
Roman domination: A Parameterized
Perspective

Henning Fernau1,2

1 University of Hertfordshire, Hatfield, UK
2 The University of Newcastle, Australia,

and Universität Tübingen, WSI für Informatik, Germany
fernau@informatik.uni-tuebingen.de

Abstract. We analyze Roman domination from a parameterized per-
spective. More specifically, we prove that this problem is W[2]-complete
for general graphs. However, parameterized algorithms are presented for
graphs of bounded treewidth and for planar graphs. Moreover, it is shown
that a parametric dual of Roman domination is in FPT .

1 Introduction

Roman domination is one of the many variants of dominating set problems [7],
[11], [15]. It comes with a nice (hi)story: namely, it should reflect the idea of how
to secure the Roman Empire by positioning the armies (legions) on the various
parts of the Empire in a way that either (1) a specific region r is also the location
of at least one army or (2) one region r′ neighboring r has two armies, so that
r′ can afford sending off one army to the region r (in case of an attack) without
loosing self-defense capabilities.

Britain

Spain

Gaul

Rome

Africa

Constantinople

Asia Minor

Egypt

Fig. 1. The Roman Empire in the times of Constantine

More specifically, Emperor Constantine had a look at the map of Fig. 1 or
a variant thereof (as discussed in [21]). The historical background is also nicely

J. Wiedermann et al. (Eds.): SOFSEM 2006, LNCS 3831, pp. 262–271, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Roman domination: A Parameterized Perspective 263

described in the online John Hopkins Magazine, more specifically, visit page
http://www.jhu.edu/∼jhumag/0497web/locate3.html. This problem is simi-
lar to the island hopping strategy pursued by General MacArthur in World War
II in the Pacific theater to gradually increase the US-secured areas.

A good overview on problems related to Roman domination can be found
in [2]. We assume that solving algorithms similar to the ones presented in this
paper can be also found for most of these variants, in particular regarding multi-
attack variants [8], [14], [16], [17]. Efficient algorithms for various graph classes
have been presented in [11], [19]. Relations with the concrete problem under
consideration and (more practical) network problems have been exhibited in [20].

2 Definitions

Let us first formally describe the problem. To this end, notice that we will use
standard notions from graph theory. Throughout the paper, we deal with simple
undirected graphs. N(v) is the open neighborhood of vertex v, and N [v] =
N(v) � {v} is the closed neighborhood, where � denotes disjoint set union. An
instance of Roman domination (ROMAN) is given by a graph G = (V, E),
and the parameter, a positive integer k. The question is: Is there a Roman
domination function R such that R(V) :=

∑
x∈V R(x) ≤ k?

Here, a Roman domination function of a graph G = (V, E) is a function
R : V → {0, 1, 2} with

∀v ∈ V : R(v) = 0 ⇒ ∃x ∈ N(v) : R(x) = 2.

DR = R−1({1, 2}) is then the Roman domination set. The minimum of R(V)
over all valid Roman domination functions R is also called the Roman domination
number of a given graph.

In the following, we give the necessary background on parameterized com-
plexity: A parameterized problem P is a subset of Σ∗ × N, where Σ is a fixed
alphabet and N is the set of all non-negative integers. Therefore, each instance of
the parameterized problem P is a pair (I, k), where the second component k is
called the parameter. The language L(P) is the set of all YES-instances of P . We
say that the parameterized problem P is fixed-parameter tractable [10] if there is
an algorithm that decides whether an input (I, k) is a member of L(P) in time
f(k)|I|c, where c is a fixed constant and f(k) is a function independent of the
overall input length |I|. The class of all fixed-parameter tractable problems is
denoted by FPT .

There is also a hardness theory, most notably, the W[t] hierarchy, that com-
plements fixed-parameter tractability:

FPT = W [0] ⊆ W [1] ⊆ W [2] ⊆ . . .

