acquired data is read out at different times us-

ing a common circuit. As a result, the amount of circuitry,

and thereby the cost, is reduced. In fact, this lower cost is

the reason for the increasing popularity of CMOS sensors

in many imaging applications.

Traditional GS-SR algorithms [4, 5] assume that the

camera is stationary during the exposure time itself, and

that the motion is only between one LR image capture to

the next i.e., there is no blur in any of the captured images.

Therefore, SR methods usually include two parts: (i) regis-

tration, where the motion between LR images is estimated,

and (ii) image reconstruction, where the HR image is re-

covered from the LR images. However, camera shake is a

common occurrence in hand-held imaging devices such as

cell phones which have now become ubiquitous. Motivated

by this fact, recent works [16, 20] address the more general

situation of camera motion during the exposure time of a

single image itself. This manifests as blur in the LR cap-

tured images for a GS camera, and the problem becomes

one of blind deconvolution and super-resolution. However,

in the case of CMOS cameras, the task of SR becomes sig-

nificantly more challenging because motion during expo-

sure leads to what is called the ‘rolling shutter’ (RS) effect1

(see Fig. 1). This distortion of the captured image results

from each row of sensors observing a different warp of the

scene, and is a direct consequence of the row-wise acqui-

sition principle in CMOS cameras. Clearly, the classical

GS motion estimation step that assumes a global motion be-

1For large motion, the observed images can also incur blurring in ad-

dition to being RS affected. However, analysing such a compounded sce-

nario is beyond the scope of this paper.
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Figure 1. (a1) An image captured using a stationary CMOS camera, while (a2-a5) have RS effect due to motion during exposure. (b-h) are

super-resolved (by a factor of two) outputs of various methods for the input LR image(s) (a1-a5). (b) Bicubic interpolation, (c) Glasner

et al. [7], (d) Yang et al. [19], (e) Zhu et al. [21], (f) Ringaby and Forssén [15] + TV-SAR [18], (g) Ringaby and Forssén [15] + CDSR

[17], and (h) our result. The notation ‘+’ refers to zoomed-in patches. For display, the LR patches have been scaled up by a factor of two

to match the size of the HR patches. The distortion of the vertical pillar is evident from the blue LR patches (a2+) to (a5+), while our red

output patch (h+) is RS-free. It can be observed from the green patches that the text “New York” is clearly readable in our SR result (h+).

tween two LR images is not valid for RS cameras because

the motion can vary from one row to the next. In this work,

we develop an RS-SR observation model that incorporates

the row-wise acquisition of data and a joint SR framework

to recover the HR image from RS affected LR images.

We present below a brief overview of relevant works in

super-resolution and rolling shutter.

Super-resolution: A large number of papers have ad-

dressed the classical multi-image SR problem for GS cam-

eras when the LR images are not blurred. A good sur-

vey can be found in [13]. In general, spatial-domain SR

approaches are more popular than their frequency-domain

counterparts for their ability to incorporate complex image

priors [13]. A robust SR framework based on the use of

the l1-norm both in the regularization and the measurement

terms of the penalty function was proposed in [5]. A varia-

tional Bayesian formulation for joint image registration and

SR has been mooted in [1]. This work was later improved in

[18] using a combination of total variation and simultaneous

auto regressive priors. A coordinate-descent approach for

simultaneously obtaining registration and super-resolution

from a sequence of LR images has been proposed in [17].

Example-based SR (also termed “image hallucination”)

techniques [19, 21] that seek an HR image from a single

LR image have also been proposed. These methods learn

correspondences between LR and HR image patches from

a database of LR and HR image pairs, and then apply them

to a new LR image to recover its most likely HR version.

However, these techniques are known to hallucinate HR de-

tails that may not be present in the true HR image. Based

on the observation that patches in a natural image tend to

recur within the same image, both at the same as well as

at different scales, [7] sought to combine the strengths of

both classical as well as example-based SR. We would like

to point out that all the above methods assume that the LR

images are captured using a stationary camera, and there is

no motion during exposure. [16, 20] relax this constraint

and allow for camera motion during the exposure duration

of individual images. While [16] limit the motion to pure

in-plane translational motion and use the convolution model

for blur, the method in [20] is based on the projective mo-

tion blur model for general camera motion. It is important to

note that while both these methods allow for motion during

capture, they limit their discussion to fronto-parallel scenes.

