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Abstract 

The role concept provides a useful tool to de-

sign and understand complex multi-agent sys-

tems, which allows agents with a similar role to 

share similar behaviors. However, existing role-

based methods use prior domain knowledge and 

predefine role structures and behaviors. In con-

trast, multi-agent reinforcement learning (MARL) 

provides flexibility and adaptability, but less ef-

ficiency in complex tasks. In this paper, we 

synergize these two paradigms and propose a 

role-oriented MARL framework (ROMA). In this 

framework, roles are emergent, and agents with 

similar roles tend to share their learning and to 

be specialized on certain sub-tasks. To this end, 

we construct a stochastic role embedding space 

by introducing two novel regularizers and con-

ditioning individual policies on roles. Experi-

ments show that our method can learn special-

ized, dynamic, and identifiable roles, which help 

our method push forward the state of the art on 

the StarCraft II micromanagement benchmark. 

Demonstrative videos are available at https: 
//sites.google.com/view/romarl/. 

1. Introduction 

Many real-world systems can be modeled as multi-agent sys-

tems (MAS), such as autonomous vehicle teams (Cao et al., 

2012), intelligent warehouse systems (Nowé et al., 2012), 

and sensor networks (Zhang & Lesser, 2011). Coopera-

tive multi-agent reinforcement learning (MARL) provides a 

promising approach to developing these systems, allowing 

agents to deal with uncertainty and adapt to the dynamics 

of an environment. In recent years, cooperative MARL has 

achieved prominent progress, and many deep methods have 

been proposed (Foerster et al., 2018; Sunehag et al., 2018; 
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Figure 1. Visualization of our learned role representations at a 

timestep. The blue agent has the maximum health, while the red 

ones are dead. The corresponding policy is that agent 6 moves 

towards enemies to take on more firepower, so that more seriously 

injured agents are protected. Roles can change adaptively and will 

aggregate according to responsibilities that are compatible with 

individual characteristics, such as location, agent type, health, etc. 

Rashid et al., 2018; Son et al., 2019; Vinyals et al., 2019; 

Wang et al., 2020b; Baker et al., 2020). 

In order to achieve scalability, these deep MARL meth-

ods adopt a simple mechanism that all agents share and 

learn a decentralized value or policy network. However, 

such simple sharing is often not effective for many complex 

multi-agent tasks. For example, in Adam Smith’s Pin Fac-

tory, workers must complete up to eighteen different tasks 

to create one pin (Smith, 1937). In this case, it is a heavy 

burden for a single shared policy to represent and learn all 

required skills. On the other hand, it is also unnecessary 

for each agent to use a distinct policy network, which leads 

to high learning complexity because some agents often per-

form similar sub-tasks from time to time. The question 

is how we can give full play to agents’ specialization and 

dynamic sharing for improving learning efficiency. 

A natural concept that comes to mind is the role. A role 

is a comprehensive pattern of behavior, often specialized 

in some tasks. Agents with similar roles will show similar 

behaviors, and thus can share their experiences to improve 

performance. The role theory has been widely studied in 

economics, sociology, and organization theory. Researchers 

have also introduced the concept of role into MAS (Becht 

et al., 1999; Stone & Veloso, 1999; Depke et al., 2001; Fer-

ber et al., 2003; Odell et al., 2004; Bonjean et al., 2014; 

Lhaksmana et al., 2018). In these role-based frameworks, 

the complexity of agent design is reduced via task decom-

position by defining roles associated with responsibilities 

https://sites.google.com/view/romarl/
https://sites.google.com/view/romarl/
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made up of a set of sub-tasks, so that the policy search space 

is effectively decomposed (Zhu & Zhou, 2008). However, 

these works exploit prior domain knowledge to decompose 

tasks and predefine the responsibilities of each role, which 

prevents role-based MAS from being dynamic and adaptive 

to uncertain environments. 

To leverage the benefits of both role-based and learn-

ing methods, in this paper, we propose a role-oriented 

multi-agent reinforcement learning framework (ROMA). 

