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Abstract

Roman domination is an historically inspired variety of domination in graphs,
in which vertices are assigned a value from the set {0, 1, 2} in such a way that every
vertex assigned the value 0 is adjacent to a vertex assigned the value 2. The Roman

domination number is the minimum possible sum of all values in such an assignment.
Using an algebraic approach we present an O(C)-time algorithm for computing the
Roman domination numbers of special classes of graphs called polygraphs, which
include rotagraphs and fasciagraphs. Using this algorithm we determine formulas
for the Roman domination numbers of the Cartesian products of the form Pn2Pk,
Pn2Ck, for k 6 8 and n ∈ N, and Cn2Pk and Cn2Ck, for k 6 6 and n ∈ N, for
paths Pn and cycles Cn. We also find all special graphs called Roman graphs in
these families of graphs.

1 Introduction

The domination number of a graph and its many variations have been extensively studied
in the literature along with their algorithmic aspects [24, 23]. It is well known that the
problem of computing the domination number of an arbitrary graph is NP-complete [24].
It is therefore worthwhile to construct algorithms for computing domination numbers of

the electronic journal of combinatorics 19(3) (2012), #P19 1



graphs in various subclasses of graphs. Among them, grids (i.e. Cartesian products of
paths) are widely studied because they represent interconnection models of multiproces-
sors in VLSI systems. The domination numbers of the Cartesian products, for several
fixed values of k, were computed for Pn2Pk in [1, 8, 11, 19, 20], for Cn2Ck in [14, 35, 52]
and for Pn2Ck in [42]. A general O(log n) algorithm based on path algebra in [36], can
be used to compute the domination number of Pn2Pk, for any fixed k. This algorithm
can also be used to compute distance based invariants [32] and domination numbers [53]
in polygraphs in constant time, that is, the algorithm can find closed formulas for arbi-
trary values of n. The existence of an algorithm that can provide closed formulas for the
domination numbers of all grid graphs (Pn2Pk) has been observed or claimed in [17, 40].

An interesting variety of domination that is popular because of its historical signifi-
cance is called Roman domination [43, 48]. In the 4th century Emperor Constantine, in
order to defend the Roman Empire, decreed that two types of armies should be placed in
cities in such a way that the entire Empire could be secured. The first type of army was
highly trained and mobile, and could move from city to city to defend against any attack.
The second type of army was a local militia that was permanently stationed at a given
city. The Emperor decreed that no mobile army could ever leave a city to defend another
if in doing so it left the originating city undefended. Thus, two armies were stationed at
some cities, only a local militia at others, and other cities had no army.

While the problem is still of interest in military operations research [2], it also has
applications in cases where a time-critical service is to be provided with some backup.
For example, a fire station should never send all emergency vehicles to answer a call.

In Roman domination, every vertex is assigned a value from the set {0, 1, 2} in such a
way that every vertex assigned the value 0 is adjacent to at least one vertex assigned the
value 2. The Roman domination number equals the minimum sum of all values in such
an assignment. A formal definition of the Roman domination number of a graph, first
given in [9], is presented in Section 2.

Since the problem of computing the Roman domination number of an arbitrary graph
is NP-complete [12], it is worthwhile to compute the Roman domination number of various
classes of graphs [9, 18, 25, 39, 38, 46, 47]. A Vizing-like conjecture for Roman domination
[49], some properties of minimum Roman dominating functions [7, 15, 29, 41, 50] and
algorithmic aspects of Roman domination [16] have also been studied. One of the open
problems in [9] was that of computing the Roman domination numbers of arbitrary grid
graphs. The Roman domination numbers of grid graphs Pn2Pk have been determined for
k 6 4 and n ∈ N in [9, 12]. A linear-time algorithm for computing the Roman domination
number of Pn2Pk, for any fixed k, is given in [12].

In this paper we use the path algebra approach [36] to design an O(log n) algorithm
for computing the Roman domination numbers of arbitrary grid graphs, and show how
it can be converted to a constant time algorithm that provides closed formulas for these
numbers. More precisely, the time complexity of this algorithm is independent of n and
has superpolynomial time complexity in terms of k. We use the algorithm to find formulas
for Roman domination numbers of Pn2Pk and Pn2Ck for k 6 8 and n ∈ N, and for Cn2Pk

and Cn2Ck for k 6 6 and n ∈ N.
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In Section 2 we present the concept of polygraphs, which has been widely used in
chemical graph theory and elsewhere [4, 21, 31, 33]. In Section 3 we summarize a general
framework for solving different problems in the classes of polygraphs, called rotagraphs
and faciagraphs, that is presented in [36]. Section 4 contains the algorithm for computing
the Roman domination numbers of rotagraphs and faciagraphs. Section 5 summarizes the
results obtained by this algorithm, and Section 6 presents a listing of all known Roman
graphs in the classes of rotagraphs and faciagraphs studied. We conclude with a couple
of remarks and open problems on the topic in Section 7.

2 Preliminaries

We consider finite undirected and directed graphs. The term graph denotes an undirected
graph, while the term digraph denotes a directed graph. An edge between two vertices u
and v in a graph is denoted uv, while an arc from a vertex u to a vertex v in digraph is
denoted (u, v). Let Pn denote a path on n vertices and Cn denote a cycle on n vertices.

