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Rollout Event-Triggered Control: Beyond
Periodic Control Performance

D. Antunes, Member, IEEE, and W. P. M. H. Heemels, Senior Member, IEEE

Abstract—Cyber-Physical Systems (CPSs) resulting from the
interconnection of computational, communication, and control
(cyber) devices with physical processes are wide spreading in our
society. In several CPS applications it is crucial to minimize the
communication burden, while still providing desirable closed-loop
control properties. To this effect, a promising approach is to
embrace the recently proposed event-triggered control paradigm,
in which the transmission times are chosen based on well-defined
events, using state information. However, few general event-
triggered control methods guarantee closed-loop improvements
over traditional periodic transmission strategies. Here, we provide
a new class of event-triggered controllers for linear systems which
guarantee better quadratic performance than traditional periodic
time-triggered control using the same average transmission rate.
In particular, our main results explicitly quantify the obtained
performance improvements for quadratic average cost problems.
The proposed controllers are inspired by rollout ideas in the
context of dynamic programming.

Index Terms—Approximate dynamic programming, control
over communications, event-triggered control, Markov processes,
stochastic optimal control.

I. INTRODUCTION

CYBER devices capable of sensing, processing, and com-
municating information of interest are wide spreading in

our society, creating new opportunities to make our physical
processes operate exceedingly better. In fact, the number of
applications in which communication, computation and con-
trol elements (the cyber part) go hand in hand with motion,
energy, climate, and human processes (the physical part) is
steadily growing in intelligent transportation, smart buildings,
energy networks, healthcare, and robotics (see, e.g., [2]–[6],
respectively). To meet the challenges arising in many of these
applications the traditional separation-of-concerns principle in
designing control, communication, and computational algo-
rithms must be abandoned in favor of an integrated approach.
This can lead to dramatic communication and computation
savings in control applications, which is crucial to prevent
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overloading existing and future communication networks, to
extend the battery life of cyber devices, and to enable cost-
efficient control solutions (see, e.g., [7], [8]).

A research area providing integrated communication and
control algorithms that deal with the need to reduce the com-
munication load in (networked) control systems, while at the
same time guaranteeing desirable stability and performance
properties, is that of event-triggered control (ETC). The key
idea of ETC is that transmission times in a networked control
loop are triggered based on events (using, e.g., state or output
information), as opposed to being time-triggered as in tradi-
tional periodic control.

Extensive research has been conducted on ETC over the past
few years leading to various types of ETC strategies; see [9]
for a recent overview. For instance, [10] proposes that trans-
missions should only be triggered when needed to guarantee a
certain decrease condition for a Lyapunov function; [11], [12]
analyze, in different contexts, the case in which transmissions
are triggered only when the loop tracking error exceeds a
given threshold; in [13] transmissions are triggered when the
error between the measured state and the state of a model-
based estimator used by a control input generator is large.
Several related problems have been studied in the literature,
including self-triggered implementations [14]–[18], co-design
[19], [20], discrete-time variants [21]–[24], and periodic event-
triggered control [25]. Another line of research formulates ETC
in the scope of optimal control by considering cost functions
that penalize transmissions [26]–[31]. Some recent works, e.g.,
[32]–[36], propose model predictive control methods to address
related optimal event-triggered control problems. See also [37]
for an early work using model predictive control to minimize
bandwidth utilization.

Although the large majority of the works on ETC show very
promising results, there are few ETC methods which guarantee
better closed-loop performance/average transmission rate trade-
offs than traditional periodic control. The works [12], [38], [39]
proposed event-triggered control laws which have this property,
considering a quadratic performance index, but the analysis is
restricted to first-order systems. Recently, [40] extended the
ideas of [12] to a class of second-order systems, formally es-
tablishing the desired ETC performance improvement property
over periodic control. However, as acknowledged in [40], it
is difficult to extend the results for the considered class of
event-triggered controllers to higher order systems. Also in the
context of first-order systems, [41], [42] optimally solve esti-
mation and control problems, respectively, in which a quadratic
cost is to be minimized, subject to constraints on the number
of samples. Yet, in general, it is extremely difficult to obtain
optimal event-triggered controllers for higher order systems,
although several structural properties of optimal event-triggered
controllers can still be inferred (see [26], [27]–[31]).
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In the present paper we present a novel class of event-
triggered controllers for linear systems of arbitrary (finite)
order which achieve better performance than periodic strate-
gies using the same average transmission rate. Performance
is measured by a quadratic cost as in the well-known Linear
Quadratic Regulator (LQR) and Linear Quadratic Gaussian
(LQG) problems (see, e.g., [43]–[45]). Our method, inspired
by rollout ideas in the context of dynamic programming [43],
consists in choosing, in a receding horizon fashion, optimal
control inputs and transmission decisions over a horizon as-
suming that a base policy, conveniently picked as the optimal
periodic control strategy, is used after the horizon. Note that we
address the co-design problem, since we consider the problem
of simultaneously designing the control input and the transmis-
sion times laws. For this new ETC scheme, we show that, under
mild conditions, a strict performance improvement with respect
to periodic control can be guaranteed both for average and
discounted quadratic costs using the same average transmission
rate. For the average cost problem we explicitly quantify these
performance improvements. As quantifying the performance
improvements of rollout algorithms is a hard problem,1 this
latter result is the main technical contribution of the paper.

We illustrate the applicability of our event-triggered control
method in the problem of controlling a mass-spring linear
system. The results show that our method can achieve a closed-
loop performance significantly beyond the performance of pe-
riodic control using the same average transmission rate.

The remainder of the paper is organized as follows.
Section II formulates the problem, and Section III describes
the new rollout ETC method. Our main results addressing the
performance properties of the proposed method are presented
in Section IV. Section V discusses how to extend the main
ideas to other networked control configurations. A numerical
example is given in Section VI while Section VII provides
concluding remarks. The proofs of the main results are given
in Section VIII.

Notation: The n×m zero matrix is denoted by 0n×m and
the n-dimensional identity matrix is denoted by In. When clear
from the context, we omit the subscripts and write 0 and I. The
trace of a square matrix A is denoted by tr(A).

II. PROBLEM FORMULATION

Consider a continuous-time plant modeled by the following
stochastic differential equation:

dxC = (ACxC +BCuC)dt+Bωdω, xC(0) = x0, t ∈ R≥0

(1)

where xC(t) ∈ R
nx is the state and uC(t) ∈ R

nu is the control
input at time t ∈ R≥0, and ω is an nw-dimensional Wiener pro-
cess with incremental covariance Inw

dt (cf. [44]). Performance
is measured by the discounted cost

∞∫
0

E
[
e−αCtgC (xC(t), uC(t))

]
dt (2)

1As stated in [43, p. 338]: ‘Empirically, it has been observed that the rollout
policy typically produces considerable (and often dramatic) cost improvement
over the base policy. However, there is no solid theoretical support for this
observation.’

Fig. 1. Setup: the plant operates in continuous-time (continuous-time connec-
tions are indicated by thick solid lines); the event-triggered controller operates
at discrete times {tk}k∈N0

(discrete-time connections are indicated by thin
solid lines); transmissions over the communication network occur only at times
{tk|σk = 1, k ∈ N0} (connections are indicated by thin dashed lines). The
event-triggered controller periodically samples the state of the plant and decides
the transmission times {tk|σk = 1, k ∈ N0} at which it computes the control
input and transmits it to the actuators; at these times the actuators receive the
control input enforcing it in the plant.

where gC(x, u) := xTQCx+ uTRCu, for positive semi-
definite matrices QC and RC , and αC ∈ R≥0. To guarantee
that (2) is bounded we assume that αC may only take the value
αC = 0 if Bω = 0. For the undiscounted case αC = 0 in which
(1) is disturbed by Gaussian noise (Bω �= 0) performance is
measured by the following average cost:

lim
T→∞

1

T

T∫
0

E [gC (xC(t), uC(t))] dt. (3)

Performance indexes (2) and (3) are widely used in control
problems. In particular, when αC = 0 the problems of design-
ing a feedback strategy for the control input uC to minimize
(2) and (3) can be seen as versions of the well-known LQR and
LQG problems, respectively. The LQR and LQG problems are
also considered in the context of sampled-data systems [46],
in which case uC is a staircase signal updated periodically
and designed to minimize discrete-time equivalents of (2) and
(3), respectively. The main motivation of the present work is
to show that, by properly choosing the actuation update times
(which shall coincide with transmission times in networked
control settings) in a non-periodic fashion, one can achieve
better performance indexes as considered in the LQR and LQG
problems, using the same average actuation (or transmission)
rate.2

For ease of exposition, we assume that a scheduler-controller
pair is collocated with the plant sensors and that it is con-
nected to the actuators by a communication network. The
scheduler-controller periodically samples the state of the plant
xC and decides whether or not to compute and transmit con-
trol and measurement data over a network to the actuators,
as it is common in so called periodic event-triggered control
(see, e.g., [25]). The setup is depicted in Fig. 1, where the
scheduler-controller is denoted by event-triggered controller
(ETC). While we consider this setup for concreteness, the ideas
of our proposed methods can be applied in a straightforward
manner also to other configurations (cf. Section V).

We denote the sampling times by tk, k ∈ N0 := {0} ∪ N,
spaced by a baseline period τ ∈ R>0, i.e., tk = kτ , k ∈ N0.
We assume that the network is always available for transmitting
data at times tk, k ∈ N0, that the transmission delays are small

2In fact, while the case αC > 0 is interesting in its own right, here we
consider a discounted cost (2) mainly for convenience and we shall be mostly
interested in αC = 0 (cf. Section III-D).



3298 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 59, NO. 12, DECEMBER 2014

with respect to τ , and that the probability of a packet drop is
small. These assumptions are reasonable in shared networks
using Time-Division Multiple Access (TDMA) protocols [47]
or if the communication between the scheduler-controller and
actuators is made via a point-to-point dedicated link. The
scheduler-controller may wish to refrain from transmitting the
state to the actuators at the available times tk, k ∈ N0, in order
to: (i) reduce power consumption [7]; (ii) allow for other (non-
critical) data to be transmitted.