LR images being related to each other through local motion

was studied in [3, 9] in the context of a 3D scene.

Rolling Shutter: The study of the RS effect is on the rise

during recent years. This effect is considered as an artifact

and the main goal of existing works is to remove this unde-

sired effect. To this end, removing RS effect from a video

is a commonly dealt application. In [10], a global motion

was modeled between pairs of frames in a video using mo-
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tion vectors based on photometric energy and the motion

for every row was refined through interpolation on a Bézier

curve. In [2], frame-to-frame camera motion was consid-

ered as a low frequency component and row-wise motion as

a high frequency component, and the motion was estimated

by l1 regularization. Key rows were defined within a frame

in [6, 15] using which the motion of other rows are linearly

interpolated. The camera motion was modeled as 3D rota-

tions for general scenes with the assumption of known cam-

era intrinsics. A homography mixture model was proposed

in [8] in which the homography of each row was modeled as

a weighted combination of homographies of fixed blocks of

rows within an image. Both RS effect and motion blur were

handled in [12] assuming a uniform camera velocity, and a

minimization problem was posed based on photometric in-

tensities. RS and motion blur artifacts for the application of

change detection has been addressed in [14].

1.1. Contributions

1. To the best of our knowledge, this is the first attempt of

its kind for the task of SR in CMOS cameras. Our work

neatly generalizes the largely prevailing single global

warp notion for SR to multiple local warps; the local

warps being confined to rows due to the very nature of

the acquisition process.
2. We propose an RS-SR observation model that explains

the image formation process in CMOS cameras. The

model also reveals how blocks of rows in the HR im-

age experience different motions as a result of the row-

wise capture mechanism.
3. Given multiple LR images that are RS affected, we

develop a unified framework that alternates between

solving for the HR image and the row-wise motion to

obtain an undistorted and super-resolved image.

2. RS-SR image formation model

We first briefly review the super-resolution model for a

GS camera before proceeding to an in-depth analysis of the

RS case. Let F represent the discrete HR image of size

ǫM × ǫN pixels where ǫ (> 1) is the super-resolution fac-

tor. Then its lexicographically ordered version f will be a

column vector of size ǫ2MN × 1. Let W denote a warping

matrix of size ǫ2MN × ǫ2MN that multiplies f to produce

a geometrically warped instance of the HR image. Each row

of W is associated with a pixel in f and contains a single

non-zero entry if we consider only in-plane translation of

the camera and integer pixel shifts. In the case of general

camera motion with sub-pixel shifts, each row contains at

most four non-zero entries which are the bilinear interpo-

lation coefficients obtained by applying the motion that re-

lates f and its warped instance on that particular pixel loca-

tion. Thus, W is a highly sparse matrix with only 4ǫ2MN
entries. We define Dǫ as the decimation matrix (of size

MN×ǫ2MN ) which averages ǫ2 neighboring pixels in the

Figure 2. Image formation model for an RS camera - static versus

moving. Best viewed in PDF.

HR image to produce the intensity value at a particular lo-

cation in the LR image. As in the case of W, the matrix

Dǫ too is sparse since each row contains only ǫ2 non-zero

values. Then the classical super-resolution equation for a

GS camera can be expressed as

g = DǫWf (1)

where g is a column vector of size MN × 1 which is the

lexicographically ordered LR image G of size M ×N .

Consider now the case of a CMOS camera that is not

static during the exposure duration. As discussed in Section

1, each row of pixels in the image experiences a different

motion due to sequential acquisition. Fig. 2 illustrates the

differences in the image formation process in the case of

a static RS camera and a moving RS camera for a super-

resolution factor of 2. The acquisition mechanism in the

case of a static RS camera is shown on the left. On the right,

the effect of motion during exposure for an RS camera is de-

picted. The scene plane (marked 3) is shown as dotted lines,

while the actual LR sensor plane of the camera (marked 1)

is shown at the top. For the sake of explanation, we have in-

troduced a virtual HR sensor plane (marked 2) between the

scene plane and the actual LR sensor plane. This is the HR

representation of the scene that an HR camera with a higher

resolution would have captured, and it is this HR image that

we aim to recover. Let us first examine the static case. The

actual scene intensities have been represented by dots on the

scene plane, and the path traced by the rays by thick lines.