It is commonly believed that this hierarchy is strict. Since only the second level
W[2] will be of interest to us in this paper, we will only define that class below.
We do this in the “Turing way” as (partially) followed in [5], [4], [6], [12].

http://www.jhu.edu/~jhumag/0497web/locate3.html

264 H. Fernau

A parameterized reduction is a function r that, for some polynomial p and
some function g, is computable in time O(g(k)p(|I|)) and maps an instance
(I, k) of P onto an instance r(I, k) = (I ′, k′) of P ′ such that (I, k) is a YES-
instance of P if and only if (I ′, k′) is a YES-instance of P ′ and k′ ≤ g(k). We
also say that P reduces to P ′.

W[2] can be characterized by the following problem on Turing machines:

An instance of short multi-tape nondeterministic Turing machine com-

putation (SMNTMC) is given by a multi-tape nondeterministic Turing ma-
chine M (with two-way infinite tapes), an input string x, and the parameter, a
positive integer k. The question is: Is there an accepting computation of M on
input x that reaches a final accepting state in at most k steps?

More specifically, a parameterized problem is in W[2] iff it can be reduced with
a parameterized reduction to short multi-tape nondeterministic Turing

machine computation, see [4].

3 Roman domination on General Graphs is Hard

Lemma 1. Roman domination is in W[2].

Proof. Let G = (V, E) be an instance of Roman domination. We have to
transform it into an instance of short multi-tape nondeterministic Turing

machine computation. We also assume that k > 0 (k = 0 is a trivial instance).
The corresponding Turing machine T has |V | + 1 tapes; let they be indexed

by {0} ∪ V . As tape symbols, we will use (V × {1, 2}) on tape 0 and # on
the other tapes (besides the blank symbol). The edge relation of G is “hard-
wired” into the transition function of T as described below. The input string
is empty.

In a first phase, T nondeterministically guesses the Roman domination func-
tion R and writes it on tape 0 using the letters from V × {1, 2} as follows:
T moves the head on tape 0 one step to the right, and writes there a guess
(v, i) ∈ (V × {1, 2}). Upon writing (v, i), T also increments an internal-memory
counter c by i. As long as c ≤ k, T can nondeterministically continue in phase
one or transition into phase two; if c > k, T hangs up.

In a second phase, T has to verify that the previous guesses are correct.
To this end, upon reading symbol (v, 1) on tape 0, T writes # on the tape
addressed by v and moves that head one step to the right. Upon reading (v, 2)
on tape 0, T writes # on all tapes addressed by vertices from N [v] and moves
the corresponding heads one step to the right. Moreover, after reading symbol
(v, i) on tape 0, T moves the head on tape 0 one step to the left. Upon reading
the blank symbol on tape 0, T moves all other heads one step to the left; only if
then all V -addressed tapes show # under their respective heads, T accepts. The
second phase will take another k + 1 steps.

It is now easy to see that (G, k) is a YES-instance to Roman domination iff T
has an accepting computation within 2k+1 steps, so that we actually described a
parameterized reduction.

Roman domination: A Parameterized Perspective 265

We will show W[2]-hardness with the help of the following problem: An instance
of red-blue dominating set (RBDS) is given by a graph G = (V, E) with V
partitioned as Vred �Vblue, and the parameter, a positive integer k. The question
is: Is there a red-blue dominating set D ⊆ Vred with |D| ≤ k, i.e., Vblue ⊆ N(D)?

We need the following result, that can be easily distilled from [10]:

Lemma 2. red-blue dominating set, restricted to bipartite graphs

is W[2]-hard.

To prove the hardness result, we need one fact about the Roman domination of
complete graphs that follows from [7–Prop. 9].

Lemma 3. For the complete graph Kn on n vertices, the Roman domination
number is two iff n ≥ 2.

Theorem 1. Roman domination is W[2]-complete.