Assuming that the actuation is held constant between sam-
pling times and that the transmission delays are negligible

uC(t) = uC(tk), ∀t ∈ [tk, tk+1). (4)

Let {σk}k∈N0
be the transmission scheduling sequence

σk :=

{
1, if a transmission occurs at tk
0, otherwise.

Moreover, for k ∈ N, let xk := xC(tk) and ûk := uC(tk−1),
and let x0 ∈ R

nx and û0 ∈ R
nu be given initial conditions.

Furthermore, let ξk := [xT
k ûT

k ]
T ∈ R

n, k ∈ N0, n := nx + nu,
and uk be the control input sent by the controller to the actuators
at times tk, k ∈ N0, that satisfy σk = 1; at times tk, k ∈ N0,
that satisfy σk = 0 we use the notation uk := ∅, also used in
[30], to denote that uk is not transmitted. Then, we can write

ξk+1 =

{
A1ξk +B1uk + wk, if σk = 1
A0ξk + wk, if σk = 0, k ∈ N0

(5)

where, for j ∈ {0, 1}

Aj :=

[
Āτ (1− j)B̄τ

0 (1− j)Inu

]
, B1 :=

[
B̄τ

Inu

]

Āτ := eACτ , B̄τ :=

τ∫
0

eACsdsBC (6)

and wk, k ∈ N0, is a sequence of zero-mean independent
random vectors with covariance E[wkw

T
k ] = Φw

τ , k ∈ N0

Φw
τ :=

[
Φ̄w

τ 0nx×nu

0nu×nx
0nu×nu

]
, Φ̄w

τ :=

τ∫
0

eACsBωB
T
ωe

AT
Csds.

The expression for Φw
τ can be obtained from the arguments

provided in [44, Sec. 3.10].
We are interested in the problem of finding a policy, i.e., a set

of functions

π = {(μσ
0 (I0), μ

u
0 (I0)) , (μ

σ
1 (I1), μ

u
1 (I1)) , . . .}

that describe the scheduling and control inputs

(σk, uk) = (μσ
k(Ik), μ

u
k(Ik)) , ∀k ∈ N0 (7)

based on the information available to the scheduler-controller
at time tk

Ik := {(ξ�, σ�)|0 ≤ � < k} ∪ {ξk}, ∀k ∈ N0.

Hence, note that we consider here the problem of co-designing
scheduling and control inputs. By keeping track of previous
data in Ik, the scheduler-controller can, e.g., make decisions
based on the number of previous transmissions up to time tk
or based on previous state values. Note that (μσ

k(Ik), μ
u
k(Ik)) ∈

({0} × {∅}) ∪ ({1} × R
nu), ∀k ∈ N0.

The discounted cost (2) can be shown to be given, apart from
an additive constant factor, by

Jd
π(ξ0) :=

∞∑
k=0

E
[
αk
τg (ξk, μ

u
k(Ik), μ

σ
k(Ik))

]
(8)

where ατ := e−αCτ , g(ξ, u, j) := ξTQjξ + 2ξTSju+ uTRju,
and, for j ∈ {0, 1}

Qj :=

[
Q̄τ (1− j)S̄τ

(1− j)S̄T
τ (1− j)R̄τ

]
, Sj :=

[
jS̄τ

0

]
, Rj :=jR̄τ

where[
Q̄τ S̄τ

S̄T
τ R̄τ

]

:=

τ∫
0

e

[
AC BC

0 0

]T
s [

QC 0
0 RC

]
e

[
AC BC

0 0

]
s

e−αcsds

(9)

and the average cost (3) can be described by

Ja
π := lim

K→∞

1

τK

K−1∑
k=0

E [g (ξk, μ
u
k(Ik), μ

σ
k(Ik))] . (10)

We denote by Jc
π , c ∈ {a, d}, a cost which pertains to the

discounted cost if c = d and to the average cost if c = a.
The discounted cost depends on ξ0, whereas for the policies
considered in the present paper the average cost does not, as
we shall see in the sequel (cf. Remark 14 below). We omit
this dependency and for two policies π and ρ we use Jd

π ≤ Jd
ρ

to denote Jd
π(ξ0) ≤ Jd

ρ (ξ0) for every ξ0 ∈ R
n. The average

transmission rate of policy π is defined as

Rπ :=
1

τ
lim

K→∞

1

K

K−1∑
k=0

E [μσ
k(Ik)] (11)

which also does not depend on the initial condition ξ0 for
the policies considered here (this follows trivially from the
definition of Algorithm 3 below).

Traditional periodic control can be captured in the above
setup by fixing the scheduling input σk, k ∈ N0, to correspond
to transmissions once every q ∈ N time steps (σk = 1, if k is an
integer multiple of q, σk = 0 otherwise), in which case δ := qτ
is the sampling period. In fact, suppose that the following
standard assumptions hold:

Assumption 1:

(i) (AC , BC) is controllable and BC has full rank.
(ii) (AC , Q

1/2
C ) is observable.

(iii) RC is positive definite.
(iv) The sampling period qτ is non-pathological, i.e., A does

not have two eigenvalues with equal real parts and imagi-
nary parts that differ by an integral multiple of 2π/qτ (cf.
[46, p. 45]).

Then, from standard optimal control arguments (cf. [43],
[44]), we can obtain the optimal control law, which results in the
combined scheduling and control policy, both for the average
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and discounted cost problems, γ = {(μσ
0 , μ

u
0 ), (μ

σ
1 , μ

u
1 ), . . .},

given for k ∈ N0 by

(μσ
k(Ik), μ

u
k(Ik))

=

{
(1, K̄δxk), if is an integer multiple of q
(0,∅), otherwise

(12)

where

K̄δ := −(R̄δ + αδB̄
T
δ P̄δB̄δ)

−1
(
αδB̄

T
δ P̄δĀδ + S̄T

δ

)
(13)

and P̄δ is the unique positive definite solution to the algebraic
Ricatti equation

P̄δ = αδĀ
T
δ P̄δĀδ + Q̄δ

−
(
αδĀ

T
δ P̄δB̄δ+S̄δ

)(
R̄δ+αδB̄

T
δ P̄δB̄δ

)−1(
αδB̄

T
δ P̄δĀδ+S̄T

δ

)
.

(14)

This policy has an average transmission rate (11) of 1/δ, a
discounted cost

Jd
per,δ := xT

0 P̄δx0 +
αδ

1− αδ
tr
(
P̄δΦ̄

w
δ

)
(15)

and an average cost

Ja
per,δ :=

1

δ
tr
(
P̄δΦ̄

w
δ

)
(16)

(cf. [43, Vol. II, p. 142 and 273]). The main focus of this paper is
to design combined scheduling/control policies which achieve
(strictly) better performance than traditional periodic control
using the same average transmission rate. This design problem
can be formally written as follows.

Problem 2: Given a desirable transmission rate 1/qτ , for
some q ∈ N, find a policy π for which Rπ = 1/qτ and

Jc
π < Jc

per,qτ (17)

where c = d if the performance is measured by (2) (discounted
cost problem) and c = a if the performance is measured by (3)
(average cost problem). �

A natural additional challenge after designing a policy that
guarantees (17) is to quantify how much is the performance
improvement expressed in (17). In Section IV-D, we address
this challenge for the average cost problem (c = a).

III. ROLLOUT EVENT-TRIGGERED CONTROL

The proposed method is a receding horizon algorithm. At a
given step of the algorithm, m transmission decisions over a
horizon of h possible scheduling decisions are chosen, based
on which transmission pattern would lead to a lower cost, as-
suming that after the horizon an optimal periodic control policy
would be used, also using m transmissions in each block of h
scheduling decisions (see Fig. 2). Since periodic transmission
belongs to the options of the optimization procedure at each
step, we will be able to prove in the sequel that this strategy
outperforms periodic control. We formalize the algorithm by
(i) defining the admissible transmission scheduling decisions
over the horizon h in Section III-A; (ii) determining the optimal

Fig. 2. Illustration of a scheduling option at scheduling decision steps.

control policy and associated cost for each of these scheduling
sequences in Section III-B; and (iii) specifying the execution of
the algorithm in Section III-C. We consider a discounted cost
framework with αC > 0 for convenience in Section III-A–C
and in Section III-D we consider the case αC = 0 which
includes the average cost problem. The implementation of the
proposed method is discussed in Section III-E.

A. Admissible Scheduling Sequences

Let T denote the set of transmission scheduling sequences
with m transmissions in the first h time steps 0, τ, . . . , (h−
1)τ , where h is an integer multiple of m, and that conform with
periodic transmission with period qτ , q := h/m, in the subse-
quent time steps hτ, (h+ 1)τ, . . ., starting with a transmission
at hτ (see Fig. 2). The parameters h and q can be viewed
as tuning knobs of the proposed ETC algorithm. Formally,
there are

nT :=
h!

(h−m)!m!
(18)

scheduling sequences {σi
k}k∈N0

∈ T , i ∈ M, M :=

{1, . . . , nT }, characterized by

σi
k = νik, k ∈ {0, 1, . . . , h− 1}, i ∈ M (19)

where νi = (νi0, . . . , ν
i
h−1) ∈ I, i ∈ M, with

I :=

{
ν ∈ {0, 1}h|

h−1∑
k=0

νk = m

}
(20)

and by

σi
k =

{
1, if k is an integer multiple of q
0, otherwise, k ∈ N≥h, i ∈ M .

We assume that q ≥ 2 and without loss of generality, we
arbitrate that the schedules ν1 ∈ I are described by

ν1κ =

{
1, if κ = 0 or if κ is an integer multiple of q
0, otherwise

(21)

for 0 ≤ κ ≤ h− 1. The associated scheduling sequence in T
corresponds to periodic transmission with period qτ .