In a graph G = (V,E), a set D ⊆ V is a dominating set if every vertex in V \ D is
adjacent to a vertex in D. The domination number γ(G) equals the minimum cardinality
of a dominating set in G. A dominating set of cardinality γ(G) is called a γ–set.

Roman domination was formally defined in [9] as follows: For a graph G = (V,E),
let f : V −→ {0, 1, 2} and let (V0, V1, V2) be the ordered partition of V induced by f ,
where Vi = {v ∈ V (G) | f(v) = i}. Let |Vi| = ni for i = 0, 1, 2. Note that there exists
a 1–1 correspondence between the functions f : V −→ {0, 1, 2} and ordered partitions
(V0, V1, V2) of V . Thus, we will write f = (V0, V1, V2). A function f = (V0, V1, V2) is a
Roman dominating function (RDF) if every vertex in V0 is adjacent to a vertex in V2.
The weight of f is defined as:

w(f) =
∑

v∈V

f(v) = n1 + 2n2.

The Roman domination number, γR(G), equals the minimum weight of an RDF of G. We
will also say that a function f = (V0, V1, V2) is a γR-function, if it is an RDF and w(f) =
γR(G). Obviously, γ(G) 6 γR(G) 6 2γ(G). The only graphs that satisfy γR(G) = γ(G)
are edgeless graphs. A graph is called a Roman graph if γR(G) = 2γ(G). Finding classes
of Roman graphs was one of the open problems posed in [9]. For instance, among paths,
graphs P3k and P3k+2 are Roman graphs. Paths P3k+1 are examples of graphs which are
not Roman graphs: γR (P3k+1) = 2k + 1 < 2γ (P3k+1) = 2k + 2.

The difference between γR and 2γ can be arbitrarily large. Consider, for example, the
family of subdivided stars S(K1,n), which are obtained from the family of stars K1,n by
subdividing every edge. It can be seen that γR(S(K1,n)) = 2+n, while 2γ(S(K1,n)) = 2n.
The construction of a γ-set and γR–function for S(K1,5) is given in Figure 1, where the
full circs in the subdivided star on the left are elements of a γ-set, while the full circs
in the subdivided star on the right are elements of V1 and the double circ vertex in the
center is the only element of V2 in the γR-function.
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Figure 1: A minimum dominating set and a γR–function of S(K1,5).

The Cartesian product of graphs G and H, denoted G2H, is a graph with a vertex set
V (G)× V (H) and (g, h)(g′, h′) ∈ E(G2H) if g = g′ and hh′ ∈ E(H) or gg′ ∈ E(G) and
h = h′. Cartesian product graphs include the grid graphs, which are products of paths
Pn2Pk, and tori, which are products of cycles Cn2Ck.

Let G1, . . . , Gn be arbitrary mutually disjoint graphs and X1, . . . , Xn a sequence of
sets of edges such that an edge of Xi joins a vertex of V (Gi) with a vertex of V (Gi+1)
(Xi ⊆ V (Gi) × V (Gi+1) for i = 1, . . . , n). For convenience we also set Gn+1 = G1. A
polygraph Ωn = Ωn(G1, . . . Gn;X1, . . . Xn) over monographs G1, . . . , Gn is defined in the
following way:

V (Ωn) = V (G1) ∪ . . . ∪ V (Gn),

E(Ωn) = E(G1) ∪X1 ∪ . . . ∪ E(Gn) ∪Xn.

For a polygraph Ωn and for i = 1, . . . , n we also define

Di = {u ∈ V (Gi) | ∃v ∈ Gi+1 : uv ∈ Xi},

Ri = {u ∈ V (Gi+1) | ∃v ∈ Gi : uv ∈ Xi}.

In general, Ri∩Di+1 does not have to be empty. If all graphs Gi are isomorphic to a fixed
graph G (i.e. there exists an isomorphism ϕi : V (Gi) −→ V (G) for i = 1, . . . , n + 1, and
ϕn+1 = ϕ1) and all sets Xi are equal to a fixed set X ⊆ V (G) × V (G) ((u, v) ∈ X ⇐⇒
(

ϕ−1
i (u), ϕ−1

i+1(v)
)

∈ Xi for all i), we call such a graph rotagraph, ωn(G;X). A rotagraph
without edges between the first and the last copy of G is a fasciagraph, ψn(G;X). More
precisely, in a fasciagraph, Xn = ∅ and X1 = X, . . . , Xn−1 = X. In a rotagraph as
well as in a fasciagraph, all sets Di and Ri are equal to fixed sets D and R, respectively
(Di = ϕ−1

i (D) and Ri = ϕ−1
i+1(R)). Of course, in the case of fasciagraphs, Dn = ∅ and

Rn = ∅. Observe that the Cartesian product of paths Pn and Pk, Pn2Pk, is an example of
a fasciagraph and that the Cartesian product of cycles Cn and Ck, Cn2Ck, is an example
of a rotagraph. A graph Pn2Ck can be treated either as a fasciagraph or as a rotagraph.