Proof. By Lemma 1, we already know that Roman domination lies in W[2].
Assume that G = (V, E) is an instance of red-blue dominating set, re-

stricted to bipartite graphs (see Lemma 2), i.e., V = Vred �Vblue. W.l.o.g.,
we can assume that |Vred| > 1. In the simulating Roman domination instance,
we construct a graph G′ = (V ′, E′), where

V ′ = (Vred ∪ {1, . . . , 2k + 1}) × {1, . . . , k} ∪ Vblue,

and E′ contains the following edges (and no others):

1. G′[Vred × {i}] is a complete graph for each i ∈ {1, . . . , k}.
2. For all i ∈ {1, . . . , k} and x ∈ Vred, y ∈ Vblue, {x, y} ∈ E iff {[x, i], y} ∈ E′.
3. For all i ∈ {1, . . . , k}, j ∈ {1, . . . , 2k + 1} and x ∈ Vred: {[x, i], [j, i]} ∈ E′.

We are going to show the following claim: G has a red-blue dominating set D
of size k iff G′ has a Roman domination function R with

∑
x∈DR

R(x) = 2k.
If G has a red-blue dominating set D = {d1, . . . , dk} of size k, then consider

the following function R : V ′ → {0, 1, 2}: R assigns zero to all vertices but
to d′i = [di, i], to which R assigns two. Since d′i is connected to all vertices in
(Vred ∪ {1, . . . , 2k + 1}) × {i}, the vertices in V ′ \ V are all dominated by this
assignment. Moreover, since D is a red-blue dominating set of G, all vertices in
Vblue are dominated in G′, as well.

Now consider a Roman domination function R for G′ with
∑

x∈DR
R(x) = 2k.

Due to Lemma 3 and according to the first condition on edges, the Roman
domination number of each induced graph G′[Vred×{i}] is two, assuming |Vred| >
1. Since G′[Vred ×{1, . . . , k}] can be decomposed into k components, the Roman
domination number of G′[Vred × {1, . . . , k}] is 2k. More specifically, to achieve
that bound, the domination function would have to assign two to one vertex
from Vred × {i} for each i and zero to all other vertices. Observe that such an
assignment would be also a valid Roman domination function R′ for G′[(Vred ∪
{1, . . . , 2k + 1}) × {1, . . . , k}] if we assign zero to all vertices from {1, . . . , 2k +
1} × {1, . . . , k}.

266 H. Fernau

Since there are “too many” vertices in {1, . . . , 2k +1}×{1, . . . , k}, we cannot
simply replace one or more vertices to which R′ assigns two by vertices from
{1, . . . , 2k + 1} × {1, . . . , k} to which R′ (as constructed) had assigned zero.

Observe that we have left over yet some degrees of freedom for finally con-
structing a valid Roman domination function R from R′; namely, we have not
been specific about how to choose a vertex from Vred × {i} (for each i) to
which we assign two. However, if we find k assignments of two to vertices
from Vred × {1, . . . , k} such that also all vertices from Vblue are dominated,
i.e., DR = {[d1, 1], . . . , [dk, k]} = R−1({2}), then D = {d1, . . . , dk} is a valid
dominating set of G.

Since there are no edges between vertices from {1, . . . , 2k + 1} × {1, . . . , k}
and Vblue, there is no way of replacing some of the vertices selected from (Vred ∪
{1, . . . , 2k+1})×{1, . . . , k} (by assigning two to them) by vertices from Vblue, so
that there cannot be a Roman domination function R that assigns one or two to
any of the vertices from Vblue without violating the condition

∑
x∈DR

R(x) = 2k.
So, the Roman domination function as constructed above is the only possibility;
that construction works if and only if G has a dominating set of size k.

The previous Theorem also sharpens [11–Theorem 2.42].
Let us finally mention one further problem, also taken from [20]; in fact, some

more (and similar) problems can be found there and treated alike. An instance of
dominating rearrangement (DR) is given by a graph G = (V, E), a subset
S ⊆ V , and the parameter, a positive integer k = |S|. The question is: Is there
a dominating rearrangement r : S → N [S], s �→ r(s) ∈ N [s] such that r(S) ⊆ V
is a dominating set?