B. Optimal Policy and Cost for Each Scheduling Sequence

Our proposed method is based on solutions to optimal control
subproblems in which the transmission scheduling sequence is
fixed and belongs to the set T . Here, we describe the optimal
control input policy that minimizes (8) for a fixed schedul-
ing sequence in T , labeled by i ∈ M, which can be derived
by standard optimal control arguments (cf. [43], [44]), under
Assumption 1.
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Let Pi be the first matrix W0,i of the backward recursion

Wh,i =

[
P̄qτ 0
0 0nu×nu

]

Wκ,i =Fνi
κ
(Wκ+1,i), 0 ≤ κ ≤ h− 1 (22)

where P̄qτ can be obtained as the solution to (14) (with δ
replaced by qτ ) and

F0(P ) :=ατA
T
0PA0 +Q0

F1(P ) :=ατA
T
1PA1 +Q1

−
(
S1 + ατA

T
1PB1

) (
R1 + ατB

T
1PB1

)−1

×
(
ατB

T
1PA1 + ST

1

)
.

Then the optimal control input policy corresponding to the
scheduling sequence {σi

k}k∈N0
is described by

uk =

{
Kk,ixk, if νik = 1
∅, otherwise

for k ∈ {0, 1, . . . , h− 1}, where for νik = 1 the gains Kk,i are
given by

Kk,i := −
(
R1 + ατB

T
1Wk+1,iB1

)−1

×
(
ατB

T
1Wk+1,iA1 + ST

1

)
[Inx

0nx×nu
]T (23)

and for k ∈ N≥h

uk =

{
K̄qτxk, if k is an integer multiple of q
∅, otherwise

where K̄qτ is described by (13). The discounted cost (8) for this
policy is given by

ξT0Piξ0 + ci + b, i ∈ M (24)

where b := (αh
ταqτ/(1− αqτ ))tr(P̄qτ Φ̄

w
qτ ) and

ci :=
h∑

κ=1

ακ
τ tr (Wκ,iΦ

w
τ ) , i ∈ M.

Note that when i ∈ M corresponds to periodic control, i = 1,
cost (24) equals (15), which implies that

P1 =

[
P̄qτ 0
0 0

]
(25)

and

c1 =

m∑
κ=1

ακ
qτ tr

(
P̄qτ Φ̄

w
qτ

)
. (26)

C. Algorithm

The proposed rollout method, described next, finds at each
scheduling time, in a receding horizon fashion, the scheduling
sequence in T that would optimize (8) if this scheduling
sequence would be used thereafter, along with a corresponding
optimal policy for the control input.

Algorithm 3
(i) At scheduling times � := jh, j ∈ N0, compute3

ι(ξ�) = argmin
i∈M

ξT� Piξ� + ci. (27)

In view of (24), ι ∈ M corresponds to a scheduling
sequence from the set T which would lead to the smallest
cost (8) if this fixed scheduling sequence would be used
from time � = jh onwards and an associated optimal
policy would be chosen for the control input.

(ii) For times k ∈ {jh, jh+ 1, . . . , (j + 1)h− 1} pick the
schedules σk = ν

ι(ξ�)
k−jh and the control inputs

uk =

{
Kk−jh,ι(ξ�)xk, if σk = 1
∅, otherwise.

(28)

Repeat (i) and (ii) at scheduling time (j + 1)h. �

Note that at time jh step (i) fixes the scheduling actions
and the control policy (the feedback gains) to be taken in
the interval k ∈ {jh, jh+ 1, . . . , (j + 1)h− 1}, but not the
control actions. The latter are computed from (28) based on the
actual state xk of the plant at times k ∈ {jh, jh+ 1, . . . , (j +
1)h− 1} with σk = 1.

In the terminology of Section II, Algorithm 3 corresponds to
a family of policies described by ρ = {(μσ

0 , μ
u
0 ), (μ

σ
1 , μ

u
1 ), . . .}

(μσ
k(Ik), μ

u
k(Ik)) =

(
ν
ι(ξjh)
k−jh ,Kk−jh,ι(ξjh)xk

)
jh ≤ k < (j + 1)h, j ∈ N0. (29)

D. Average Cost Problem, αC = 0

Considering αC > 0 in the previous section was convenient
since for the average cost problem, the costs (24) are unbounded
(the constant b tends to infinite as αC ↓ 0). However, since
Algorithm 3 does not depend on b, we can still consider the
algorithm for the average cost problem (αC = 0 and Bω �= 0).
In this case, Algorithm 3 can be viewed as a suboptimal method
for designing a combined scheduling and control policy for the
average cost problem, obtained by taking the limit as αC tends
to zero of the suboptimal method derived for the discounted
cost problem. Note that in the case Bω = 0 and αC = 0 in (24)
we have b = 0 and ci = 0, ∀i ∈ M, and one can also consider
Algorithm 3.

E. Implementation

Although Algorithm 3 relies on receding horizon ideas,
it does not require any on-line optimization. This resembles
explicit model predictive control [48]. In fact, Algorithm 3
requires only computing the explicit functions (27) and (28).
For each recursion of the algorithm, computing (28) requires
at most mnunx multiplications, whereas computing (27) for
a state v = ξ� with components vi, 1 ≤ i ≤ n, requires at
most (nT + 1)(n(n+ 1)/2) multiplications since each of the

3We arbitrate that if the minimum argument in (27) is achieved by two
or more indexes i1, i2 ∈ M the smallest index is selected, although this is
not relevant in the results that follow. Hence, by the argmin function in (27)
we mean argmin

i∈M
ξT� Piξ� + ci := min(h−1(mini∈M h(i))), where h(i) =

ξT� Piξ� + ci.
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nT quadratic functions can be computed in terms of linear
combinations of the n(n+ 1)/2 products vivj , 1 ≤ i, j ≤ n
(these products are computed once at each scheduling decision
time and the nT linear combinations are computed after). In the
numerical example of Section VI, we consider the following
parameters: h = 6, m = 2, which results from (18) in nT = 15.
Note that additions and other operations as taking the minimum
in (27) typically have a negligible computational burden with
respect to multiplications.

IV. MAIN RESULTS

In Section IV-A we establish that the proposed rollout algo-
rithm (Algorithm 3) performs no worse than periodic control
both for the average cost and the discounted cost problems.
Obtaining strict performance improvement results requires ad-
ditional technical assumptions and these results are presented
in Section IV-B. In Section IV-C we discuss the stability prop-
erties of our proposed method and in Section IV-D we quantify
the performance improvements for the average cost problem.
The proofs are deferred to Section VIII.

A. Performance Improvement

We start with the following performance improvement result
which requires only the basic Assumption 1. Let Jc

ρ,qτ , c ∈
{a, d}, denote the discounted cost (2) of the policy ρ, described
by (29), when c = d and the average cost (3) of the policy ρ
when c = a.

Theorem 4: Consider Algorithm 3 for τ ∈ R>0, q ∈ N, m ∈
N, and αC ≥ 0, and suppose that Assumption 1 holds. Then

Jd
ρ,qτ ≤ Jd

per,qτ . (30)

Moreover, if αC = 0, then

Ja
ρ,qτ ≤ Ja

per,qτ . (31)

�
It is clear, from the construction in Algorithm 3, that policy

(29) yields an average transmission rate (11) equal to 1/qτ .
Thus Theorem 4, establishes that policy (29) performs no worse
than the traditional periodic strategy with a corresponding
transmission rate 1/qτ . In fact, in most situations policy (29)
performs strictly better, thus providing a solution to Problem 2.
However, this is often hard to guarantee formally [43, p. 338].
In the next section we will prove formally that, under given
assumptions, policy (29) performs strictly better than the tradi-
tional periodic strategy. Still, such assumptions do not encom-
pass important cases (e.g. Bω = 0 and αC = 0) captured by
Theorem 4, which is hence interesting in its own right.

B. Strict Performance Improvement

Consider the following assumptions:
Assumption 5:
(i) (AC , Bω) is controllable.

(ii) The following matrix has full rank

αsĀ
T
s P̄qτ B̄s + S̄s (32)

for every s ∈ {kτ |k ∈ {1, . . . , (h−m+ 1)}}.
�

Assumption 5(i) guarantees that all the states of (1) are
affected by the disturbance input. Assumption 5(ii) is a mild
technical assumption to simplify the proof of our main results
and, along with Assumption 5(i), it is used to guarantee that
(5) driven by policy (29) (described by (35) below) is not con-
centrated in some lower dimensional subset of the state space
R

n (see Remark 15 below). Assumption 5(ii) is rather mild.
In Lemma 11 we prove that Assumption 5(ii) always holds
for sufficiently small τ . Moreover, as discussed in Remark 15
below, Assumption 5(ii) is not necessary for the theorems stated
in the sequel to hold (Theorems 7, 9, and 10).

In addition to Assumption 5, to obtain strict performance
improvement of the rollout ETC method for the discounted cost
problem (αC > 0) we need the following assumption.

Assumption 6: K̄qτ �= K̄qτ (Āqτ + B̄qτ K̄qτ ).
Assumption 6 is equivalent to the optimal periodic control

inputs uk = K̄qτxk, k ∈ N0 (see (12)) not being equal to a
constant signal, which may occur (pathologically) for a given
αC > 0. Note that, since (Āqτ + B̄qτ K̄qτ ) is Hurwitz when
αC = 0 (cf. [43]), Assumption 6 holds for αC = 0, which is
the case we are mostly interested in.