3 Path algebras and the algorithm

Let us now summarize a general framework for solving different problems on the class of
fasciagraphs and rotagraphs, which was proposed in [36] and also used in [53]:
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A semiring P = (P,⊕, ◦, e⊕, e◦) is a set P on which two binary operations, ⊕ and ◦
are defined such that:

1. (P,⊕) is a commutative monoid with e⊕ as a unit;

2. (P, ◦) is a monoid with e◦ as a unit;

3. ◦ is left- and right-distributive over ⊕;

4. ∀x ∈ P, x ◦ e⊕ = e⊕ = e⊕ ◦ x.

An idempotent semiring is called a path algebra. It is easy to see that a semiring is a
path algebra if and only if e◦ ⊕ e◦ = e◦ holds for e◦, the unit of the monoid (P, ◦). An
important example of a path algebra for our work is P1 = (N0∪{∞},min,+,∞, 0). Here
N0 denotes the set of nonnegative integers and N the set of positive integers. For more
examples of path algebras we refer to [6].

Let P = (P,⊕, ◦, e⊕, e◦) be a path algebra and let Mn(P) be the set of all n × n

matrices over P . Let A,B ∈ Mn(P) and define operations ⊕ and ◦ in the usual way:

(A⊕ B)ij = Aij ⊕Bij ,

(A ◦B)ij =
n

⊕

k=1

Aik ◦Bkj.

Mn(P) equipped with the above defined operations is a path algebra with the zero and
the unit matrix as units of the semiring. In our example P1 = (N0 ∪ {∞},min,+,∞, 0),
all elements of the zero matrix are ∞, the unit of the monoid (P,min), and the unit
matrix is a diagonal matrix with diagonal elements equal to e◦ = 0 and all other elements
equal to e⊕ = ∞.

Let P be a path algebra and let G be a labeled digraph, that is a digraph together
with a labeling function ℓ which assigns to every arc of G an element of P . Let V (G) =
{v1, v2, . . . , vn}. The labeling ℓ of G can be extended to walks in the following way: For
a walk Q = (vi0 , vi1)(vi1 , vi2) . . . (vik−1

, vik) of G let

ℓ(Q) = ℓ (vi0 , vi1) ◦ ℓ (vi1 , vi2) ◦ . . . ◦ ℓ
(

vik−1
, vik

)

.

Let Sk
ij be the set of all walks of order k from vi to vj in G and let A(G) be the matrix

defined by:

A(G)ij =

{

ℓ (vi, vj) ; if (vi, vj) is an arc of G

e⊕; otherwise.

It is well-known (see for example [6]) that

(

A(G)k
)

ij
=

⊕

Q∈Sk
ij

ℓ(Q).

Let ωn(G;X) be a rotagraph and ψn(G;X) a fasciagraph. Set U = Di ∪ Ri = D ⊔ R
and let N = 2|U |. Define a labeled digraph G = G(G;X) as follows: The vertex set
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of G is formed by the subsets of U which will be denoted Vi. An arc joins a subset Vi
with a subset Vj if Vi is not in a ”conflict” with Vj. Here a conflict of Vi with Vj means
that using Vi and Vj as a part of a solution in consecutive copies of G would violate the
problem assumption. For instance, if we look for a domination number of a graph, such
a conflict would be a nonempty intersection between sets Vi and Vj, or if we look for an
independence number of a graph, such a conflict would be an edge between sets Vi and
Vj. Let finally ℓ : E(G) −→ P be a labeling of G where P is a path algebra on the set
P . The general scheme for the algorithm that solves different problems on polygraphs as
proposed in [36] is:

Algorithm 1 [36]

1. Select the appropriate path algebra P = (P,⊕, ◦, e⊕, e◦).

2. Determine an appropriate labeling ℓ of a graph G(G;X).

3. In M(P) calculate A (G)n.

4. Among admissible coefficients of A (G)n select one which optimizes the correspond-
ing goal function.

It is well known that, in general, Step 3 of the algorithm can be implemented to run
in O(log n)-time [44]. However, computing the powers of A (G)n = An in O(C)-time is
possible using special structure of the matrices in some cases, including the distance based
invariants [32], the domination numbers [53], and others [31, 33, 54]. Here we prove that
A (G)n = An can be computed in O(C)-time for the Roman domination number (see
Section 4).

4 The Roman domination number of fasciagraphs and

rotagraphs

Let ωn(G;X) be a rotagraph and ψn(G;X) a fasciagraph as defined above. Set U =
Di ∪ Ri = D ⊔ R. Keep in mind that Di ⊆ Gi and Ri ⊆ Gi+1, but since Ri = R and
Di = D for all i, we can write U = Di ∪ Ri = D ⊔ R. A labeled digraph G = G(G;X) is
a graph with a vertex set:

V (G) = {(Vi,Wi) | Vi,Wi ⊆ U, Vi ∩Wi = ∅}

For convenience we sometimes refer to a vertex of G shortly by vi = (Vi,Wi). In particular,
v0 = (V0,W0) stands for (∅, ∅).