This framework implicitly introduces the role concept into 

MARL, which serves as an intermediary to enable agents 

with similar responsibilities to share their learning. We 

achieve this by ensuring that agents with similar roles 

have both similar policies and responsibilities. To estab-

lish the connection between roles and decentralized poli-

cies, ROMA conditions agents’ policies on individual roles, 

which are stochastic latent variables determined by agents’ 

local observations. To associate roles with responsibilities, 

we introduce two regularizers to enable roles to be identifi-

able by behaviors and specialized in certain sub-tasks. We 

show how well-formed role representations can be learned 

via optimizing tractable variational estimations of the pro-

posed regularizers. In this way, our method synergizes role-

based and learning methods while avoiding their individual 

shortcomings – we provide a flexible and general-purpose 

mechanism that promotes the emergence and specialization 

of roles, which in turn provides an adaptive learning sharing 

mechanism for efficient multi-agent policy learning. 

We test our method on StarCraft II1 micromanagement en-

vironments (Vinyals et al., 2017; Samvelyan et al., 2019). 

Results show that our method significantly pushes forward 

the state of the art of MARL algorithms, by virtue of the 

adaptive policy sharing among agents with similar roles. 

Visualization of the role representations in both homoge-

neous and heterogeneous agent teams demonstrates that the 

learned roles can adapt automatically in dynamic environ-

ments, and that agents with similar responsibilities have 

similar roles. In addition, the emergence and evolution pro-

cess of roles is shown, highlighting the connection between 

role-driven sub-task specialization and improvement of team 

efficiency in our framework. These results provide a new 

perspective in understanding and promoting the emergence 

of cooperation among agents. 

2. Background 

In our work, we consider a fully cooperative multi-agent 

task that can be modelled by a Dec-POMDP (Oliehoek et al., 

2016) G=(I, S, A, P, R, Ω, O, n, γ), where A is the finite 

action set, I is the finite set of n agents, γ ∈ [0, 1) is the 

discount factor, and s ∈ S is the true state of the environ-

1StarCraft II are trademarks of Blizzard EntertainmentTM. 

ment. We consider partially observable settings and agent 

i only has access to an observation oi ∈ Ω drawn accord-

ing to the observation function O(s, i). Each agent has a 

history τi ∈ T ≡ (Ω × A)∗. At each timestep, each agent 

i selects an action ai ∈ A, forming a joint action a ∈ An , 

leading to next state s' according to the transition function 

P (s'|s, a) and a shared reward r = R(s, a) for each agent. 

The joint policy π induces a joint action-value function: 
u∞

Qπ [ γtrt| s0 =s, a0 =a, π].tot(s,a)=Es0:∞ ,a0:∞ t=0 

To effectively learn policies for agents, the paradigm of cen-

tralized training with decentralized execution (CTDE) (Fo-

erster et al., 2016; 2018; Wang et al., 2020a) has recently 

attracted attention from deep MARL to deal with non-

stationarity while learning decentralized policies. One of 

the promising ways to exploit the CTDE paradigm is value 

function decomposition (Sunehag et al., 2018; Rashid et al., 

2018; Son et al., 2019; Wang et al., 2020b), which learns 

a decentralized utility function for each agent and uses a 

mixing network to combine these local utilities into a global 

action value. To achieve learning scalability, existing CTDE 

methods typically learn a shared local value or policy net-

work for agents. However, this simple sharing mechanism 

is often not sufficient for learning complex tasks, where di-

verse responsibilities or skills are required to achieve goals. 

In this paper, we develop a novel role-based MARL frame-

work to address this challenge. This framework achieves 

efficient shared learning while allowing agents to learn suf-

ficiently diverse skills. 

3. Method 

In this section, we will present a novel role-oriented MARL 

framework (ROMA) that introduces the role concept into 

MARL and enables adaptive shared learning among agents. 