We state next the strict performance improvement result.
Theorem 7: Consider Algorithm 3 for τ ∈ R>0, q ∈ N, m ∈

N and αC ≥ 0. Then, if Assumptions 1, 5 and 6 are satisfied,
the following holds:

Jd
ρ,qτ < Jd

per,qτ . (33)

Moreover, if Assumptions 1 and 5 are satisfied and αC = 0 then

Ja
ρ,qτ < Ja

per,qτ . (34)

�

C. Stability

Here we investigate the implications of the performance
improvement results Theorems 4, 7 for the stability of the
closed-loop when the rollout ETC method is used. We restrict
ourselves to αC = 0 since if αC > 0 it might be the case that
(2) is bounded but the state grows unbounded even for the
optimal periodic controller, in the absence of plan disturbances.

In this setting (αC = 0), consider first that no disturbances
act on the plat (Bω = 0) and hence stability is simply defined as
the state converging to zero. Then, as shown in the next result,
(exponential) stability follows readily from the performance
improvement result (30).

Theorem 8: Consider Algorithm 3 for τ ∈ R>0, q ∈ N, m ∈
N and αC = 0, and suppose that Assumption 1 holds and Bω =
0. Then there exists c ∈ R>0 and α ∈ R>0, 0 < α < 1, such
that ‖ξk‖ ≤ cαk‖ξ0‖, ∀k∈N0

. �
We consider next the case Bω �= 0 (and αC = 0). We shall

establish a stability property (ergodicity) for the Markov chain
(see [49]) obtained by considering (5) driven by policy (29)
along a period h. In fact, let ξ̄� := ξ�h and

w̄� :=
[
wT

�h wT
�h+1 . . . w

T
�h+h−1

]T
, � ∈ N0.

Then (5) driven by policy (29) along a period h can be described
by the Markov chain

ξ̄�+1 = Φι(ξ̄�)ξ̄� +Ψι(ξ̄�)w̄�, � ∈ N0 (35)
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where ι(ξ̄�) is described by (27), and the matrices Φj and Ψj ,
j ∈ M, are given by

Φj := Π0
s=h−1Θs,j = Θh−1,jΘh−2,j . . .Θ0,j

and

Ψj :=
[
Π1

s=h−1Θs,j Π
2
s=h−1Θs,j . . . Θh−1,j In

]
where for 0 ≤ κ ≤ h− 1 and j ∈ M,

Θκ,j =

{
A0, if νjκ = 0
A1 +B1 [Kκ,j 0nu×nu

] , if νjκ = 1.
(36)

Let

P�(y,A) := Prob[ξ̄� ∈ A|ξ̄0 = y] (37)

be the probability that the chain (35) is in a set A at � ∈ N given
that it starts at time zero in state y ∈ R

n. In addition, recall
that a probability measure χinv : B(Rn) → [0, 1], where B(Rn)
denotes the collection of Borel sets in R

n, is said to be an invari-
ant probability distribution for (35) if

∫
Rn P1(ξ, A)χinv(dξ) =

χinv(A) for every A ∈ B(Rn) (cf. [49, Ch.10]). We state next
that when Algorithm 3 corresponds to αC = 0, the Markov
chain (35) is ergodic [49, Ch. 13].

Theorem 9: Consider Algorithm 3 for τ ∈ R>0, q ∈ N, m ∈
N, and αC = 0, and suppose that Assumptions 1 and 5 hold.
Then, there exists a unique invariant measure for the Markov
chain (35), denoted by χinv, and (35) is ergodic, i.e.

lim
�→∞

sup
A∈B(Rn)

|P�(y,A)− χinv(A)| = 0. (38)

�
Ergodicity is a crucial property to quantify the performance

improvements obtained with the rollout method for the average
cost problem.

D. Quantifying the Performance Improvements

In the following result we explicitly quantify the performance
improvement obtained with the rollout method over optimal
periodic control for average cost problems. Due to the difficulty
is obtaining such results (cf. [43, Ch. 6]), the following is one
of the main results of the paper.

Theorem 10: Consider Algorithm 3 for τ ∈ R>0, q ∈ N,
m ∈ N and αC = 0. Then, if Assumptions 1 and 5 are satisfied

Ja
ρ,qτ = Ja

per,qτ − ga (39)

where ga is a strictly positive constant given by

ga =
1

τh

∫
Rn

f(ξ)χinv(dξ) (40)

with

f(ξ) := ξT
(
P1 − Pι(ξ)

)
ξ + c1 − cι(ξ) (41)

and χinv is the unique invariant measure of the Markov
chain (35). �

Note that ga is nonnegative since the integrand f(ξ) is
nonnegative due to (27). Theorem 10 states that ga is actually

Fig. 3. Setup with remote controller. At scheduling times jh, j ∈ N0 the
controller sends to the plant scheduling decisions for the interval {jh+
1, . . . , (j + 1)h− 1} (indicated by gray thin lines).

strictly positive. The integrand f(ξ) should be seen as the
performance gain at state ξ obtained by performing a single
step optimization over the horizon h assuming periodic control
is used after the horizon h, i.e., the gain obtained at a single
scheduling time in Algorithm 3 by making decision (27). The
overall gain ga, described by (40), is obtained by repeat-
ing the process at every scheduling time step, according to
Algorithm 3. It has the following interpretation: it is the (scaled)
expected value of these single step optimization gains f(ξ) with
respect to the invariant probability measure (also a limiting
measure according to (38)) of the Markov chain (35), induced
by using Algorithm 3. Thus, if Algorithm 3 picks options
different from that corresponding to periodic control (ι = 1 in
(27)) with large single step optimization gains f(ξ), for states ξ
likely to be visited asymptotically, then one may expect a large
overall gain ga. Contrarily, if ι = 1 in (27) for a large region
(likely to be visited asymptotically) in the state-space, then ga
is small. Numerical methods to estimate χinv can be found, e.g.,
in [50], [51]. In the example of Section VI we obtain a good
approximation of ga by running Monte-Carlo simulations.

V. OTHER NETWORKED CONTROL CONFIGURATIONS

Our ideas can be adapted to other network configurations. In
this section we briefly discuss two examples.

A. Remote Controller

Consider first the configuration depicted in Fig. 3, in which
a remote controller sends control inputs and receives state mea-
surements from the plant through a communication network. To
guarantee that the controller can make scheduling decisions at
times jh, the plant must transmit the state to the controller at
times jh, which can be directly used to compute ujh. Thus, the
free transmission times to be chosen at scheduling time jh are
restricted to the interval {jh+ 1, . . . , (j + 1)h− 1}, i.e., the
set I, described in (20), is adapted to

I =

{
ν ∈ {0, 1}h|

h−1∑
k=0

νk = m and ν0 = 1

}

where we assume now that m ∈ N≥2. Considering that the
network-induced delays are negligible when compared to the
baseline period τ we can assume that at scheduling times jh
the controller receives state measurements, makes scheduling
decisions for the next h− 1 possible transmission times {jh+
1, . . . , (j + 1)h− 1}, characterized by ι and computed accord-
ing to (27), and sends these scheduling decisions along with the
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control input at time jh to the plant computed according to (28).
At times k ∈ {jh+ 1, . . . , (j + 1)h− 1} such that νιk−jh = 1,
the plant sends again state measurements to the controller, the
controller computes the control input according to (28) and
sends it to the actuators. In this manner the scheme works for
the setup of Fig. 3 as well, and can be easily implemented in
networks based on TDMA.

B. Model-Based Predictor at the Actuators

In the setup considered in Section II, while the actuators
can update ûk = uC(tk) at the sampling rate 1/τ , this only
occurs if a new transmission occurs at time tk. An alternative
configuration, considered in several works (see, e.g., [13], [30]),
is to assume that the actuators use a predictor to update the
control input even if no transmission occurs. Consider the
following predictor-based control update

x̂k+1 = Āτ x̂k + B̄τ ûk, ûk = K̄τ x̂k, ∀k ∈ N0 (42)

where x̂k starts at time zero with an initial estimate of the state,
denoted by x̂0, and resets its state to the transmitted state each
time a transmission occurs, i.e.

x̂k = xk, when σk = 1, ∀k ∈ N0. (43)

Note that we assume here that the full state is sent from the
event-triggered controller collocated with the sensors to the
actuators, which run (42). Moreover, since the control policy
is already determined by (42), only the scheduling decisions (to
send the state) need to be determined. A base policy for the
scheduling is to transmit periodically with period qτ for some
q ≥ 1. An alternative rollout method, which is a straightforward
adaption of the ideas presented in Section III is described next.

The equations for the process and predictor take now
the form

ηk+1 = Lσk
ηk + ωk, k ∈ N0

where ηk := [xT
k , x̂

T
k ]

T
and

L0 =

[
Āτ B̄τ K̄τ

0 (Āτ + B̄τ K̄τ )

]
, L1 =

[
(Āτ + B̄τ K̄τ ) 0
(Āτ + B̄τ K̄τ ) 0

]

and the covariance matrix of ωk is given by

Ψw
τ :=

[
Φ̄w

τ 0nx×nx

0nx×nx
0nx×nx

]
.

The discounted cost (2) takes the form

∞∑
k=0

E
[
αk
τη

T
kXσk

ηk
]

(44)

apart from an additive constant factor, where

X0 =

[
Q̄τ S̄τ K̄τ

K̄T
τ S̄

T
τ K̄T

τ R̄τ K̄τ

]

X1 =

[
Q̄τ + S̄τ K̄τ + K̄T

τ S̄
T
τ + K̄T

τ R̄τ K̄τ 0
0 0

]
.

Using similar arguments to the ones used in Section III-B, the
discounted cost (44) for a scheduling sequence taken from the
set T , labeled by i ∈ T , can be shown to be given by

ηT0Ziη0 + zi + d

where Zi, i ∈ T , are positive semi-definite matrices and zi, i ∈
T , and d are positive constants. The expressions are omitted for
the sake of brevity. Scheduling decisions at each step � = jh,
j ∈ N0 are obtained by computing

ι(η�) = argmin
i∈M

ηT� Ziη� + zi

which determine the scheduling decisions in the interval
{jh, . . . (j + 1)h− 1}, given by(

ν
ι(ξ�)
0 , . . . , ν

ι(ξ�)
j−1

)
for νi ∈ I, i ∈ M. Note that the scheduler needs also to run
the model-based estimator (42) to make decisions based on
x̂k. Similar performance improvements results can be obtained
paralleling the ones in Section IV.