Let vi, vj ∈ V (G) and consider for a moment ψ3(G;X). Let Vi ∪ Wi ⊆ D1 ∪ R1

and Vj ∪ Wj ⊆ D2 ∪ R2. Let γRi,j
(G;X) be the weight of a γR-function of a graph

G2 \ (((Vi ∪Wi) ∩R1) ∪ (D2 ∩ (Vj ∪Wj))), such that Vi ∪ Vj ⊆ V ′ and Wi ∪Wj ⊆ W ′,
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G1 G2 G3

Vi Vj

Wi Wj

D1 D2R1 R2

Figure 2: ψ3(G;X) with the above notation.

where (V (G2)\ (V
′∪W ′), V ′,W ′) is an RDF of a graph G2. For consistency, we introduce

an arc between vertices vi and vj only if R ∩ Vi ∩Wj ∩D = ∅ and R ∩Wi ∩ Vj ∩D = ∅.
Set

ℓ(vi, vj) = |R ∩ Vi|+ 2 |R ∩Wi|+ |Vj ∩D|+ 2 |Wj ∩D| −

− |R ∩ Vi ∩ Vj ∩D| − 2 |R ∩Wi ∩Wj ∩D|+ γRi,j
(G;X). (1)

Then we have an algorithm which computes the Roman domination number of rotagraphs
and fasciagraphs:

Algorithm 2

1. For a path algebra select P = (N0 ∪ {∞},min,+,∞, 0).

2. Label G = G(G;X) as defined in (1).

3. In M(P) calculate A (G)n.

4. Let γR (ψn(G;X)) = (A (G)n)00 and γR (ωn(G;X)) = mini (A (G)n)ii.

Theorem 4.1 The Algorithm 2 correctly computes the Roman domination number of
rotagraphs and fasciagraphs:

γR (ψn(G;X)) = (A (G)n)00 (2)

γR (ωn(G;X)) = min
i

(A (G)n)ii (3)

in O(log n)-time.

Proof. Let G1 and G2 be arbitrary graphs, X1 a set of edges between vertices of G1

and G2 and let Ω2(G1, G2;X1, ∅) be a polygraph. Let also P = (N0 ∪ {∞},min,+,∞, 0)
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be a path algebra and let G ′ be a labeled digraph for Ω2 defined as above. Then, by the
definition of the labeling, we have

γR (Ω2 (G1, G2;X1, ∅)) = [A(G1) + A(G2)]00

=

[

min
vk∈V (G)

{ℓ(0, vk) + ℓ(vk, 0)}

]

00

.

Let G1 = G, X1 = X and G2 = ψn−1(G;X). Then (2) follows by induction.
For (3), similarly, consider Ω2(G1, G2;X1, X2) and let G1 = G, X1 = X2 = X and

G2 = ψn−1(G;X).
The time complexity of the algorithm was already discussed for a general case in

Section 3. �

As mentioned before we prove that calculating the powers of matrices A (G), A (G)n =
An (and therefore implementing the algorithm) is possible in O(C)-time based on the
following lemma:

Lemma 4.2 Let k = |V (G(G;X))| and K = |V (G)|. Then there is an index q 6 (4K +
2)k

2

such that Aq = Ap + C for some index p < q and some constant matrix C. Let
P = q − p. Then for every r > p and every s > 0 we have

Ar+sP = Ar + sC .

Proof. First observe that for any l > 1, the difference between any pair of entries of Al,
both different from ∞, is bounded by 4K. Assume (Al)ij 6= ∞. Then

(Al)ij = γR ((V (G1) \ (Vi ∪Wi)) ∪ V (G2) ∪ . . . ∪ V (Gl−1) ∪ (V (Gl) \ (Vj ∪Wj)))

6 γR(ψl(G;X)).

Since Vi ∩Wi = ∅ and Vj ∩Wj = ∅ it follows that

|R ∩ Vi|+ 2 |R ∩Wi|+ |Vj ∩D|+ 2 |Wj ∩D| 6 4|V (G)|.

According to (1) we have

ℓ(vi, vj) 6 4|V (G)|+ γRi,j
= 4|V (G)|+ (Al)ij

(Al)ij > ℓ(vi, vj)− 4|V (G)| > γR (ψl(G;X))− 4|V (G)|.

Therefore
γR (ψl(G;X))− 4|V (G)| 6 (Al)ij 6 γR(ψl(G;X)).

For l > 1, let Kl = min{(Al)ij} and let A′
l = Al − (Kl)J , where J is the matrix with all

entries equal to 0 (recall that we are still in the path algebra P = (N0∪{∞},min,+,∞, 0)).
Since the difference between any two elements of Al, different from ∞, cannot be greater
than 4K, the entries of A′

l can only have values 0, 1, . . . , 4K,∞. Hence there are indices
p < q 6 (4K + 2)k

2

such that A′
p = A′

q. This proves the first part of the lemma.
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The equality Ar+sP = Ar + sC follows from the fact that for arbitrary matrices D, E
and a constant matrix C we have (D + C) ◦ E = D ◦ E + C, where + is the ordinary
matrix addition, i.e. (A+ B)ij = Aij + Bij for all i, j:

((D + C) ◦ E)ij = min
k

{((D)ik + C) + (E)kj} = min
k

{(D)ik + (E)kj}+ C

(D ◦ E + C)ij = min
k

{(D)ik + (E)kj}+ (C)ij = min
k

{(D)ik + (E)kj}+ C.