Again, this problem can be viewed from a military perspective: S is the set of
locations where currently armies are placed on, and the question is if by a one-
step rearrangement of each army (if necessary) a situation can be created in
which each region (modeled by graph vertices) is sheltered by either a defending
army in the region itself or in a neighboring region.

This problem is interesting for at least two reasons from a parameterized
perspective:

– The parameterization is not arising from an optimization problem.
– The problem can be viewed as a local search problem, parameterized by

a given “temporary” solution. Such type of problems can show up in many
disguises in practice.

Theorem 2. dominating rearrangement is W[2]-complete.

Proof. Membership in W[2] can be seen by a guess-and-verify strategy as seen in
the proof of Lemma 1. For the hardness, take again an instance (G = (V = Vred�
Vblue, E), k) of red-blue dominating set. Let S = {1, . . . , k} be disjoint from
V , and consider the graph G′ = (V ′, E′) with V ′ = V ∪S and E′ = E∪(S×Vred).
Hence, G′[S ∪ Vred] forms a complete bipartite graph. This gives the instance
(G′, S) of dominating rearrangement. Obviously, D ⊆ Vred is a dominating
set of size (at most) k iff (G′, S) can be solved by moving |D| of the armies in S
onto the vertices from D.

Roman domination: A Parameterized Perspective 267

4 Roman domination on Planar Graphs

From a historical perspective, this is somehow the “original” problem, indeed: tak-
ing a map of the Roman Empire and assuming firstly that different regions are in-
terpreted as vertices of a graph and finally that regions are neighbored if they share
a common borderline (as opposed to having boundaries meeting in a single point),
then this neighborhood (multi-)graph is (as the geometric dual of the map) planar.

We will first sketch a search tree algorithm that puts planar Roman dom-

ination into FPT . From the standpoint of parameterized algorithmics, this is
an interesting algorithm, since it “recycles” most of the rules and terminology
that was earlier developed for planar dominating set in [1], [12].

There,we introducedthenotionofablackandwhitegraph.ThevertexsetV ofG is
partitioned into two disjoint sets B and W of black and white vertices, respectively,
i.e., V = B �W . Black vertices are those vertices which still need to be dominated,
whilewhite vertices are alreadydominated, but it is still possible toplace twoarmies
on such a vertex in order to protect the neighboring vertices. In each step of the
search tree, we would like to branch according to a low degree black vertex.

Formally, thismeans thatwesolveanannotatedversionofRomandomination,
namely on black and white graphs. We propose to use the following reduction rules:

(R1) Delete an edge between white vertices.
(R2) Delete a pendant white vertex, i.e., a vertex of degree one.
(R4) If there is a white vertex u of degree 2, with two black neighbors u1 and

u2 connected by an edge {u1, u2}, then delete u.
(R5) If there is a white vertex u of degree 2, with black neighbors u1, u3, and

there is a black vertex u2 and edges {u1, u2} and {u2, u3} in G, then delete u.
(R6) If there is a white vertex u of degree 2, with black neighbors u1, u3, and

there is a white vertex u2 and edges {u1, u2} and {u2, u3} in G, then delete u.
(R7) If there is a white vertex u of degree 3, with black neighbors u1, u2, u3 for

which the edges {u1, u2} and {u2, u3} are present in G (and possibly also
{u1, u3}), then delete u.

The peculiar numbering is in accordance with our rule numbering scheme for
planar dominating set in [12] and should make clear that we actually must
only replace one of the rules with some additional branching in our algorithm,
in order to get rid of pendant black vertices.

Lemma 4. The reduction rules are sound.