VI. EXAMPLE

Consider two unitary masses on a frictionless surface con-
nected by an ideal spring and moving along a one-dimensional
axis. The control input is a force acting on the first mass. The
state vector is xC = [x1 x2 v1 v2]

T, where xi, vi are the dis-
placements and velocities of the mass i ∈ {1, 2}, respectively,
and the plant model (1) is described by

AC =

⎡
⎢⎣

0 0 1 0
0 0 0 1

−κm κm 0 0
κm −κm 0 0

⎤
⎥⎦ , BC =

⎡
⎢⎣
0
0
1
0

⎤
⎥⎦ (45)

where κm is the spring coefficient. We set the initial state to
x0 = [−1 1 0 0]T, meaning that the masses start with zero
velocity and at opposite distances from their equilibrium values.
The matrix AC has two eigenvalues at zero and two complex
conjugates eigenvalues at ±

√
2κmj. The free response hence

has oscillations with a period 2π/
√
2κm. We normalize time

so that one time unit t = 1 corresponds to one period of
these oscillations, which results in κm = 2π2. This implies that
the sampling period must be different from the pathological
sampling periods 0.5κ, κ ∈ N, so that the discretization of the
plant remains controllable [46].

We start by assuming that there are no disturbances acting on
the plant, i.e.

Case I : Bω = 0

and by considering the following cost:

Case I :

∞∫
0

x1(t)
2 + x2(t)

2 + 0.1uC(t)
2dt (46)

which takes the form (2) with αC = 0. Using standard optimal
control theory (cf., e.g., [45, Ch. 3]) we can compute the opti-
mal continuous-time feedback law that minimizes (46) which
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Fig. 4. Case I: no disturbances, LQR-type cost.

Fig. 5. Case II: Wiener disturbances, LQG-type average cost.

is a state-feedback law uC(t) = KCxC(t) yielding a cost (46)
given by xT

0PCx0 where PC is the solution to the Riccati (76)
given in Section VIII. For the numerical values given above
this gives

xT
0PCx0 = 5.7411 (47)

and the eigenvalues of AC +BCKC are given by −0.1775±
6.2857, −1.0564± 1.0566, resulting is a lightly damped
closed-loop system. Fig. 4 plots the (normalized) performance
(46) obtained with the traditional periodic control strategy and
with the rollout ETC strategy described by Algorithm 3 in
the setup of Fig. 3 with parameters h = 6, m = 2, q = 3, for
several values of the average transmission period qτ in the
range [0, 0.5]. The performance (46) for the rollout event-
triggered control method is obtained via simulating (5) for (7),
(29) for a large time (t ∈ [0, 500]) and computing the cost (8)
resulting from the parameters in (46). This method can also be
used to obtain the cost of the optimal control strategy (12) to
confirm the expression (15), which is used to plot the values of
Fig. 5 pertaining to periodic control. The performance values
in Fig. 4 are normalized with respect to the optimal LQR
performance achievable by a continuous-time controller (47).
The time evolution of the actuation uC and the position x1 of
the first mass for the considered initial state and for t ∈ [0, 30]
are shown in Fig. 6 when the average transmission rate is
0.4. Note that a faster convergence to zero of these signals
is obtained for the rollout method, due to the extra degree of

Fig. 6. Time evolution of state x1 and control input uC for the periodic and
rollout methods when the average transmission rate is 0.4.

freedom of choosing different actuation pattern than periodic
update times.

We consider next the case in which disturbances are acting
on the plant characterized by the injection matrix

Case II : Bω = [0 0 0.5 0]T.

Performance is measured by the following cost:

Case II : lim
T→∞

1

T
E

⎡
⎣ T∫

0

[
x1(t)

2 + x2(t)
2 + 0.1uC(t)

2
]
dt

⎤
⎦

(48)

which takes the form (3). Fig. 5 plots the (normalized) per-
formance (48) obtained with the traditional periodic control
strategy and with the same rollout ETC method as in Case I.
The cost (48) is estimated via Monte-Carlo simulations with
300 trials simulating (5) for (7), (29) for a large time (t ∈
[0, 1500]) and computing the cost (10) resulting from the pa-
rameters in (48). This method can also be used to obtain the
cost of the optimal periodic control strategy (12) to confirm
the expression (15), which is used to plot the values of Fig. 5
pertaining to periodic control. The performance values in Fig. 5
are normalized with respect to the optimal LQG performance
achievable by a continuous-time controller, which is given by
tr(PCBwB

T
w) where PC is the solution to the Riccati equation

(76) given in Section VIII. For the numerical values given above
tr(PCBwB

T
w) = 0.06170.
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Both Fig. 4 and Fig. 5 show that for small average trans-
mission periods the methods perform very closely. In fact, this
is natural as periodic control approaches the optimal perfor-
mance (2) achievable by a continuous-time controller when the
sampling period tends to zero. As such, there is little room
for improvements. However, for larger transmission periods
the rollout strategy in Case I obtains significant performance
improvements over traditional periodic control. This is a clear
illustration of the main theorems in this paper and shows the
effectiveness of the novel ETC strategy proposed in this paper.
On the other hand, for Case II the gains are less pronounced. A
possible explanation is the fact that we have considered Wiener
disturbances. As discussed in [52] the performance gains of
ETC strategies with respect to periodic control may be much
larger considering classes of stochastic disturbances different
from Wiener disturbances. A topic for future research is to
incorporate such models in the setting of the present paper.

VII. CONCLUSION

In this paper, we proposed a novel ETC strategy called
rollout ETC, that guarantees a performance improvement over
traditional periodic control. The key to our method is to select
at given scheduling times control and scheduling decisions over
a given horizon assuming that periodic optimal control is used
afterwards. Under mild assumptions, for the new class of ETC
strategies, we showed that strict performance improvements
could be formally guaranteed with respect to the performance
of periodic controllers with the same average transmission rate.
We illustrated by a numerical example that the proposed ETC
strategy can significantly outperform periodic control.

While we have focused on basic models for the process and
for the communication network, the obtained numerical results
encourage pursuing various research directions for extending
such models. These directions include scenarios in which (i)
the full state of the plant is not available; (ii) multiple control
loops are closed over the communication network; iii) the noise
model is different from Wiener processes; (iv) packet drops are
taken into account in the model of the communication network.

VIII. PROOFS

Theorems 4 and 8 are proved in Section VIII-A. The proof
of Theorem 8 builds upon some of the statements used in the
proof of Theorem 4. Theorems 7, 9 and 10 are proved in
Section VIII-C, building upon two key lemmas established in
Section VIII-B.

A. Proof of Theorems 4 and 8

Before we prove Theorem 4, we note that we can think of
λ := {ι(ξ̄0), ι(ξ̄1), . . .} as a stationary policy for (35). We can
then write (8) and (10) when π = ρ, where ρ is the rollout
policy (29), as

J̄d
λ(ξ̄0) :=

∞∑
�=0

E
[
αh�
τ ḡ
(
ξ̄�, ι(ξ̄�), w̄�

)]
(49)

and

J̄a
λ = lim

L→∞

1

τhL

L−1∑
�=0

E
[
ḡ
(
ξ̄�, ι(ξ̄�), w̄�

)]

respectively, where for w̄ = (w0, . . . , wh−1)

ḡ(ξ̄, i, w̄) :=
h−1∑
κ=0

ακ
τ g
(
yκ, K̂κ,iyκ, ν

i
κ

)

the yκ are defined recursively

yκ+1 = Θκ,iyκ + wκ, y0 = ξ̄, κ ∈ {0, 1, . . . , h− 1}

and

K̂κ,i =

{
[Kκ,i 0nu×nu

] , if νiκ = 1
[0nu×nx

Inu×nu
] , otherwise.

(50)

That is, Ja
ρ,qτ = J̄a

λ and Jd
ρ,qτ (ξ̄0) = J̄d

λ(ξ̄0), for every ξ̄0 ∈ R
n.

Proof. (of Theorem 4): To establish (30) we start by defining
the following policies ζr = (ψr

0, ψ
r
1, . . .), r ∈ N0, for (35)

ψr
j (ξ̄�) =

{
ι(ξ̄�), if 0 ≤ j < r
1, if j ≥ r.

obtained by applying policy (27) to (35) until iteration r and
afterwards using always periodic control (ι = 1). Note that
limr→∞ J̄d

ζr (ξ0) = J̄d
λ(ξ0) = Jd

ρ,qτ (ξ0) for every ξ0 ∈ R
n and

J̄d
ζ0(ξ0) = Jd

per,qτ (ξ0) for every ξ0 ∈ R
n. From the definition

of ι in (27) we have that

J̄d
ζ1(ξ0) ≤ J̄d

ζ0(ξ0), for every ξ0 ∈ R
n. (51)

Since the cost (49) is additive along stages, we can write

J̄d
ζr+1(ξ̄0) =

r−1∑
�=0

E
[
αh�
τ ḡ
(
ξ̄�, ι(ξ̄�), w̄�

)]
+ αhr

τ E
[
J̄d
ζ1(ξ̄r)

]
(52)

for r ∈ N, and

J̄d
ζr (ξ̄0) =

r−1∑
�=0

E
[
αh�
τ ḡ
(
ξ̄�, ι(ξ̄�), w̄�

)]
+ αhr

τ E
[
J̄xd

ζ0(ξ̄r)
]

(53)

for r ∈ N0. From (51), we conclude that

E
[
J̄d
ζ1(ξ̄r)

]
≤ E

[
J̄d
ζ0(ξ̄r)

]
(54)

for every r ∈ N, where the expectations are taken with respect
to w̄0, . . . , w̄r−1 that determine ξ̄r by (35). Using this latter
inequality in (52) and taking into account (53) we conclude that

J̄d
ζr+1(ξ0) ≤ J̄d

ζr (ξ0) (55)

for every r ∈ N0 and ξ0 ∈ R
n. Thus, for a given ξ0 ∈ R

n

Jd
ρ,qτ = lim

r→∞
J̄d
ζr ≤ . . . ≤ J̄d

ζ2 ≤ J̄d
ζ1 ≤ J̄d

ζ0 = Jd
per,qτ (56)

establishing (30).
To establish (31) for the average cost (c = a), we define

V (ξ) := ξTP1ξ, ξ ∈ R
n (57)

and take the limit as αC ↓ 0 in (26) (see Section III-D)
obtaining

c1 = mtr
(
P̄qτ Φ̄

w
qτ

)
. (58)
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Taking into account (25) and the definition of Pi in
Section III-B one can conclude that at iteration �

E
[
V (ξ̄�+1) + ḡ

(
ξ̄�, ι(ξ̄�), w̄�

)
|ξ̄�
]
= ξ̄T� Pι(ξ̄�)ξ̄� + cι(ξ̄�).