Therefore, let Aq = Ap + C for some index p < q and some constant matrix C = [c]ij .
Then

Aq+1 = (Ap + C) ◦ A

= (Ap ◦ A) + C

= Ap+1 + C.

Let P = q − p and r > p. Then also

Ar+P = Ar+q−p = Aq ◦ Ar−p

= (Ap + C) ◦ Ar−p = Ap+r−p + C

= Ar + C,

and by induction on s we have

Ar+sP = Ar+P+(s−1)P = (Ar + C) ◦ A(s−1)P = Ar+(s−1)P + C

= Ar + (s− 1)C + C = Ar + sC

for every s > 0. �

Remark 4.3 Consider the Roman domination number of a fasciagraph Pn2Pk, where

k is a fixed number. Then q < (4k + 2)2
3k

. In Table 1 we give the upper bounds for q
for the investigated grids. Observe that already in the cases of very small monographs,
enormously large q are obtained. That is why the second part of Lemma 4.2 is useful for
practical purposes - once a period is detected, it cannot change. As we implemented the
improved algorithm, the period was always found much sooner. Exact values are presented
in the third column of Table 1.

Hence, Lemma 4.2 says that if we assume the size of G is a given constant (and n is a
variable), then the algorithm will run in constant time. But it is important to emphasize
that the algorithm is useful for practical purposes only if the number of vertices of the
monograph G is relatively small, since the time complexity is in general exponential in
the number of vertices of the monograph G.
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Table 1: The upper bound for q and actual values computed by the algorithm.

Pn2Pk
the upper bound for q

from Lemma 4.2
value computed by

the algorithm

k = 2 1064 3

k = 3 14512 ≈ 6 · 10586 6

k = 4 184096 ≈ 4 · 105141 9

k = 5 2232768 11

k = 6 26262144 9

k = 7 302097152 16

k = 8 3416777216 11

5 Cartesian products of paths and cycles

Our aim is to calculate the Roman domination number for graphs Pn2Pk, Pn2Ck, Cn2Pk

and Cn2Ck for some fixed values of k. These graphs are isomorphic to special classes
of fasciagraphs and rotagraphs (i.e. fasciagraphs and rotagraphs where G = Pk or G =
Ck and where X is a matching between two copies of G). Therefore, calculating exact
formulas for their Roman domination number is possible because of the Algorithm 2
together with Lemma 4.2. But with increasing k matrices A(G)n become bigger and
bigger. Therefore we had to improve straightforward implementation of the algorithm.
Instead of calculating all elements of the powers of matrices A(G)n, we calculated only
those rows which are important for the result. Then we checked the difference of the
new row against the previously stored rows until a constant difference was detected. This
yields a correct result because of the next lemma, adaptation of a lemma from [54].

Lemma 5.1 Assume that the j-th row of An+P and An differ for a constant, a
(n+P )
ji =

a
(n)
ji + C for all i. Then mini a

(n+P )
ji = mini a

(n)
ji + C.

Proof. Let a
(n+P )
jl = mini a

(n+P )
ji and assume that there exists t 6= l such that a

(n)
jl > a

(n)
jt .

It follows that
a
(n+P )
jt = a

(n)
jt + C < a

(n)
jl + C = a

(n+P )
jl ,

which contradicts the minimality of a
(n+P )
jl . �

Obviously, such an improvement is crucial in the case of fasciagraphs: recall that
γR (ψn(G;X)) = (A (G)n)00. For computing 00-th element of An we only need the first
rows of the matrices Aj for 2 6 j 6 n− 1:

An0j
= min

i

{

An−10i + A
ij

}

.

the electronic journal of combinatorics 19(3) (2012), #P19 10



This is not the case for rotagraphs because γR (ωn(G;X)) = mini (A (G)n)ii .
By implementation of the improved algorithm we got formulas presented in the fol-

lowing subsections. For each case also constructions of γR-functions are presented. In
every figure that follows we only emphasized vertices of V1 and V2 of a γR-function of a
depicted graph in a way that a single full circ represents a vertex of V1 and a double circ
represents a vertex of V2.

5.1 γR(Pn2Pk) for k ∈ {5, 6, 7, 8}

The Roman domination number of grid graphs was studied in [9, 12] and the following
results were established:

γR (Pn) = γR (Cn) =

⌈

2n

3

⌉

γR (Pn2P2) = n+ 1

γR (Pn2P3) =

{

⌊

3n
2

⌋

+ 2; if n ∈ {4k + 3 | k ∈ N ∪ {0}}
⌊

3n
2

⌋

+ 1; otherwise

γR (Pn2P4) =

{

2n+ 1; if n ∈ {1, 2, 3, 5, 6}

2n; otherwise

No formulas were given for k > 4. However, in [12] the author also proposed an algorithm
for computing γR (Pn2Pk) for any fixed value of k in O(n)-time. By implementing the
improved Algorithm 2 as already discussed above, we obtained formulas given below. We
also looked for the γR-functions of graphs Pn2Pk for the investigated k and all n ∈ N.
They are depicted in Figures 3 to 6.