A group of four rays (thick red lines) emerging from the

scene plane (dotted red lines) are incident at four individual

pixels on the virtual HR sensor plane. However, only their

average intensity is recorded by the LR sensor at a single

pixel location. Now consider the image on the right of an

RS camera which is in motion during capture time. For sim-

plicity of representation, in the figure, we have moved the

scene plane and not the camera since the two motions are
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equivalent i.e., it is the relative motion between the scene

and the camera that is relevant. When the second row is

being recorded by the LR sensor, the scene plane (red dot-

ted lines) is in the same position relative to the camera as

the image shown on the left for the static case. Thus, the

green pixel is recorded as before by the LR sensor plane at

the same location. However, when the fourth row is being

acquired, the camera has undergone an in-plane translation

(one LR pixel down and to the right) with respect to the

scene plane (marked by blue dotted lines). As a result, the

purple pixel is recorded in place of the yellow pixel.

An important observation to be made from Fig. 2 is that

for an SR factor of 2, although each row of the LR sensor

has its own motion due to sequential capture, a pair of rows

in the HR plane experience the same motion. For an SR fac-

tor of ǫ, this corresponds to a block of ǫ rows in the virtual

HR sensor plane having the same motion associated with

them. While it is true that every row of an actual HR RS

camera might experience a different warp, our goal is only

to estimate the image as seen by a static HR global shut-

ter camera. Hence, it suffices to estimate the warp experi-

enced by the virtual HR plane. Therefore, unlike in a GS

camera where all rows of W are associated with a single

camera motion, in RS cameras, the motion varies depend-

ing on which particular block of rows in the HR image the

pixel belongs to. However, despite this difference in con-

struction, the matrix retains its sparse nature since each row

continues to have no more than four non-zero entries. (1)

can be rewritten for a CMOS camera as

g = DǫWf (2)

where W is the warping matrix that multiplies f to produce

an RS image. Note that while both W and W operate on

the HR image, there is only a single camera pose associated

with W as against M camera poses for W .

3. Optimization problem

Suppose we have K different LR images {gk} each of

size M × N pixels. Our goal is to estimate f , the HR rep-

resentation of the original scene, using these K LR images.

We assume that the first LR image g1 is free from RS effect

and has only undergone a downsampling operation with re-

spect to f . The remaining images may have incurred an RS

effect due to motion of the camera during exposure. The

assumption that the first image is not RS affected is neces-

sitated by the fact that one cannot determine the presence

or absence of this effect from the LR images themselves.

What this means is that we cannot say that a curve in the

image is due to RS effect unless we have a reference image

that has a straight line corresponding to it.

Equation (2) can be rewritten with the added subscript

k for the image number as gk = DǫWkf , for k = 1 to

K. Since the warping matrices are also unknown, given

{gk}, we have to estimate the HR image f as well as Wk.

We propose an alternating minimization (AM) strategy to

solve for the two variables wherein we fix one unknown and

compute the other in an iterative manner. The minimization

sequence (fp,Wkp
), where p indicates the iteration num-

ber, can be built by alternating between two minimization

subproblems. Starting with an initial estimate f0, the two

alternating steps are: step 1) estimate Wkp
using the pre-

vious iterate fp−1, step 2) use the current estimate Wkp
to

compute fp. We elaborate on these two steps below.

3.1. Warp estimation

For every row i, where 1 ≤ i ≤ M , in the LR images

{gk}
K
k=2, our goal is to estimate a single camera motion

during the exposure time of that particular row. We use g1

which we treat as the reference image (and free from RS

effect) to initialize our algorithm. We upsample g1 by the

desired SR factor ǫ and use this as our initial estimate f0
of the HR image. Since each LR image is an independent

observation, we can consider a pair of images at a time (fp
and gk for k = 2 to K) to estimate the camera motion and