(59)

Thus

E
[
V (ξ̄�+1) + ḡ

(
ξ̄�, ι(ξ̄�), w̄�

)
|ξ̄�
]
− V (ξ̄�)

= ξ̄T�

(
Pι(ξ̄�) − P1

)
ξ̄� + cι(ξ̄�)

= c1 − f(ξ̄�) (60)

where f is described by (41). Adding (60) for � = 0, 1, . . . , L−
1, dividing by τhL, and taking expectations we obtain

1

τhL
E

[
L−1∑
�=0

ḡ
(
ξ̄�, ι(ξ̄�), w̄�

)]
=

c1
τh

− 1

τhL
E

[
L−1∑
�=0

f(ξ̄�)

]

+
1

τhL

(
V (ξ̄0)− E

[
V (ξ̄L)|ξ̄0

])
. (61)

Provided that we prove that E[V (ξ̄L)|ξ̄0] remains bounded as
L → ∞ we can take the limit as L → ∞ in (61), use the fact
that the left-hand side converges to J̄a

λ = Ja
ρ,qτ , and use (58) to

obtain4

Ja
ρ,qτ =

1

qτ
tr
(
P̄qτ Φ̄

w
qτ

)
− lim

L→∞

1

τhL
E

[
L−1∑
�=0

f(ξ̄�)

]
. (62)

Then, (31) follows from (16) and the fact that f , described by
(41), is a nonnegative function due to i = ι(ξ�) and (27).

To prove that E[V (ξ̄L)|ξ̄0] remains bounded as L → ∞, we
use the fact that

E
[
ḡ
(
ξ̄�, ι(ξ̄�), w̄�

)
|ξ̄�
]
≥ a1x̄

T
� x̄� (63)

for some sufficiently small a1 > 0, where we used the decom-
position ξ̄� = [x̄T

� ūT
� ]

T
, x̄� := x�h, ū� := û�h. Equation (63)

can be proved using the positive semi-definite assumption on
QC , the assumption that the pair (AC , Q

1/2
C ) is observable, and

the assumption that RC is positive definite. Moreover, choosing
b1 such that b1 > a1 > 0 and P̄qτ ≺ b1Inx

, and taking into
account (25) we conclude that

V (ξ̄) ≤ b1x̄
Tx̄ (64)

for ξ̄ = [x̄T ūT]
T

. Using (60), (63), (64) we conclude that for
� ∈ N0

E
[
V (ξ̄�+1)|ξ̄�

]
≤ d1V (ξ̄�) + c1

where d1 := 1− (a1/b1) < 1, which in turn implies that for
L ∈ N and d2 =

∑L−1
s=0 ds1c1

E
[
V (ξ̄L)|ξ̄0

]
≤ dL1 V (ξ̄0) + d2

4In the proof of Theorem 7 we shall establish that the limit in the right-hand
side of (62) exists. Then the limit in the left-hand side of (62), described in (10),
also exists.

leading to the conclusion that E[V (ξ̄L)|ξ̄0] is bounded as
L → ∞. �

We prove Theorem 8 next.
Proof. (of Theorem 8): If we consider the case Bω = 0 and

αC = 0, we conclude from (60) that

V (ξ̄�+1)− V (ξ̄�) ≤ −ḡ
(
ξ̄�, ι(ξ̄�), 0

)
(65)

where V is described by (57) and we used the fact that c1 = 0
in this case and f is a nonnegative function. As in (63) we can
conclude that

ḡ
(
ξ̄�, ι(ξ̄�), 0

)
≥ a2x̄

T
� x̄� (66)

for sufficiently small a2 > 0, where again we used the decom-
position ξ̄� = [x̄T

� ūT
� ]

T
. From (65) and (66) and taking into

account (25) we can conclude that

x̄T
�+1P̄qτ x̄�+1 − x̄T

� P̄qτ x̄� ≤ −a2x̄
T
� x̄�. (67)

Thus

x̄T
� P̄qτ x̄� ≤

(
1− a2

c

)�
x̄T
0 P̄qτ x̄0

where c is a sufficiently large constant such that P̄qτ ≺ cInx

and (1− (a2/c)) is positive. Since, under Assumption 1, P̄qτ

is positive definite, this implies that x̄� converges to zero
exponentially fast, which in turn implies that xk converges to
zero exponentially fast. Moreover, since the control input is
a hold version of (28) this implies that the control input also
converges to zero exponentially fast and hence also ξk. �

B. Two Key Lemmas

We need two preliminary lemmas to prove Theorems 7, 9,
and 10. For each option i ∈ M for the scheduling vector νik,
k ∈ {0, 1, . . . , h− 1} in (19), let

k̄i ∈ {m− 1,m,m+ 1, . . . , h− 1} (68)

be the largest k such that νik equals one, i.e., k̄i is uniquely
determined by νi

k̄i = 1 and νik = 0, if k ∈ {k̄i + 1, . . . , h− 1}.
Lemma 11: Suppose that Assumption 1 holds and consider

Algorithm 3 for τ ∈ R>0, q ∈ N and m ∈ N. Then:
(i) Assumption 5(ii) holds for sufficiently small τ .

(ii) if Assumption 5(ii) holds, then Kk̄i,i, obtained from (23),
has full rank for every i ∈ M.

(iii) if Assumption 6 holds, there exist ξ ∈ R
n and i ∈ M \

{1} such that

ξTPiξ + ci < ξTP1ξ + c1. (69)

�
Note that (iii) assures that for at least one state the choice

in (27) is different from (21), which corresponds to periodic
scheduling, i.e., there always exists a state in R

n for which
the periodic scheduling option is not chosen. The proof of
Lemma 11(iii) needs the following proposition.

Proposition 12: Suppose that Assumptions 1 and 6 hold and
consider the unique solutions P̄τ and P̄qτ to (14) when δ is
replaced by τ and qτ respectively, τ ∈ R, q ∈ N, q ≥ 2. Then

P̄τ � P̄qτ (70)
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and

∃x∈Rnx : xTP̄τx < xTP̄qτx. (71)

�
Proof: By construction P̄qτ is such that xT

0 P̄qτx0 is the
cost of the following optimal control problem:

min
{uk,k∈N0}

∞∫
0

e−αCtgC (xC(t), uC(t)) dt (72)

s.t. xC(0) = x0, where xC and uC satisfy (1) for Bω = 0, and
uC is given by

uC(t) = uk, t ∈ [tk, tk+1) (73)

for tk = jτk, k ∈ N0, when j = q. Let u∗,j
k denote the optimal

solution corresponding to jτ , for a given j ∈ N, which equals

u∗,j
k := K̄jτ (Ājτ + B̄jτ K̄jτ )

kx0 (74)

since the control input is described by (12) and there are no
disturbances acting on the plant. If for j = 1, we make uk in
(73) emulate the optimal control input corresponding to qτ ,
q ≥ 2

uk = u∗,q
� k

q �
(75)

where �a� denotes the floor of a (largest integer less or equal
than a), then the cost (72) for these (not necessarily optimal)
control inputs equals xT

0 P̄qτx0. Then the (optimal) control
inputs u∗,1

k will yield a cost xT
0 P̄τx0 smaller than xT

0 P̄qτx0 for
every x0 ∈ R

n which implies (70).
To prove (71) it suffices to prove that there exists one initial

condition x0 for the problem (72) with j = 1 for which (75)
is not the optimal solution, since the optimal solution to the
problem (72) is unique (cf. [43]) and hence will lead to a
strictly smaller cost. To this effect, suppose that for a given
initial condition x0, (75) is the optimal solution. In particular,
the first q controls are the same u0 = u1 = . . . = uq−1. Due to
Bellman’s principle of optimality [43], if the system would start
at time k = 1 with initial condition x̂0 = x1 = Āτx0 + B̄τu0

the optimal control inputs would be shifted, i.e., the first control
would be u1, the second u2, etcetera. However, such optimal
control input does note take the form (75), unless (74) is
constant, which is excluded by Assumption 6. Hence, for such
initial condition x̂0 the optimal control input is different than
(74), thereby concluding the proof. �

Proof. (of Lemma 11): We start by recalling that the follow-
ing Riccati equation(
AC − αC

2
I
)T

PC + PC

(
AC − αC

2
I
)
− PCBCR

−1
C BT

CPC

+QC = 0 (76)

has a unique positive definite solution PC if RC is positive de-
finite, and the pairs (AC − (αC/2)I,BC) and (AC −
(αC/2)I,Q

1/2
C ), are controllable and observable, respectively

(see [45, Ch. 3]), which holds due to the assumption that
(AC , BC) and (AC , Q

1/2
C ), are controllable and observable,

respectively. This latter fact can be seen from the characteri-
zation of controllability of the pair AC , BC (and observability
using duality): [(AC − λI) BC ] has full rank for all λ ∈ C