ROMA adopts the CTDE paradigm. As shown in Fig. 2, 

it learns local Q-value functions for agents, which are fed 

into a mixing network to compute a global TD loss for cen-

tralized training. During the execution, the mixing network 

will be removed, and each agent will act based on its lo-

cal policy derived from its value function. Agents’ value 

functions or policies are dependent on their roles, each of 

which is responsible for performing similar automatically 

identified sub-tasks. To enable efficient and effective shared 

learning among agents with similar behaviors, ROMA will 

automatically learn roles that are: 

i) Dynamic: An agent’s role can automatically adapt to the 

dynamics of the environment; 

ii) Identifiable: The role of an agent contains enough infor-

mation about its behaviors; 

iii) Specialized: Agents with similar roles are expected to 

specialize in similar sub-tasks. 
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Formally, each agent i has a local utility function (or an

individual policy), whose parameters θi are conditioned on

its role ρi. To learn roles with desired properties, we encode

roles in a stochastic embedding space, and the role of agent

i, ρi, is drawn from a multivariate Gaussian distribution

N (µρi
,σρi

). To enable the dynamic property, ROMA con-

ditions an agent’s role on its local observations, and uses

a trainable neural network f to learn the parameters of the

Gaussian distribution of the role:

(µρi
,σρi

) = f(oi; θρ),

ρi ∼ N (µρi
,σρi

),
(1)

where θρ are parameters of f . The sampled role ρi is then

fed into a hyper-network g(ρi; θh) parameterized by θh to

generate the parameters for the individual policy, θi. We call

f the role encoder and g the role decoder. In the next two

sub-sections, we will describe two regularizers for learning

identifiable and specialized roles.

3.1. Identifiable Roles

Introducing latent role embedding and conditioning indi-

vidual policies on this embedding does not automatically

generate roles with desired properties. Intuitively, condi-

tioning roles on local observations enables roles to be re-

sponsive to the changes in the environment. This design

enables ROMA to be adaptive to dynamic environments

but may cause roles to change quickly, making learning

unstable. For addressing this problem, we expect roles to

be temporally stable. To this end, we propose to learn roles

that are identifiable by agents’ long term behaviors, which

can be achieved by maximizing I(τi; ρi|oi), the conditional

mutual information between the individual trajectory and

the role given the current observation.

However, estimating and maximizing mutual information

is often intractable. Drawing inspiration from the literature

of variational inference (Wainwright et al., 2008; Alemi

et al., 2017), we introduce a variational posterior estimator

to derive a tractable lower bound for the mutual information

objective (the proof is deferred to Appendix A.1):

I(ρti; τ
t−1
i |oti) ≥ Eρt

i
,τ

t−1

i
,ot

i

[

log
qξ(ρ

t
i|τ

t−1
i , oti)

p(ρti|o
t
i)

]

, (2)

where τ t−1
i = (o0i , a

0
i , · · · , o

t−1
i , at−1

i ), qξ is the variational

estimator parameterised with ξ. For qξ , we use a GRU (Cho

et al., 2014) to encode an agent’s history of observations

and actions, and call it the trajectory encoder. The lower

bound in Eq. 2 can be further rewritten as a loss function to

be minimized:

LI(θρ, ξ) = E(τt-1

i
,ot

i
)∼D

[

DKL[p(ρ
t
i|o

t
i)‖qξ(ρ

t
i|τ

t-1
i , oti)]

]

,

(3)
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Figure 2. Schematics of our approach. The role encoder generates

a role embedding distribution, from which a role is sampled and

serves as the input to the role decoder. The role decoder generates

the parameters of the local utility network. Local utilities are fed

into a mixing network to get an estimation of the global action

value. We propose two learning objectives to learn specialized and

identifiable roles. The framework can be trained in an end-to-end

manner.

where D is a replay buffer, and DKL[·‖·] is the KL diver-

gence operator. The detailed derivation can be found in

Appendix A.1.

3.2. Specialized Roles

The formulation so far does not promote sub-task specializa-

tion, which is the critical component to share learning and

improve efficiency in multi-agent systems. Minimizing LI

enables roles to contain enough information about long-term

behaviors but does not explicitly ensure agents with similar

behaviors to have similar role embeddings.

For learning specialized roles, we define another role-

learning regularizer. Intuitively, to encourage sub-task spe-

cialization, for any two agents, we expect that either they

have similar roles or they have quite different behaviors.