γR (Pn2P5) =

{

8; if n = 3
⌊

12n
5

⌋

+ 2; otherwise

γR (Pn2P6) =

{

⌊

14n
5

⌋

+ 2; if n < 5 or n ∈ {5k, 5k + 3, 5k + 4 | k ∈ N}
⌊

14n
5

⌋

+ 3; otherwise

γR (Pn2P7) =

{

⌊

16n
5

⌋

+ 2; if n ∈ {1, 2, 4, 7, 5k | k ∈ N}
⌊

16n
5

⌋

+ 3; otherwise

γR (Pn2P8) =



















9; if n = 2

16; if n = 4
⌊

18n
5

⌋

+ 4; if n ∈ {5k + 3 | k ∈ N}
⌊

18n
5

⌋

+ 3; otherwise

The Roman domination numbers for small grids are presented in Table 2.
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Table 2: Roman domination number of some Pn2Pk.

k \ n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 2 2 3 4 4 5 6 6 7 8 8 9 10 10
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
3 6 7 8 10 12 13 14 16 18 19 20 22 24
4 8 11 13 14 16 18 20 22 24 26 28 30
5 14 16 18 21 23 26 28 30 33 35 38
6 19 22 24 27 30 33 36 38 41 44
7 24 28 31 34 38 41 44 47 50
8 32 35 39 42 46 50 53 57

5.2 γR(Pn2Ck) for k ∈ {3, 4, 5, 6, 7, 8}

In the literature we found no results on the Roman domination numbers of graphs Pn2Ck.
Our formulas are given below and constructions for each case are depicted in Figures 7
to 12.

γR (Pn2C3) =

⌊

3n

2

⌋

+ 1

γR (Pn2C4) =

{

3; if n = 1

2n; otherwise

γR (Pn2C5) = 2n+ 2

γR (Pn2C6) =

⌊

8n

3

⌋

+ 2

γR (Pn2C7) =

{

3n+ 2; if n ∈ {1, 2, 4}

3n+ 3; otherwise

γR (Pn2C8) =











8; if n = 2
⌊

7n
2

⌋

+ 2; if n ∈ {3, 4, 8}
⌊

7n
2

⌋

+ 3; otherwise

5.3 γR(Cn2Pk) for k ∈ {2, 3, 4, 5, 6} and n > 3

We implemented this case as a rotagraph. From (3) we know that the calculations for
rotagraphs take much more time than the calculations for fasciagraphs. Therefore we
covered only the cases for k ∈ {2, 3, 4, 5, 6}. As in former cases, formulas for the Roman
domination number are presented below and constructions can be found in Figures 13 to
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18.

γR (Cn2P2) =

{

n; if n ∈ {4k | k ∈ N}

n+ 1; otherwise

γR (Cn2P3) =











5; n = 3
⌈

3n
2

⌉

; if n ∈ {4k, 4k + 1 | k ∈ N}
⌈

3n
2

⌉

+ 1; otherwise

γR (Cn2P4) =

{

7; if n = 3

2n; otherwise

γR (Cn2P5) =

{

⌈

12n
5

⌉

+ 1; if n ∈ {5k + 2 | k ∈ N}
⌈

12n
5

⌉

; otherwise

γR (Cn2P6) =











⌊

14n
5

⌋

; if n ∈ {5k | k ∈ N}
⌊

14n
5

⌋

+ 1; if n ∈ {5k + 4 | k ∈ N0}
⌊

14n
5

⌋

+ 2; otherwise

5.4 γR(Cn2Ck) for k ∈ {3, 4, 5, 6} and n > 3

In [18], the authors showed that γR (C5n2C5m) = 10mn, which is consistent with our
calculations. We found no other formulas for the Roman domination numbers of graphs
Cn2Ck. Constructions for each case can be found in Figures 19 to 23.

γR (Cn2C3) =

⌈

3n

2

⌉

γR (Cn2C4) = 2n

γR (Cn2C5) =

{

2n; if n ∈ {5k | k ∈ N}

2n+ 2; otherwise

γR (Cn2C6) =











⌊

8n
3

⌋

; if n ∈ {6k | k ∈ N}
⌊

8n
3

⌋

+ 1; if n ∈ {6k + 5, 18k + 3, 18k + 8, 18k + 13 | k ∈ N0}
⌊

8n
3

⌋

+ 2; otherwise

6 Roman graphs

Combining results obtained here and known results on the domination number of graphs
[1, 8, 19, 35, 42] we also looked for Roman graphs (graphs, satisfying γR(G) = 2γ(G)). In
the cases where the domination numbers of graphs have not been calculated yet, we also
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refer to a simple observation: a graph G cannot be a Roman graph if γR(G) is an odd
number. It is also known that a graph is a Roman graph if and only if it has a γR-function
f = (V0, V1, V2) with V1 = ∅ ([9], Proposition 16). Except in cases Pn2C5, Pn2C8, Cn2P5,
Cn2C5 and Cn2C6, the following is a complete listing of all Roman graphs in the classes
of graphs that we have studied.