(cf. [53, p. 47]). We recall also that the optimal controller
that minimizes the discounted cost (2) without communica-
tion restrictions (providing a continuous-time input uC(t),
t ∈ R≥0, based on full access to the state xC(t), t ∈ R≥0)
yields a cost xC(0)

TPCxC(0) (see [45, Ch. 3]). Then, it is
clear that limδ→0 P̄δ = PC , i.e., the optimal continuous-time
performance is recovered as the sampling period of periodic
control tends to zero (see [46, Sec. 9.4]). Using this latter fact,
and taking into account the expressions (6) and (9), we can
obtain that

lim
τ→0

1

τ

(
ατ Ā

T
τ P̄qτ B̄τ + S̄τ

)
= PCBC . (77)

Since PC is positive definite and BC has full rank (cf. Assump-
tion 1(i)), we can conclude that PCBC has full rank. Hence, in
first approximation ατ Ā

T
τ P̄qτ B̄τ + S̄τ approaches a full-rank

matrix τPCBC , which allows to conclude (i).
To prove (ii) we use the fact that

Kk̄i,i = −
(
R̄s + αsB̄

T
s P̄qτ B̄s

)−1 (
αsB̄

T
s P̄qτ Ās + S̄T

s

)
(78)

where s = (h− k̄i)τ , and k̄i is defined in (68). This fact can be
obtained directly from (23). The derivation is straightforward
but lengthy and therefore it is omitted. The matrix R̄s is positive
definite (since RC is positive definite) for every positive s and
hence the inverse in (78) exists. Note that 1 ≤ (h− k̄i) ≤ h−
m+ 1. Then, Assumption 5(ii) implies that Kk̄i,i is the product
of an invertible matrix and a full rank matrix and hence it is
full rank.

To prove (iii) we notice that if there exists i ∈ M such that
ci < c1 then (69) holds for such i ∈ M and ξ = 0. If ci ≥ c1
for every i ∈ M, to establish (69) it suffices to prove that there
exist ξ̄ and i ∈ M such that

ξ̄TPiξ̄ < ξ̄TP1ξ̄ (79)

since then (69) holds for ξ = aξ̄ and sufficiently large a ∈ R.
To prove (79), we start by noticing that, by construction,

ξT0Piξ0, ξ0 = [xT
0 ûT

0 ]
T

, i ∈ M, is the cost of the following:

min
{u0,...,uh−1}∈Ui

hτ∫
0

e−αCtgC (xC(t), uC(t)) dt

+ e−αChτxC(hτ)
TP̄qτxC(hτ) (80)

s.t. xC(0) = x0, xC and uC satisfy (1)

uC(t) =uC(tk), t ∈ [tk, tk+1), uC

(
t−0
)
= 0nu

uC(tk) =

{
uk if νik = 1,
uC

(
t−k
)
, otherwise

, k ∈ {0, . . . , h− 1}

(81)

where uC(t
−
0 ) := û0

Ui :=
{
(u0, . . . , uh−1) ∈ R|uk = ∅ if νik = 0

}
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and R := (Rnu ∪ {∅})× . . .× (Rnu ∪ {∅}). Note that there
are m free control inputs in Ui for the optimization (80) and
recall that [see (25)]

ξT0P1ξ0 = xT
0 P̄qτx0. (82)

Let Ω be the subset of i ∈ M such that νi differs from ν1, de-
scribed by (21), only at the first schedule, and consequently also
for another schedule, e.g., if m = 2, q = 2, ν1 = (1, 0, 1, 0)
and the remaining vector of schedules corresponding to Ω are
(0, 1, 1, 0), and (0, 0, 1, 1). For a given arbitrary non-zero
x0 ∈ R

n let

ξi0 :=

[
x0

u∗,i

]
(83)

where

u∗,i = argmin
u0∈Rnu

[
xT
0 uT

0

]
Pi

[
x0

u0

]
. (84)

Then, if i ∈ Ω, clearly

ξiT0 Piξ
i
0 ≤ ξiT0 P1ξ

i
0 (85)

since choosing (83), (84) is equivalent to solving problem (80)
for optimization variables (u0, . . . , uh−1) ∈ Ūi in a new set
containing m+ 1 free control inputs

Ūi :=
{
(u0, . . . , uh−1) ∈ R|uk = ∅ if k �= 0 and νik = 0

}
i.e., u0 is also a free variable in the equivalent optimization
problem. To prove that (85) cannot hold with equality for every
x0 ∈ R

nx and every i ∈ M, and therefore (79) holds for some
i ∈ M and ξ̄ = ξi0, we argue by contradiction. If (85) would
hold with equality for every i ∈ Ω, and a fixed arbitrary x0 ∈
R

nx , then by uniqueness of the optimal solution to the problem
(80) (cf. [43]), and Assumption 1 this would mean that adding
extra control input degrees of freedom (implicit in the set Ūi)
to the optimization problem (80) when i = 1 would not change
the optimal control input solution. However, since the cost in
the problem (80) is a quadratic function of u0, . . . , uh−1 which
must be convex due to uniqueness of the optimal solution, this
would actually imply that having all the control input degrees
of freedom (u0, . . . , uh−1) ∈ R would not change the optimal
control input solution. Thus, ξiT0 P1ξ

i
0 would be equal to [using

(82) and making i = 1 in (80)]

xT
0 P̄qτx0 = e−αChτxC(hτ)

TP̄qτxC(hτ)

+ min
{u0,...,uh−1}∈Rnu×...×Rnu

hτ∫
0

e−αCtgC (xC(t), uC(t)) dt.

(86)

We can use (86) to obtain an expression for
xC(kqτ)

TP̄qτxC(kqτ), k ∈ N and recursively replace it

in the right-hand side of (86). By doing this and taking the limit
of the recursion we obtain

xT
0 P̄qτx0 = min

{uk∈Rnu ,k∈N}

∞∫
0

e−αCtgC (xC(t), uC(t)) dt.

(87)

But the right-hand side of (87) equals xT
0 P̄τx0 and since x0 is

arbitrary this would mean P̄τ = P̄qτ which is a contradiction
due to (71). �

We state next the second of the two key lemmas. Let
Bε(x) := {y ∈ R

n|‖y − x‖ < ε} for ε > 0 denote the ball of
radius ε around x ∈ R

n.
Lemma 13: Suppose that Assumptions 1 and 5 hold and

consider Algorithm 3 with m transmissions along a period h.
Then, the following hold.

(i) If m ≥ 2, then for every ζ ∈ R
n and for every open set

A ⊆ R
n

Pκ(ζ, A) > 0 (88)

for every κ ≥ 1. Moreover, if m = 1, then (88) holds for
every κ ≥ 2.

(ii) For every ζ ∈ R
n and every A ∈ B(Rn), there exist a

continuous non-negative function T (., A) : Rn → R≥0

and a constant ε > 0 such that for every y ∈ Bε(ζ)

P1(y,A) ≥ T (y,A) (89)

and

T (y,Rn) > 0. (90)

�
Proof: We start by noticing that Assumption 5(i) implies

that Φ̄ω
τ > 0 for every τ ∈ R>0, which in turn implies that

Prob[xk+1 ∈ B|ξk = y] > 0 (91)

for every y ∈ R
n, every open set B ⊆ R

nx , and every k ∈ N≥0,

where ξk = [xT
k ûT

k ]
T

. Suppose that m ≥ 2 and fix a given
j ≥ 1. Notice that k̄ι(ξ(j−1)h), defined in (68), is the largest time
step k smaller than jh for which σk = 1 and thus belongs to the
interval {(j − 1)h+ 1, . . . , jh− 1} (since m ≥ 2 there are at
least two transmissions between the time steps (j − 1)h and
jh− 1). Due to (91) we have Prob[x

k̄
ι(ξ(j−1)h) ∈ B|ξ(j−1)h =

y] > 0 for every y ∈ R
n and every open set B ⊆ R

nx . Tak-
ing into account (28), and the fact that under Assumption
5(ii) the gain matrix K

k̄
ι(ξ(j−1)h)−(j−1)h,ι(ξ(j−1)h)

is full rank

(cf. Lemma 11(ii)) this implies

Prob
[
ū
k̄
ι(ξ(j−1)h) ∈ C|ξ(j−1)h = y

]
> 0 (92)

for every y ∈ R
n and every open set C ⊆ R

nu , which follows
directly from (5) and (28). Moreover (91) implies that

Prob
[
xjh ∈ D|ξ(j−1)h = y

]
> 0 (93)

for every y ∈ R
n and every open set D ⊆ R

nu . Noticing
that ξ̄j = ξjh = [xT

jh uT

k̄
ι(ξ(j−1)h) ]

T
, (92) and (93) imply that

Prob[ξjh ∈ D × C|ξ(j−1)h = y] > 0 which implies (88). A
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similar reasoning can be used for the case m = 1 and j ≥ 2
using the fact that there are at least two transmissions between
the time steps (j − 2)h and jh− 1.

To prove (ii) we start by defining the set

S := {ξ ∈ R
n|∃i,j∈M,i�=j : ξ

TPiξ + ci = ξTPjξ + cj}.