build Wkp
. Feature-based approaches cannot be employed

to estimate the camera motion (unlike in the GS case) be-

cause the camera motion can change from one row to the

next, and a sufficient number of features may not even exist

for a given row. Following works such as [16, 20] that re-

late images through the camera motion, we assume a fronto-

parallel scene and known camera intrinsic matrix. This al-

lows us to define a 6D discrete camera pose space S around

the origin in which the motion of each row is sought. The

six degrees of freedom arise from 3D rotation and transla-

tion vectors, R and T. The origin corresponds to zero trans-

lations and rotations. However, the search space cannot be

very finely binned due to memory constraints. For example,

we can choose the bin intervals such that the difference in

the displacements of a point light source due to two differ-

ent motions from the discrete set S is at least one pixel. But

in real scenarios, the true camera pose may not be present

in the discrete space S, so we formulate our cost function

such that a few camera poses around the actual pose are se-

lected from the search space for each row, and the centroid

of these poses yields the true motion for that row.

Formally, our optimization problem for the ith row of the

kth LR image at the pth iteration takes the following form

ŵ
(i)
kp

= argmin
w

(i)
k

{||gk
(i) −Dǫ

(i)
F

(ǫi)
p−1w

(i)
k
||22 + λ||w

(i)
k
||1} (3)

subject to w
(i)
k

≥ 0.

Here gk
(i) denotes the ith row of the LR image gk, while

w
(i)
k

is its corresponding weight vector of size |S|×1 (where

|.| denotes cardinality) which chooses the required set of

561



poses from the search space S. To construct the matrix

F
(ǫi)
p−1, we apply the poses from the space S on fp−1, take

the ǫi block of rows corresponding to the ith row of gk
(i)

from these transformed images, lexicographically order the

subimages of size ǫ × N pixels as vectors, and stack these

vectors as columns of F
(ǫi)
p−1. As compared to (2), Dǫ

(i) is a

reduced decimation matrix of size N × ǫN since it operates

on F
(ǫi)
p−1 of size ǫN × |S|. Since w

(i)
k

is sparse, we impose

the l1-norm with non-negativity so as to choose a sparse set

of camera poses with corresponding weights to calculate the

centroid. The regularization factor λ controls the number of

chosen poses. The optimization problem in (3) is solved

using the nnLeastR function of the Lasso algorithm [11].

The estimated weight vector ŵ
(i)
kp

is used to determine the

required single camera pose for the ith row of gk. We cal-

culate the centroid pose using this weight vector which is

first normalized to have a unit sum w̃
(i)
kp

= ŵ
(i)
kp
/‖ŵ

(i)
kp
‖1,

and the weighted average of the rotations and translations

in the search space is found to give the centroid motion;

Rc = w̃
(i)
kp

◦ {Rj}
|S|
j=1 and Tc = w̃

(i)
kp

◦ {Tj}
|S|
j=1, where ◦

represents element-wise multiplication.

For textureless rows that could occur occasionally, the

camera motion is interpolated from neighboring rows. Also,

note that distinguishing an out-of-plane rotation about hor-

izontal axis and a translation along vertical axis is not pos-

sible based on row correspondences alone. Hence, we con-

sider only the 5D space of camera motion by excluding the

horizontal out-of-plane rotation from the search space.

To estimate Wkp
for the first iteration of the AM ap-

proach, we start with the motion estimation of the middle

row, and proceed to top and bottom rows. This procedure

helps in choosing the camera pose space of a particular

row as a neighborhood around the estimated centroid of its

neighboring row. This adaptation of camera pose space ad-

ditionally imposes smoothness of camera motion. After the

first iteration of AM, a coarse camera motion would be esti-

mated. For subsequent iterations, the search space for each

row is chosen as the neighborhood of its previous estimate.

Thus, from the second iteration onward, motion estimation

for each row is independent and can be parallelized.

3.2. HR image estimation

In order to solve for the HR image f , we minimize the

following energy function

E(f) =
K∑

k=1

||DǫWkp
f − gk||

2
2 + αfTLf (4)

where the first term measures the fidelity to the data and

emanates from our acquisition model (2). The second is

a regularization term with a positive weighting constant α
that attracts the minimum of E to an admissible set of solu-

tions. Here L is the discrete form of the variational prior and

is a positive semidefinite block tridiagonal matrix [16] con-

structed of values depending on the gradient of f . The ra-

tionale behind the choice of this smoothness prior is to con-

strain the local spatial behavior of the images. While it ex-

hibits isotropic behavior similar to the Laplacian in smooth

areas, it also preserves edges. To solve (4),

fp = argmin
f

E(f) ⇒
∂E

∂f
= 0

⇔

(
K∑

k=1

W
T
kp
DT

ǫ
DǫWkp

+ αL

)
f =

K∑

k=1

W
T
kp
DT

ǫ
gk.