However, it is usually unclear which agents will have sim-

ilar roles during the process of role emergence, and the

similarity between behaviors is not straightforward to mea-

sure.

Since roles have enough information about the behaviors

(achieved by minimizing LI ), to encourage two agents i

and j to have similar roles, we can maximize I(ρi; τj), the

mutual information between the role of agent i and the tra-

jectory of agent j. However, we do not know which agents

will have similar roles, and directly optimizing this objec-

tive for all pairs of agents will result in all agents having

the same role, and, correspondingly, the same policy, which
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Figure 3. Dynamic role adaptation during an episode (means of the role distributions, µρi , are shown, without using any dimensionality 

reduction techniques). The role encoder learns to focus on different parts of observations according to the automatically discovered 

demands of the task. The role-induced strategy helps (a) quickly form the offensive arc when t=1; (b) protect injured agents when t=8; (c) 

protect dying agents and alternate fire when t = 19. 

will limit system performance. To settle this issue, we in-

troduce a dissimilarity model dφ : T × T → R, a trainable 

neural network taking two trajectories as input, and seek to 

maximize I(ρi; τj ) + dφ(τi, τj ) while minimizing the num-

ber of non-zero elements in the matrix Dφ = (dij ). Here, 

dij = dφ(τi, τj ) is the estimated dissimilarity between tra-

jectories of agent i and j. Such formulation makes sure that 

dissimilarity d is high only when mutual information I is 

low, so that the set of learned roles is compact but diverse, 

which help solve the given task efficiently. Formally, the 

following learning objective encourages sub-task specializa-

tion: 

minimize Dφ
t 

2,0 (4)
θρ,ξ,φ  

t subject to I(ρt |oj ) + dφ(τ
t−1  i; τ 

t−1 , τ t−1) > U, ∀i = j, j i j 

where U controls the compactness of the role representation. 

In practice, we separately carry out min-max normalization 

on I and d to scale their values to [0, 1] and set U to 1. 

Relaxing the matrix norm · 2,0 with the Frobenius norm, 

we can get the optimization objective for minimizing: 

 

tDφ
t 

F − min{I(ρti; τj
t−1|oj ) + dφ(τi

t−1, τj
t−1), U}, 

i i=j 

(5) 

However, as estimating and optimizing the mutual informa-

tion term are intractable, we use the variational posterior 

estimator introduced in Sec. 3.1 to construct an upper bound, 

serving as the second regularizer of ROMA: 

DtLD(θρ, φ, ξ) = E(τ t−1 ,ot)∼D,ρt∼p(ρt|ot) φ F (6) 

 

t− min{qξ(ρ
t
i|τ 

t−1 , o j ) + dφ(τ
t−1, τ t−1), U}j i j 

i i=j 

where D is the replay buffer, τ t−1 is the joint trajectory, 

o
t is the joint observation, and ρt = (ρt 1, ρ2

t , · · · , ρt ). An

detailed derivation can be found in Appendix A.2. 

3.3. Overall Optimization Objective 

We have introduced optimization objectives for learning 

roles to be identifiable and and specialized. Apart from 

these regularizers, all the parameters in the framework are 

updated by gradients induced by the standard TD loss of 

reinforcement learning. As shown in Fig. 2, to compute the 

global TD loss, individual utilities are fed into a mixing net-

work whose output is the estimation of global action-value 

Qtot. In this paper, our ROMA implementation uses the 

mixing network introduced by QMIX (Rashid et al., 2018) 

(see Appendix D) for its monotonic approximation, but it 

can be easily replaced by other mixing methods. The param-

eters of the mixing network are conditioned on the global 

state s and are generated by a hyper-net parameterized by 

θm. Therefore, the final learning objective of ROMA is: 

L(θ) = LTD(θ) + λI LI (θρ, ξ) + λDLD(θρ, ξ, φ), (7) 

where θ = (θρ, ξ, φ, θh, θm), λI and λD are scaling factors, 
' 'and LTD(θ) = [r+γ maxal Qtot(s , a ; θ−)-Qtot(s, a; θ)]2 

(θ− are the parameters of a periodically updated target net-

work). In our centralized training with decentralized execu-

tion framework, only the role encoder, the role decoder, and 

the individual utility networks are used when execution. 
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Figure 4. Comparison of our method against baseline algorithms. Results for more maps can be found in Appendix C.1. 