The complement S, denoted by Sc, is an open set. From the
linearity of the Markov chain (35) (and in particular linearity
with respect to initial condition) and the fact that the noise
wk, k ∈ N0, is Gaussian (results from the discretization of a
Wiener process) it is clear that for every y ∈ Sc, P1(z,A) is a
continuous function of z for z in a neighborhood of y which
implies (89) and (90) (make T (z,A) = P1(z,A) for every
z ∈ R

n and for every A ⊆ R
n). In fact, from (35) we conclude

that for z ∈ Sc in a small neighborhood of y, P1(z,A) =
Prob(Φiz +Ψiw̄0 ∈ A) where w̄0 is Gaussian and i = ι(y) =
ι(z) (note that ι(y) may be different from ι(z) if y ∈ S resulting
in a discontinuity). However, if y ∈ S more than one option i ∈
My , My := {i ∈ M|ξTPiξ + ci = ξTPjξ + cj , forj = ι(y)}
can be chosen in an arbitrarily small neighborhood of y. Still in
this case (89) and (90) are satisfied for

T (z,A) = min
{
P̃1
κ(z,A)|κ ∈ My

}

for z in a small neighborhood of y where P̃1
κ(y,A) :=

Prob[ξ̄1 ∈ A|ξ̄0 = y], κ ∈ M, when ι(y) = ι(ξ̄0) is replaced
by κ in (35), i.e., ξ̄1 = Φκξ̄0 +Ψκw̄0. In fact, each P̃1

κ(., A) is a
continuous function of y = ξ̄0 and the minimum of continuous
functions is continuous. Moreover, the fact that P̃1

κ(y,R
n) > 0

for every y ∈ R
n and κ ∈ M implies (90). �

C. Proof of Theorems 9, 7, and 10

With the two key lemmas established in Section VIII-B
available, we are ready to prove Theorem 9, which uses several
results for Markov chains given in [49].

Proof. (of Theorem 9): First, we notice that Lemma 13(i)
implies that (35) is an open set irreducible Markov chain (cf.
[49, Sec. 6.1.2]) and also that it is an aperiodic chain (cf.
[49, Sec. 5.4]). Second, we notice that Lemma 13(ii) implies
that (35) is a so-called T-chain (cf. [49, Ch. 6]), which follows
from [49, Props. 6.2.3,6.2.4]). Then, it suffices to find a positive
coercive function W ({ξ|W (ξ) ≤ r} are precompact for each
r > 0, [49, Sec. 9.4]) such that, for (35)

E
[
W (ξ̄�+1)|ξ̄�

]
−W (ξ̄�) ≤ −1, ∀ξ̄� ∈ R

n \ C (94)

for some compact neighborhood of the origin C and such that
E[W (ξ̄�+1)|ξ̄�]−W (ξ̄�) is bounded if ξ̄� ∈ C. In fact, then we
conclude that the chain (35) is a so-called Harris recurrent chain
[49, Th. 9.2.2(ii) and Th. 9.4.1] which implies that there exists
a unique invariant measure [49, Th. 10.0.1]. The fact that such
invariant measure has finite total mass (in which case (35) is a
so-called positive Harris chain) and hence can be made a prob-
ability distribution follows also from (94) (see [49, Th. 11.0.1])
and ergodicity follows then from the aperiodic ergodic theorem
[49, Th. 13.0.1].

We use (60) to establish (94). However we cannot make W =
V in (94) since V in (60) is not precompact. Hence we add a

regularization term considering a coercive function

W (ξ̄) = x̄TP̄qτ x̄+ εûTû

for ξ̄ = [x̄T, ūT]
T

and show that such W satisfies (94) for
sufficiently small ε. To prove this we need the fact, established
below, that

E
[
ūT
�+1ū�+1|ξ̄�

]
≤ ax̄T

� x̄� + d (95)

for every ξ̄� = [x̄T
� ūT

� ]
T ∈ R

n for given positive constants a
and d. Then, from (60), (63), (95) we conclude that

E
[
W (ξ̄�+1)|ξ̄�

]
−W (ξ̄�)

≤ −a1x̄
T
� x̄� + c1 + εE

[
ūT
�+1ū�+1|ξ̄�

]
− εūT

� ū�

≤ (−a1 + εa)x̄T
� x̄� − εūT

� ū� + εd+ c1.

Picking ε = a1/2a and C equal to{
ξ̄ = [x̄T ūT]

T ∈ R
n|a1

2
x̄Tx̄+

a1
2a

ūTū ≤ a1d

2a
+ c1 + 2

}

we conclude (94). It is also clear that E[W (ξ̄�+1)|ξ̄�]−W (ξ̄�)
is bounded if ξ̄� ∈ C.

It remains to prove (95). To this effect, we notice that

ū�+1 =
[
Kk̄ι(ξ̄�),ι(ξ̄�)

0nu×nu

] (
Φι(ξ̄�)ξ̄� +Ψι(ξ̄�)w̄�

)
(96)

where Kk̄i,i is described in (78) and Φj , Ψj , j ∈ M can be
derived in a similar way to analogous matrices in (35). In
particular Φj = Π0

s=k̄j−1
Θs,j from which conclude that (96) is

not a function of ū� if νi0 = 1 for i = ι(ξ̄�), due to the structure
of Θ0,i in (36). This is the case if ξ̄� lies in the set{

ξ̄ = [x̄T ūT]
T ∈ R

n|ūTū ≥ γx̄Tx̄+ d
}

(97)

for given sufficiently large positive constants γ and d. In fact,
one can see that the matrices resulting from (22) take the form

Pi =

⎧⎪⎪⎨
⎪⎪⎩

[
Xi 0
0 0

]
, if νi0 = 1[

Yi ∗
∗ Zi

]
, if νi0 = 0

for positive-definite matrices Xi, Yi, Zi with dimension nx ×
nx, nx × nx, and nu × nu, respectively. Positive-definiteness
of these matrices can be established using Assumption 1. Then,
if ξ̄� belongs to the set (97) for sufficiently large γ and d, then
it is clear that (27) will correspond to an option i = ι(ξ̄�) such
that νi0 = 1. Then (95) holds for ξ̄� in the set (97) since then
(96) is not a function of ū�; for ξ̄� in the complement of (97),
the norm of ū� is bounded by the norm of x̄� plus a constant,
which allows to obtain (95) taking into account (96). �

We present next the proofs of Theorems 7, 10 which build
upon the proofs of Theorems 4 and 9.

Proof. (of Theorem 7 and 10): To prove (33) consider the
ξ ∈ R

n and i ∈ M characterized in (69) of Lemma 11, under
Assumptions 5(i) and 5(ii), and define the following:

C̄ :=
{
y ∈ R

n|yTPiy + ci − (yTP1y + c1) < − c̄

2

}
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where c̄ := ξTP1ξ + c1 − ξTPiξ − ci > 0. Note that C̄ is an
open set and Lemma 13(i) implies that Pr[z, C̄] > 0 for every
z ∈ R

n and r ≥ 2. If Assumptions 5(i) and 5(ii) hold then (54)
holds with strict inequality for r ≥ 2 since for a fixed initial
condition ξ̄0 ∈ R

n

E
[
J̄d
ζ0(ξ̄r)− J̄d

ζ1(ξ̄r)
]

= E

[
ξ̄Tr P1ξ̄r + c1 −

(
ξ̄Tr Pι(ξ̄r)ξ̄r + cι(ξ̄r)

)]
≥ c̄

2
Pr[ξ̄0, C̄] > 0.

We can then replace the inequalities in (55) and (56) for r ≥ 2
by strict inequalities and obtain (33).

To prove (39) we note that from (94) and the fact that f(ξ) ≤
V (ξ) for every ξ ∈ R

n we can conclude that there exists a
positive constant α such that

E
[
W (ξ̄�+1)|ξ̄�

]
−W (ξ̄�) ≤ −αf(ξ̄�), ∀ξ̄� ∈ R

n − C (98)

which implies that (35) is f− ergodic ([49, Ch. 14]). Thus, from
[49, Th. 14.0.1], we conclude that

lim
�→∞

E
[
f(ξ̄�)

]
= lim

�→∞

∫
Rn

f(ξ)P�(ξ̄0, dξ) =

∫
Rn

f(ξ)χinv(dξ)

(99)
and

lim
L→∞

E

[
1

L

L−1∑
l=0

f(ξ̄�)

]
= lim

L→∞

1

L

L−1∑
l=0

E
[
f(ξ̄�)

]

=

∫
Rn

f(w)χinv(dw). (100)

Then (39) follows from (61). Moreover, due to Lemma 13(i)
we have that χinv(A) > 0, for every open set A. This fact that
can be proved from the characterization of the unique invariant
distribution given in [49, Th. 10.0.1], whose interpretation is the
following (c.f., [49, p. 246]): for a fixed measurable set B in R

n

(which we can assume to be open), with χinv(B) > 0, χinv(A)
is proportional to the amount of time spent in A between
visits to B, provided that the chain starts in B with a special
distribution. Then, noticing that Lemma 13(i) assures that any
open set is reached with positive probability from any initial
state we conclude that χinv(A) > 0 for every open set A. Then
ga > 0 since

∫
Rn f(w)χinv(dw) ≥ χinv(C̄)(c/2) > 0, which

implies (34). �
Remark 14: The fact that (35) is a positive Harris recurrent

Markov chain implies that the average costs do not depend on
the initial condition (cf. [49, Ch.13]). �

Remark 15: Note that Assumption 5(ii) simplified signifi-
cantly the proof of Lemma 13 by guaranteeing that the gains
Kk̄i,i, described by (23) and (68), have full rank. Using this
fact, we obtained a simple argument for (88) which enabled the
proofs of Theorem 7, 9 and 10. Although Assumption 5(ii) is
mild in the sense that it holds except in possible pathological
cases, we make the following two remarks. First, since we
only need to take into account i ∈ M such that there exists
ξ ∈ R

n for which ι(ξ) = i, i.e., scheduling decisions that can
be chosen by Algorithm 3 in (27), then K̄k̄i,i may only need

to be full rank for a subset of i ∈ M. Thus it may be the case
that one does not need to test (32) for every value s ∈ {kτ |k ∈
{1, . . . , (h−m+ 1)}}; Second, and most importantly, even if
Assumption 5(ii) does not hold we may still be able to prove
(88). Indeed under Assumption 5, which guarantee that the
noise always influences every state xk ∈ R

n after a single step
k, we may still be able to prove that the noise can influence ûk

even if Assumption 5(ii) does not hold. �
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