1. Roman graphs among Pn2Pk:

k = 1: n ∈ {3l + 2, 3l + 3 | l ∈ N0}

k = 2: n odd

k = 3: n ∈ {4l + 1, 4l + 2, 4l + 3 | l ∈ N}

k = 4: n ∈ N \ {1, 2, 3, 5, 6, 9}

k = 5: n ∈ {1, 2, 3, 7, 5l, 5l + 1 | l ∈ N}

k = 6: n ∈ {1, 3, 5, 7, 8, 12, 15, 22}

k = 7: n ∈ {2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 16}

k = 8: n ∈ {1, 4, 6, 7, 8}

2. Roman graphs among Pn2Ck:

k = 3: n ∈ {4l + 1, 4l + 2 | l ∈ N0}

k = 4: n > 2

k = 5: n ∈ {1, 2, 3}

k = 6: n ∈ {1, 3, 4, 6, 6l + 1, 6l + 3, 6l + 4, 6l + 6 | l ∈ N}

k = 7: n ∈ {2, 4, 2l + 1 | l ∈ N0}

k = 8: n ∈ {1, 2, 3, 4, 5, 6}

3. Roman graphs among Cn2Pk:

k = 2: n ∈ {4l, 4l + 1, 4l + 3 | l ∈ N}

k = 3: n > 4

k = 4: n ∈ N \ {3, 5, 9}

k = 5: n ∈ {3, 4, 7, 8, 10l, 10l + 4, 10l + 7, 10l + 8 | l ∈ N}

k = 6: n ∈ {3, 4, 6, 8, 11, 14, 18, 28}

4. Roman graphs among Cn2Ck:

k = 3: n ∈ {4l, 4l + 1 | l ∈ N}

k = 4: n ∈ N

k = 5: n ∈ {3, 4, 5l, 5l + 1, 5l + 2, 5l + 4 | l ∈ N}
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k = 6: n ∈ {6l, 6l + 4, 18l + 1, 18l + 5, 18l + 7, | l ∈ N}

Remark 6.1 It was proven in [42] that n +
⌈

n
5

⌉

6 γ (Cn2P5) 6 n +
⌈

n
4

⌉

. In fact, we
show here that since C10i2P5, C10i+42P5, C10i+72P5 and C10i+82P5 are Roman graphs
(see Figure 17), their domination number equals γR

2
. More precisely,

• γR(C10i2P5) =
⌈

12(10i)
5

⌉

= 24i hence γ(C10i2P5) = 12i = 10i+ 2i = n+ n
5
;

• γR(C10i+42P5) =
⌈

12(10i+4)
5

⌉

= 24i+10 hence γ(C10i+42P5) = 12i+5 = (10i+4)+

(2i+ 1) = n+ ⌈n
5
⌉;

• γR(C10i+72P5) =
⌈

12(10i+7)
5

⌉

= 24i + 17 + 1 = 24i + 18 hence γ(C10i+72P5) =

12i+ 9 = (10i+ 7) + (2i+ 2) = n+ ⌈n
5
⌉;

• γR(C10i+82P5) =
⌈

12(10i+8)
5

⌉

= 24i + 20 hence γ(C10i+82P5) = 12i + 10 = (10i +

8) + (2i+ 2) = n+ ⌈n
5
⌉.

7 Summary and open problems

Let us conclude with some remarks and suggestions for future work on this topic.

1. All the implementations of the algorithm presented here were performed on a per-
sonal computer or on a small computer cluster. Because of the time and space com-
plexity limitations we could therefore not calculate the Roman domination numbers
of the Cartesian products of paths and cycles for larger monographs although the-
oretically we can get the exact formula for γR(Pn2Pk) for any value of k. It would
be interesting to find another way to determine γR(Pn2Pk) for any k, n ∈ N. Re-
call that Chang’s conjecture about the domination number of grid graphs was open
for quite a long time before Gonçalves, Pinlou, Rao and Thomassé [19] proved it.

Considering the fact that the nice expression γ(Pn2Pk) =
⌊

(k+2)(n+2)
5

⌋

− 4 holds

for quite ”large” grids, i.e. for Pn2Pk for any 16 6 k 6 n we do not think we
have enough information to make analogous conjecture for Roman domination on
grid graphs. From the results that have been established, it seems that the Roman

domination number of Pn2Pk could be of the form
⌊

2(k+1)n
5

⌋

+C(k), where C(k) is

some constant, dependent of k.

2. As can be seen from γR-functions in Figures 3 to 23, our graphs (except Cn2C6 for
some n) have property that V1 ∪ V2 is an independent set. Note that in some cases
two vertices of V2 are adjacent in the figure because we wanted to show that they
are Roman graphs. But in each case, one of the two adjacent vertices, which are
assigned the value 2, can be replaced with two vertices of V1 in a way that V1 ∪ V2
is an independent set. Such graphs were called Roman domination perfect graphs
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in [30] where it was shown that if a graph does not contain one of the forbidden
induced subgraphs from a list, then it is Roman domination perfect graph. Note
that all our graphs contain one of the forbidden induced subgraphs of that list, but
are still Roman domination perfect graphs.