4. Related Works 

The emergence of role has been documented in many natural 

systems, such as bees (Jeanson et al., 2005), ants (Gordon, 

1996), and humans (Butler, 2012). In these systems, the 

role is closely related to the division of labor and is crucial 

to the improvement of labor efficiency. Many multi-agent 

systems are inspired by these natural systems. They decom-

pose the task, make agents with the same role specialize 

in certain sub-tasks, and thus reduce the design complex-

ity (Wooldridge et al., 2000; Omicini, 2000; Padgham & 

Winikoff, 2002; Pav´ omez-Sanz, 2003; Cossentinoon & G´

et al., 2005; Zhu & Zhou, 2008; Spanoudakis & Moraitis, 

2010; DeLoach & Garcia-Ojeda, 2010; Bonjean et al., 2014). 

These methodologies are designed for tasks with a clear 

structure, such as software engineering (Bresciani et al., 

2004). Therefore, they tend to use predefined roles and asso-

ciated responsibilities (Lhaksmana et al., 2018). In contrast, 

we focus on how to implicitly introduce the concept of roles 

into general multi-agent sequential decision making under 

dynamic and uncertain environments. 

Deep multi-agent reinforcement learning has witnessed vig-

orous progress in recent years. COMA (Foerster et al., 

2018), MADDPG (Lowe et al., 2017), PR2 (Wen et al., 

2019), and MAAC (Iqbal & Sha, 2019) explore multi-agent 

policy gradients. Another line of research focuses on value-

based multi-agent RL, and value-function factorization is 

the most popular method. VDN (Sunehag et al., 2018), 

QMIX (Rashid et al., 2018), and QTRAN (Son et al., 2019) 

have progressively enlarged the family of functions that can 

be represented by the mixing network. NDQ (Wang et al., 

2020b) proposes nearly decomposable value functions to 

address the miscoordination problem in learning fully de-

centralized value functions. Emergence is a topic with in-

creasing interest in deep MARL. Works on the emergence of 

communication (Foerster et al., 2016; Lazaridou et al., 2017; 

Das et al., 2017; Mordatch & Abbeel, 2018; Wang et al., 

2020b; Kang et al., 2020), the emergence of fairness (Jiang 

& Lu, 2019), and the emergence of tool usage (Baker et al., 

2020) provide a deep learning perspective in understanding 

both natural and artificial multi-agent systems. 

To learn diverse and identifiable roles, we propose to opti-

mize the mutual information between individual roles and 

trajectories. A recent work studying multi-agent exploration, 

MAVEN (Mahajan et al., 2019), uses a similar objective. 

Different from ROMA, MAVEN aims at committed explo-

ration. This difference in high-level purpose leads to many 

technical distinctions. First, MAVEN optimizes the mutual 

information between the joint trajectory and a latent vari-

able conditioned on a Gaussian or uniform random variable 

to encourage diverse joint trajectory. Second, apart from 

the mutual information objective, we propose a novel reg-

ularizer to learn specialized roles, while MAVEN adopts a 

hierarchical structure and encourages the latent variable to 

help get more environmental rewards. We empirically com-

pare ROMA with MAVEN in Sec. 5. More related works 

will be discussed in Appendix D. 

5. Experiments 

Our experiments aim to answer the following questions: 

(1) Whether the learned roles can automatically adapt in 

dynamic environments? (Sec. 5.1.) (2) Can our method pro-

mote sub-task specialization? That is, agents with similar 

responsibilities have similar role embedding representations, 

while agents with different responsibilities have role embed-

ding representations far from each other. (Sec. 5.1, 5.3.) 

(3) Can such sub-task specialization improve the perfor-

mance of multi-agent reinforcement learning algorithms? 