Proof. (R1), (R2) are immediate.
(R4): Let G = (V, E) be a black and white graph and G′ = (V ′, E′) be obtained

from G by applying (R4) once. Hence, there are vertices u, u1, u2 in V as described
in (R4). If R′ is a valid Roman domination function of G′, then R′ can be extended
to a valid Roman domination function R′ on V by setting R′(u) = 0. Obviously,
R′(V ′) = R′(V). If R is a valid Roman domination function of G, then R restricted
toV ′ will be valid ifR(u) = 0.Then,R(V ′) = R(V).The caseR(u) = 1neednot be
considered, sinceu is white. IfR(u) = 2, thenR(u1)+R(u2) ≤ 1, since otherwise by

268 H. Fernau

redefining R(u) := 0 a smaller valid Roman domination function can be obtained.
However, if R(u) ≤ 1, then R(u1) = 0 or R(u2). Assuming R(u1) = 0, we can
obtain a valid Roman domination function by setting R(u) := 0 and R(u1) := 2
without changing the overall value. Hence, after the indicated modifications, R
restricted to V ′ will be valid, and R(V ′) = R(V).

(R5), (R6), (R7) can be argued in a similar fashion.

A careful check of the reduction rules as developed for planar dominating

set show that all are valid but one, namely rule (R3) in [12], which is dealing
with a black vertex x of degree one (it is not clear if one army should be put
on x or two armies on the neighbor of x). That particular rule is not used in
the (non-trivial) proof of the following theorem from [1], [12], where “reduced”
refers to all reduction rules from [12] but (R3).

Theorem 3. If G = (B�W, E) is a planar black and white graph that is reduced,
then there exists a black vertex u ∈ B with degG(u) ≤ 7.

A simple search tree algorithm would now pick a black vertex v of smallest degree
and branch according to if R(v) = 1 or if R(u) = 2 for some u ∈ N [v]; this
branching reduces the parameter by two for each u; according to Thm. 3, N [v]
contains at most eight vertices. Solving the corresponding recurrence T (k) ≤
T (k−1)+8T (k−2) for the size of the search tree shows the following assertion:

Theorem 4. planar Roman domination can be solved in O∗(3.3723k) time.

The O∗(·) notation has by now become standard in exact algorithms. It is meant
to not only suppress constants (as the more familiar O(·)-notation does) but also
polynomial parts of the functions.

5 Roman domination on Graphs of Bounded Treewidth

In this section, we reconsider the problem of determining the minimum Roman
domination set on graphs of bounded treewidth. This problem has been previ-
ously attacked in [20], but their algorithm is not quite correct, as we will explain.
Then, we apply this treewidth-based algorithm to obtain O(c

√
k) algorithms for

planar Roman domination. Details on on tree decompositions can be found
in [18] and are provided in an appendix.

On graphs of bounded treewidth, many otherwise combinatorially hard prob-
lems can be efficiently solved by dynamic programming. Given a so-called nice
tree decomposition of a graph, we have to specify the operations in four different
types of nodes, see [3], [18], [22]. Generally speaking, these operations are rather
straightforward for all types of nodes but the join nodes. Therefore, we focus on
that node type. Recall that a join node has two children nodes, and all three
corresponding bags contain the same vertices. In the dynamic programming, to
each node a table is associated that stores all possible combinations of “vertex
states” together with their optimal value. With Roman domination, we need
to store four states per vertex (only three are used in [20]):

Roman domination: A Parameterized Perspective 269

– 0,1,2 are the values that the Roman domination function is assumed to assign
to a particular vertex.

– 0̂ also tells us that the Roman domination function assigns 0 to that vertex.

Thedifference inthesemanticsof0, 0̂ is the following: theassignmentof0meansthat
the vertex is already dominated at the current stage of the algorithm, and 0̂ means
that, at thecurrent stageof thealgorithm,westill ask foradominationof thisvertex.
Let us only point to the following additional complication when dealing with join
nodes: ifwe update an assignment thatmaps vertexx onto 0, it is not necessary that
both children assign 0 to x; it is sufficient that one of the two branches does, while
the other assigns 0̂.Anaive implementationofwhatwe said in theprevious sentence
would amount in spending O(16tw(G)) time for the join node processing. However,
the “monotonicity trick” observed in [1] also works for this problem. Namely, for
every vertex x in the parent bag, we consider the following cases:

– either 2, 1 or 0 is assigned to x; then, the same assignment must have been
made in the two children;

– or 0̂ is assigned to x; then, we have two possible assignments in the child
nodes: 0 to x in the left child and 0̂ to x in the right child or vice versa.