The matrix DT
ǫ

spreads equally the intensity in LR to ǫ2 pix-

els in HR. While Wkp
warps each row to introduce the RS

effect, WT
kp

corrects distortion to make the image RS-free.

We use the method of conjugate gradients (function pcg in

Matlab) to solve the above equation. We used a fixed value

for α in all our experiments based on a visual assessment.

To perform RS correction as a spatial operation, we use a

scattered interpolation approach to undistort the RS images

using the estimated camera motion. We apply the inverse

motion (negative rotation and negative translation) from the

estimated camera motion on every pixel in the RS image. A

forward mapping of a regular coordinate grid from the RS

image to an empty image would result in an irregular grid

due to the inverse camera motion applied on each row. We

define a triangular mesh over this irregular grid and resam-

ple the mesh over the regular grid using bicubic interpola-

tion. This procedure results in RS-free images.

Our AM scheme does not guarantee global convergence

because of the way the variables are coupled. However, the

two sub-problems (of computing the camera trajectory by

fixing the HR image, and of estimating the HR image by fix-

ing the camera motion) are individually convex even though

the overall problem is not. By alternately descending in the

HR image subspace and the camera pose subspace, the al-

gorithm is guaranteed to hit at least a local minimum. We

have tested our method extensively on many real examples

and found that it exhibits good convergence properties.

4. Experiments

This section consists of two parts. In the first part, we

perform a set of experiments on quasi-synthetic data to eval-

uate the performance of our algorithm and compare the

reconstructed output, both qualitatively and quantitatively,

with other competing methods. The second part demon-

strates the applicability of the proposed method to real im-

ages captured using a hand-held CMOS camera.

We compare our results with various state-of-the-art sin-

gle and multi-image SR algorithms. We provide the first LR

image which is free from RS effect as input to the single-

image techniques. Specifically, we use the example-based
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(a1+) (A+) (b+) (c+) (d+) (e+) (f+) (g+) (h+)

Figure 3. Quasi-synthetic example: Lena.

Figure 4. The first plot shows the RMSE with iterations for the Lena example. The last four plots show ground truth and estimated camera

trajectories. The RMSE between ground truth and computed motion is 0.0217, 0.0178, 0.0574, 0.0249 for images two to five, respectively.

methods in [7, 19, 21] for comparison. The codes for the

same were downloaded from the webpage of the authors. A

bicubic spline interpolated version of the first image serves

as baseline in these comparisons.

Since the remaining LR images may be distorted by RS

effect that classical multi-image SR approaches are inca-

pable of handling, we first rectify them with the help of

the reference image using our own implementation of the

method in [15]. (Please refer to the supplementary material

for details on validation of the correctness of our implemen-

tation.) The reference image and the rectified images are

then given as input to standard GS-based multi-image SR

methods in [17, 18], the codes for which were downloaded

from the webpage of the authors. This two-step strategy

is necessary because the motion compensation step in con-

temporary SR algorithms cannot account for the row-wise

distortions. Our method, on the other hand, does not require

any pre-rectification step because the RS effect is modeled

within the motion estimation step itself.

We begin with a quasi-synthetic example in Fig. 3 where

the RS effect is due to pure in-plane translations of the cam-

era. Fig. 3(a1-a5) shows the LR images obtained by down-

sampling the HR image f in Fig. 3(A) by a factor of two.

The first LR image in Fig. 3(a1) is simply a downsampled

version of Fig. 3(A) and is undistorted. To simulate the RS

effect, we generate smooth camera trajectories by varying,

within an interval, the values of in-plane translations about

the X and Y axes. The remaining four LR images in Fig.

3(a2-a5) were generated by warping the rows of f using

these camera paths, and then downsampling. We used Mat-
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(a1+) (A+) (b+) (c+) (d+) (e+) (f+) (g+) (h+)

Figure 5. Quasi-synthetic example: Butterfly.