(Sec. 5.2.) (4) How do roles evolve during training, and how 

do they influence team performance? (Sec. 5.4.) (5) Can 

the dissimilarity model dφ learn to measure the dissimilarity 
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Figure 5. Ablation studies regarding the two role-learning losses. 
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Figure 6. Comparison of our method against ablations. 

between agents’ trajectories? (Sec. 5.4.) Videos2 of our 

experiments and the code3 are available online. 

Baselines We compare our methods with various baselines 

shown in Table 1. In particular, we carry out the following 

ablation studies: (i) We separately omit each (or both) of 

the two role-learning objectives (LI and LD) while leaving 

the other parts of ROMA unchanged. These three abla-

tions are designed to highlight the contribution of each of 

the proposed regularizers. (ii) QMIX-NPS. The same as 

QMIX (Rashid et al., 2018), but agents do not share param-

eters. Our method achieves adaptive learning sharing, and 

comparison against QMIX (parameters are shared among 

agents) and QMIX-NPS tests whether this flexibility can 

improve learning efficiency. (iii) QMIX-LAR, QMIX with 

a similar number of parameters with our framework, which 

can test whether the superiority of our method comes from 

the increase in the number of parameters. 

We carry out a grid search over the loss coefficients λI and 

λD, and fix them at 10−4 and 10−2, respectively, across all 

the experiments. The dimensionality of latent role space is 

set to 3, so we did not use any dimensionality reduction tech-

niques when visualizing the role embedding representations. 

Other hyperparameters are also fixed in our experiments, 

which are listed in Appendix B.1. For ROMA, We use 

elementary network structures (fully-connected networks 

or GRU) for the role encoder, role decoder, and trajectory 

encoder. The details of the architecture of our method and 

baselines can be found in Appendix B. 

2https://sites.google.com/view/romarl/ 
3https://github.com/TonghanWang/ROMA 

Table 1. Baseline algorithms. 

Alg. Description 

Related 

Works 

IQL 

COMA 

QMIX 

QTRAN 

MAVEN 

Independent Q-learning 

Foerster et al. (2018) 

Rashid et al. (2018) 

Son et al. (2019) 

Mahajan et al. (2019) 

Abla-

tions 

LT D 

LT D + LI 

LT D + LD 

QMIX-NPS 

QMIX-LAR 

ROMA without LI and LD 

ROMA without LD 

ROMA without LI 

QMIX without parameter 

sharing among agents 

QMIX with similar number 

of parameters with ROMA 

5.1. Dynamic Roles 

Answering the first and second questions, we show snap-

shots in an episode played by ROMA agents on the StarCraft 

II micromanagement benchmark (SMAC) map 10m vs 11m, 

where 10 Marines face 11 enemy Marines. As shown in 

Fig. 3 (the role representations at t=27 are presented in 

Fig. 1), although observations contain much information, 

such as positions, health points, shield points, states of ally 

and enemy units, etc., the role encoder learns to focus on dif-

ferent parts of the observations according to the dynamically 

changed situations. At the beginning (t=1), agents need to 

form a concave arc to maximize the number of agents whose 

shoot range covers the front line of enemies. ROMA learns 

to allocate roles according to agents’ relative positions so 

that agents can quickly form the offensive formation using 

https://sites.google.com/view/romarl/
https://github.com/TonghanWang/ROMA
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Figure 7. Learned roles for 6s4z vs 10b30z, 27m vs 30m, and 6z4b (means of the role distributions, µρi , are shown, without using any 

dimensionality reduction techniques), and the related, automatically discovered responsibilities. 

specialized policies. In the middle of the battle, one impor-

tant tactic is to protect the injured ranged units. Our method 

learns this maneuver and roles cluster according to the re-

maining health points (t=8, 19, 27). Healthiest agents have 

role representations far from those of other agents. Such 

representations result in differentiated strategies: healthi-

est agents move forward to take on more firepower while 

other agents move backward, firing from a distance. In the 

meantime, some roles also cluster according to positions 

(agents 3 and 8 when t=19). The corresponding behaviors 

are agents with different roles fire alternatively to share the 

firepower. We can also observe that the role representations 

of dead agents aggregate together, representing a special 

group with an increasing number of agents during the battle. 