Theorem 5. minimum Roman domination, parameterized by the treewidth
tw(G) of the input graph G, can be solved in time O(5tw(G)|V (G)|).

This also generalizes Dreyer’s result on trees [11–Sec. 2.9]. Besides having a cor-
rected version of the PT AS for minimum Roman domination explained in [20],
we can also state an O∗(c

√
k) algorithm for planar Roman domination. To

get such an algorithm, we link Roman domination with dominating set:

Lemma 5. If D ⊆ V is a Roman domination set for G = (V, E) (with respect
to a Roman domination function R, i.e., D = DR), then D is also a dominating
set. Moreover, if

∑
x∈DR

R(x) ≤ k, then |D| ≤ k.

Theorem 6. [Fomin and Thilikos [13]] If G is a planar graph which has a dom-
inating set of size k, then G has treewidth of at most 4.51.5

√
k ≤ 9.55

√
k.

Corollary 1. planar Roman domination can be solved in time

O∗
(
54.51.5√k

)
= O∗

(
222.165

√
k
)

.

6 A Dual Version of Roman domination

We finally mention that the following version of a parametric dual of ROMAN

is in FPT by the method of kernelization, relying on [7–Proposition 4(e)]: given
a graph G and a parameter kd, is there a Roman domination function R such
that |R−1(1)| + 2|R−1(0)| ≥ kd ?

The definition of a dual of Roman domination might look a bit funny at
first glance: But since Roman domination is a sort of weighted version of dom-

inating set, it is not quite clear what the notion of a parametric dual should

270 H. Fernau

be in this case. With our definition, we have the possibly desirable property that
(G, kd) is a YES-instance of this variant of a dual of Roman domination iff
(G, 2|V (G)|−kd) is a YES-instance of ROMAN. In other words, R is maximum
for this dual version of ROMAN iff R is minimum for ROMAN.

Theorem 7. Our version of parametric dual of Roman domination allows
for a problem kernel of size (7/6)kd, measured in terms of vertices. Hence, this
problem is in FPT .

Proof. Note that we can easily get rid of all isolates with a first reduction rule:
If x is an isolate, assign zero to x and decrease the parameter kd by two.

As a second reduction rule, we claim that if kd < (6/7)|V (G)|, then we can
answer YES. Of course, this gives the claimed problem kernel.

Assume to the contrary that (G, kd) is a NO-instance and that kd < (6/7)
|V (G)|. Hence, for any optimum Roman domination function R for G,

|R−1(1)| + 2|R−1(0)| < kd < (6/7)|V (G)|.

Hence, |R−1(0)| < (3/7)|V (G)|. This is also true for any optimum Roman dom-
ination function R that also minimizes |R−1(1)| (as a second priority). This
contradicts [7–Proposition 4(e)].

This shows that also this dual version of Roman domination is in FPT .

Notice that this results parallels the situation found with dominating set [9].

7 Conclusion

This paper contains a number of technical results concerning a parameterized
view on Roman domination. Besides these technical results, we like to com-
municate the following messages:

– As can be seen from the W[2] completeness section, the “Turing way” to
parameterized complexity is often quite amenable and may offer advantages
over the standard approach as exhibited in [10].

– Strive to obtain structural results when developing algorithms: this turned
out to be very beneficial for planar Roman domination, since the results
obtained for planar dominating set could be “recycled.”