(a1+) (b+) (c+) (d+) (e+) (f+) (g+) (h+)

Figure 6. Real example of a wall painting.
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Table 1. PSNR (in dB) values of our method, along with comparisons.

Image Bicubic [7] [19] [21] [18] [15] + [18] [17] [15] + [17] Ours #5 Ours #4 Ours #3 Ours #2

Lena 31.81 32.83 33.18 32.95 28.69 30.75 27.55 29.90 35.45 35.39 35.11 34.15

Butterfly 30.48 31.71 32.33 32.01 26.35 28.06 24.34 29.38 34.89 34.82 34.53 33.66

Figure 7. Real examples of a bookshelf and a building. Column one: RS affected LR frames, columns two and three: our SR results,

column four: LR patches from column one, and column five: HR patches from columns two and three.

lab’s imresize command (with the resize option set to bicu-

bic) for downsampling. Hence the name quasi-synthetic be-

cause the data does not strictly mimic the the decimation

operator in (2). Note that we have chosen an SR factor of

two for this experiment. Hence, the same motion is applied

on two adjacent rows of the HR image. The comparison

results in Figs. 3(b-e) are obtained from the first LR image

which is free from RS effect. Fig. 3(b) is bicubic spline

interpolated, while Figs. 3(c), (d) and (e) are the outputs of

state-of-the-art single image SR methods [7], [19], and [21],

respectively. The four RS affected LR images are rectified

with the first LR image as reference using the technique in

[15]. The rectified results along with the first image are then

provided as input to the classical GS-SR algorithms in [18]

and [17] to obtain the outputs shown in Figs. 3(f) and (g),

respectively. The output of the proposed method is shown

in Fig. 3(h). Zoomed-in patches have also been provided in

Figs. 3(a1+), (A+), (b+) to (h+) to better access the quality

of the reconstructed output. (The LR patch in Fig. 3(a1+)

has been scaled to twice the size for display. Patches from

the remaining LR images have not been shown due to space

constraints.) It can be observed that our output is sharp and

free from distortions. The RMS error in the estimation of

the HR image with iterations is shown in the first plot of Fig.

4. Note that our algorithm converges within a few iterations.

The synthetically generated camera paths and the final esti-

mated trajectories are also shown in the plots of Fig. 4. The

RMS error between the ground truth and the estimated cam-

era motion is a good indicator of our algorithm’s ability to

accurately estimate the row-wise distortions.

Another quasi-synthetic example with in-plane transla-

tions and rotations for an SR factor of 2 is shown in Fig. 5.

The PSNR values are provided in Table 1 for quantitative

assessment. The notation #X refers to the number of input

LR images. It can be seen that our joint RS-SR framework

outperforms contemporary methods even with as few as two

LR images. Although the PSNR values of [17, 18] which

were provided with five LR images as input improve when

preceded by a rectification step [15], residual RS effect de-

grades their performance.

Fig. 1 shows a real example captured using a hand-held

mobile phone camera. While the first LR image shown

in Fig. 1(a1) was captured without any motion, the other

LR images are RS affected. The text on the nameboard

is clearly readable only in our super-resolved patch. The

second real experiment in Fig. 6 for an SR factor of 2 con-

sists of a wall painting. As can be seen from the zoomed-in

patches, the cage and the wires are sharp and free from arti-

facts in our output. Fig. 7 shows two more real examples for

an SR factor of 2 which used as input frames extracted from

videos captured using a mobile phone camera. For each ex-

ample, we have shown only one RS affected LR frame and

our output in Fig. 7. More real results have been provided

in the supplementary material.

5. Conclusions

In this paper, we dealt with the challenging task of SR
from RS affected images. Through our observation model,
we mapped the row-wise camera motion of LR images to
the HR image, and proposed an AM scheme to recover the
camera motion and the HR image. We compared our output
with contemporary single as well as multi-image SR tech-
niques. Experiments reveal that our proposed scheme yields
a higher PSNR than competing methods. That our method
advances the state-of-the-art is evident from the striking vi-
sual quality of our RS compensated and reconstructed HR
image. Relaxing the constraints of no-blur and availability
of an undistorted reference image would be an interesting
direction for future work.
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