These results demonstrate that our method learns dynamic 

roles and roles cluster clearly corresponding to automati-

cally detected sub-tasks, in line with implicit constraints of 

the proposed optimization objectives. 

5.2. Performance on StarCraft II 

To test whether these roles and the corresponding sub-task 

specialization can improve learning efficiency, we test our 

method on the StarCraft II micromanagement (SMAC) 

benchmark (Samvelyan et al., 2019). This benchmark 

consists of various maps which have been classified as 

easy, hard, and super hard. We compare ROMA with 

algorithms shown in Table 1 and present results for one 

easy map (2s3z), three hard maps (5m vs 6m, 8m vs 9m 
& 10m vs 11m), and two super hard maps (MMM2 & 

27m vs 30m). Although SMAC benchmark is challenging, 

it is not specially designed to test performance in tasks with 

many agents. We thus introduce three new SMAC maps to 

test the scalability of our method, which are described in 

detail in Appendix C. 

For evaluation, all experiments in this section are carried 

out with 5 different random seeds, and results are shown 

with a 95% confidence interval. Among these maps, four 

maps, MMM2, 6s4z vs 10b30z, 6z4b, and 10z5b vs 2z3s, 

feature heterogeneous agents, and the others have homo-

geneous agents. Fig. 4 shows that our method yields sub-

stantially better results than all the alternative approaches 

on both homogeneous and heterogeneous maps (additional 

plots can be found in Appendix C.1). MAVEN overcomes 

the negative effects of QMIX’s monotonicity constraint on 

exploration. However, it performs less satisfactorily than 

QMIX on most maps. We believe this is because agents start 

engaging in the battle immediately after spawning in SMAC 

maps, and exploration is not the critical factor affecting 

performance. 

Ablations We carry out ablation studies, comparing with 

the ablations shown in Table 1 and present results on 

three maps: MMM2 (heterogeneous), 10z5b vs 2s3z, and 

10m vs 11m (homogeneous) in Fig. 5 and 6. The superior-

ity of our method against LTD highlights the contribution of 

the proposed regularizers – LTD performs even worse than 

QMIX on two of the three maps. By comparing ROMA with 

LTD +LI and LTD +LD, we can conclude that the special-

ization loss LD is more important in terms of performance 

improvements. Introducing LI can make training more sta-

ble (for example, on the map 10m vs 11m), but optimizing 

LI alone can only slightly improve the performance. These 

observations support the claim that sub-task specialization 

can improve labor efficiency. 
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Figure 8. Role emergence and evolution on the map MMM2 (role representations at time step 1 are shown) during training (means of the 

role distributions, µρi , are shown, without using any dimensionality reduction techniques). The emergence and specialization of roles is 

closely connected to the improvement of team performance. Agents in MMM2 are heterogeneous, and we show role evolution process in a 

homogeneous team in Appendix C.3. 

Comparison between QMIX-NPS and QMIX demonstrates 

that parameter sharing can, as documented (Foerster et al., 

2018; Rashid et al., 2018), speed up training. As discussed 

in the introduction, both these two paradigms may not get 

the best possible performance. In contrast, our method 

provides a dynamic learning sharing mechanism – agents 

committed to a certain responsibility have similar policies. 

The comparison of the performance of ROMA, QMIX, and 

QMIX-NPS proves that such sub-task specialization can in-

deed improve team performance. What’s more, comparison 

of ROMA against QMIX-LAR proves that the superiority 

of our method does not depend on the larger number of 

parameters. 

The performance gap between ROMA and ablations is more 

significant on maps with more than ten agents. This ob-

servation supports discussions in previous sections – the 

emergence of role is more likely to improve the labor effi-

ciency in larger populations. 

5.3. Role Embedding Representations 

To explain the superiority of ROMA, we present the learned 

role embedding representations for three maps in Fig. 7. 