References

1. Alber, J., Fan, H., Fellows, M.R., Fernau, H., Niedermeier, R., Rosamond, F.,
and Stege, U.: Refined Search Tree Techniques for the Planar Dominating Set

Problem. In Proc. 26th MFCS, LNCS, Springer 2136 (2001) 111–122 Long version
to appear in Journal of Computer and System Sciences

2. Benecke, S.: Higher Order Domination of Graphs. Master’s Thesis, Department of
Applied Mathematics of the University of Stellebosch, South Africa, (2004)

Roman domination: A Parameterized Perspective 271

3. Bodlaender, H.L.: Dynamic Programming on Graphs with Bounded Treewidth. In
Proc. 15th ICALP, LNCS 317 (1988) 105–119

4. Cesati, M.: The Turing Way to Parameterized Complexity. Journal of Computer
and System Sciences 67 (2003) 654–685

5. Cesati, M., and Di Ianni, M.: Computation Models for Parameterized Complexity.
Mathematical Logic Quarterly 43 (1997) 179–202

6. Chen, Y., and Flum, J.: Machine Characterization of the Classes of the W-
Hierarchy. In Proc. 17th CSL, LNCS, Springer 2803 (2003) 114–127

7. Cockayne, E.J., Dreyer Jr., P.A., Hedetniemi, S.M., and Hedetniemi, S.T.: Roman
Domination in Graphs. Discrete Mathematics 278 (2004) 11–22

8. Cockayne, E.J., Grobler, P.J.P., Gründlingh, W.R., Munganga, J., and van Vu-
uren, J.H.: Protection of a Graph. Utilitas Mathematica 67 (2005) 19–32

9. Dehne, F., Fellows, M., Fernau, H., Prieto, E., and Rosamond, F.: nonblocker

set: Parameterized Algorithmics for minimum dominating set. This volume.
10. Downey, R.G., and Fellows, M.R.: Parameterized Complexity. Springer (1999)
11. Dreyer Jr., P.A.: Applications and Variations of Domination in Graphs. PhD

thesis, Rutgers University, New Jersey, USA, PhD Thesis (2000)
12. Fernau, H.: Parameterized Algorithmics: A Graph-Theoretic Approach. Habilita-

tionsschrift, Universität Tübingen, Germany (2005) Submitted
13. Fomin, F.V., and Thilikos, D.M.: Dominating Sets in Planar Graphs: Branch-

Width and Exponential Speed-up. In Proc. 14th SODA (2003) 168–177
14. Goddard, W.D., Hedetniemi, S.M., and Hedetniemi, S.T.: Eternal Security in

Graphs. J. Combin. Math. Combin. Comput., to appear.
15. Haynes, T.W., Hedetniemi, S.T., and Slater, P.J.: Fundamentals of Domination in

Graphs. Marcel Dekker (1998)
16. Henning, M.A.: Defending the Roman Empire from Multiple Attacks. Discrete

Mathematics 271 (2003) 101–115
17. Henning, M.A., and Hedetniemi, S.T.: Defending the Roman Empire: a New Strat-

egy. Discrete Mathematics 266 (2003) 239–251
18. Kloks, T.: Treewidth. Computations and Approximations, LNCS, Springer 842

(1994)
19. Liedloff, M., Kloks, T., Liu, J., and Peng, S.-L.: Roman Domination over Some

Graphs Classes. To appear in the Proc. WG, Springer (2005)
20. Pagourtzis, A., Penna, P., Schlude, K., Steinhöfel, K., Taylor, D.S., and Wid-

mayer, P.: Server Placements, Roman Domination and Other Dominating Set
Variants. In 2nd IFIP International Conference on Theoretical Computer Science
IFIP TCS, Kluwer (2002) 280–291

21. Stewart, I.: Defend the Roman Empire! Scientific American, Dec. (1999) 136–139
22. Telle, J.A., and Proskurowski, A.: Practical Algorithms on Partial k-Trees with an

Application to Domination-Like Problems. In F. Dehne et al. (eds), Algorithms
and Data Structures, Proc. 3rd WADS’93, LNCS 709 (1993) 610–621

	Introduction
	Definitions
	Roman domination on General Graphs is Hard
	Roman domination on Planar Graphs
	Roman domination on Graphs of Bounded Treewidth
	A Dual Version of Roman domination
	Conclusion