3. The same approach as used in this paper can provide algorithms for computing
the Roman domination numbers of the other known graph products [22] of paths
and cycles. Only bounds are known for the Roman domination number of the
strong product of arbitrary graphs [51] and also γR(Pn ⊠ Pk) is not determined
yet. To the best of our knowledge, no one has even tried to work on the Roman
domination number of the direct product of graphs. The approach used here would
make it possible to determine γR(Pn × Pk) for some fixed values of k, and more
general results would be welcome. Roman domination number of the fourth well
known graph product, the lexicographic product, was established in [37] using a new
concept of the so-called dominating couples.

4. Several new graph invariants based on the Roman domination have been studied, for
instance weak Roman domination [10, 27, 45], k-Roman domination [26], Roman
k-domination [34] and others [3, 5, 13, 28]. We believe that a similar approach
could yield constant time algorithms for most or even all of these graph invariants
on fasciagraphs and rotagraphs.
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[32] M. Juvan, B. Mohar and J. Žerovnik, Distance–related invariants on polygraphs,
Discrete Applied Mathematics, 80 (1997), 57–71.
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γR = 12k + 6

γR = 12k + 9

γR = 12k + 11

γR = 12k + 2

γR = 12k + 4

n = 5k

n = 5k + 1

n = 5k + 2

n = 5k + 3

n = 5k + 4

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

Figure 3: Pn2P5
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γR = 14k + 8

γR = 14k + 10

γR = 14k + 13

γR = 14k + 2

γR = 14k + 5

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

n = 5k

n = 5k + 1

n = 5k + 2

n = 5k + 3

n = 5k + 4

Figure 4: Pn2P6

the electronic journal of combinatorics 19(3) (2012), #P19 21



γR = 16k + 12

γR = 16k + 15

γR = 16k + 2

γR = 16k + 6

γR = 16k + 9

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7

n = 5k

n = 5k + 1

n = 5k + 2

n = 5k + 3

n = 5k + 4

Figure 5: Pn2P7
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γR = 18k + 14

γR = 18k + 17

γR = 18k + 3

γR = 18k + 6

γR = 18k + 10

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7

n = 5k

n = 5k + 1

n = 5k + 2

n = 5k + 3

n = 5k + 4

Figure 6: Pn2P8
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γR = 6k + 2

γR = 6k + 4

γR = 6k + 5

γR = 6k + 1

n = 1 n = 2 n = 3 n = 4

n = 4k

n = 4k + 1

n = 4k + 2

n = 4k + 3

Figure 7: Pn2C3

n = 1 n = 2 n = 3 n = 4 n = 5

Figure 8: Pn2C4
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n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

n = 5k

n = 5k + 1

n = 5k + 2

n = 5k + 3

n = 5k + 4

Figure 9: Pn2C5
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γR = 16k + 4

γR = 16k + 7

γR = 16k + 10

γR = 16k + 12

γR = 16k + 15

γR = 16k + 2

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

n = 6k + 1

n = 6k + 2

n = 6k + 3

n = 6k + 4

n = 6k + 5

n = 6k + 6

Figure 10: Pn2C6
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n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7

n = 8 n = 9 n = 10 n = 11

n = 12 n = 13 n = 14

n = 15
n = 14k + 2, γR = 42k + 9

Figure 11: Pn2C7
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n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

n = 9 n = 10 n = 11 n = 12

n = 13 n = 14 n = 15

n = 16 n = 17

n = 18 n = 19

n = 20 n = 16k + 5, γR = 56k + 20

Figure 12: Pn2C8
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n = 4k

n = 4k + 1

n = 4k + 2

n = 4k + 3

γR = 4k

γR = 4k + 2

γR = 4k + 3

γR = 4k + 4

Figure 13: Cn2P2

n = 3 n = 4

γR = 6k + 2

γR = 6k + 4

γR = 6k + 6

γR = 6k + 6

n = 4k + 1

n = 4k + 2

n = 4k + 3

n = 4k + 4

Figure 14: Cn2P3
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γR = 8k

γR = 8k + 2

γR = 8k + 4

γR = 8k + 6

n = 4k + 1

n = 4k + 2

n = 4k + 3

n = 4k

Figure 15: Cn2P4
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γR = 12k + 6

γR = 12k + 8

γR = 12k + 10

γR = 12k + 12

γR = 12k + 3

n = 3 n = 4 n = 5 n = 6

n = 5k + 5

n = 5k + 1

n = 5k + 2

n = 5k + 3

n = 5k + 4

Figure 16: Cn2P5
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Figure 17: C10k2P5, C10k+42P5, C10k+72P5 and C10k+82P5 are Roman graphs.
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Figure 18: Cn2P6
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Figure 19: Cn2C3

n = 3 n = 4 n = 5 n = 6

Figure 20: Cn2C4
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Figure 21: Cn2C5
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Figure 22: Cn2C6
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Figure 23: Cn2C6
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