Roles are representative of automatically discovered sub-

tasks in the learned winning strategy. In the map of 

6s4z vs 10b30z, ROMA learns to sacrifice Zealots 9 and 7 

to kill all the enemy Banelings. Specifically, Zealots 9 and 7 

will move to the frontier one by one to minimize the splash 

damage, while other agents will stay away and wait until 

all Banelings explode. Fig. 7(a) shows the role embedding 

representations while performing the first sub-task where 

agent 9 is sacrificed. We can see that the role of Zealot 9 is 

quite different from those of other agents. Correspondingly, 

the strategy at this time is agent 9 moving rightward while 

other agents keep still. Detailed analysis for the other two 

maps can be found in Appendix C.2. 

5.4. Emergence and Evolution of Roles 

We have shown the learned role representations and perfor-

mance of our method, but the relationship between roles 

and performance remains unclear. To make up for this 

shortcoming, we visualize the emergence and evolution of 

roles during the training process on the map MMM2 (hetero-

geneous) and 10m vs 11m (homogeneous). We discuss the 

results on MMM2 here and defer analysis of 10m vs 11m to 

Appendix C.3. 

In MMM2, 1 Medivac, 2 Marauders, and 7 Marines are faced 

with a stronger enemy team consisting of 1 Medivac, 3 

Marauders, and 8 Marines. Among the three involved unit 

types, Medivac is the most special one for that it can heal 

the injured units. In Fig. 8, we show one of the learning 

curves of ROMA (red) and the role representations at the 

first environment step at three different stages. When the 

training begins (T =0), roles are random, and the agents are 

exploring the environment to learn the basic dynamics and 

the structure of the task. By T =6M, ROMA has learned that 

the responsibilities of the Medivac are different from those 

of Marines and Marauders. The role, and correspondingly, 

the policy of the Medivac becomes quite different (Fig. 8 

middle). Such differentiation in behaviors enables agents 

to start winning the game. Gradually, ROMA learns that 
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Table 2. The mean and standard deviation of the learned dissimi-

larities dφ between agents’ trajectories on the map MMM2. 

Between different unit types 0.9556 ± 0.0009 
Between the same unit type 0.0780 ± 0.0019 

Marines and Marauders have dissimilar characteristics and 

should take different sub-tasks, indicated by the differentia-

tion of their role representations (Fig. 8 right). This further 

specialization facilitates the performance increase between 

6M and 10M. After T =10M, the responsibilities of roles 

are clear, and, as a result, the win rate gradually converges 

(Fig. 4 top left). For comparison, ROMA without LI and 

LD can not even win once on this challenging task (LTD 

in Fig. 6-left). These results demonstrate that the gradu-

ally specialized roles are indispensable in team performance 

improvement. 

Moreover, we find that the learned dissimilarity model dφ 

introduced in Sec. 3.2 provides an empirical evaluation for 

identifying new roles. We use the map MMM2 as an example, 

where, as we discussed above, the learned roles of agents 

are characterized by their unit types. After scaling to [0, 1], 
the learned dissimilarity between trajectories of agents with 

different unit types is close to 0.96, while the learned dissim-

ilarity between trajectories of agents with the same unit type 

is around 0.08. These results indicate that an appropriate 

threshold can be used to decide when an individual behavior 

(trajectory) can be assigned the terminology role. 

In summary, our experiments demonstrate that ROMA can 

learn dynamic, identifiable, versatile, and specialized roles 

that effectively decompose the task. Drawing support from 

these emergent roles, our method significantly pushes for-

ward the state of the art of multi-agent reinforcement learn-

ing algorithms. 

6. Closing Remarks 

We have introduced the concept of roles into deep multi-

agent reinforcement learning by capturing the emergent 

roles and encouraging them to specialize on a set of au-

tomatically detected sub-tasks. Such deep role-oriented 

multi-agent learning framework provides another perspec-

tive to explain and promote cooperation within agent teams, 

and implicitly draws connection to the division of labor, 

which has been practiced in many natural systems for long. 

To our best knowledge, this paper is making a first attempt 

at learning roles via deep reinforcement learning. The gar-

gantuan task of understanding the emergence of roles, the 

division of labor, and interactions between more complex 

roles in hierarchical organization still lies ahead. We believe 

that these topics are basic and indispensable in building 

effective, flexible, and general-purpose multi-agent systems 

and this paper can help tackle these challenges. 
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