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Abstract| A novel Markov random �eld (MRF) model is proposed

for roof-edge (as well as step-edge) preserving image smoothing. Image

surfaces containing roof-edges are represented by piecewise continuous

polynomial functions governed by a few parameters. Piecewise smooth-

ness constraint is imposed on these parameters rather than on the sur-

face heights as is in traditional models for step-edges. In this way, roof

edges are preserved without the necessity to deal with instable higher

order derivatives.
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I. Introduction

Image smoothing is aimed at removing corrupting noise and
restoring true image surfaces. It is performed based on the
smoothness constraint about image surfaces which assumes that
certain physical properties in a neighborhood present some co-
herence and generally do not change abruptly. The smoothness
is imposed on the image surface function by using a Markov
random �eld (MRF) [1], [2], [3] or regularization [4], [5] formu-
lation.
Edges contain important information for image analysis and

an important issue in image smoothing is edge preserving. Two
major types of edges are steps and roofs. Step-edge preserving
smoothing has been well researched and there exist a number
of successful models, such as the line process model [1] in the
Markov random �eld (MRF) framework and the weak string and
membrane models [5] in the regularization framework; further
studies can be found in [6], [7], [8], [9], [10]. These models as-
sume that the underlying surface has zero �rst order derivatives
and are suitable for preserving step-edges but not for roof-edges.
Higher order derivatives have to be dealt with for roof-edges, but
such algorithms su�er from instability [5].
In this paper, a novel MRF representation is proposed in

which �rst order piecewise smoothness (to explained in the
main text) is used for roof-edge (as well as step-edge) preserv-
ing smoothing. Image surfaces are assumed to be a piecewise
function governed by a few parameters. Roof discontinuities in
the image surface function correspond to step discontinuities in
some governing parameter functions. So, it suÆces to preserve
roof edges if the �rst order piecewise smoothness is imposed on
the parameter functions rather than directly on the image sur-
face function. Roof edges in the surface function, i.e. step edges
in the parameter functions, are preserved as if step edges in the
surface are preserved in the line process model. This extends
the ability of �rst order models (such as the line process and
weak membrane models) in edge preserving smoothing.
The rest of the paper is organized as follows: Section 2 pro-

vides a parametric model for roof-edges, and describes the pro-
posed MRF model for roof-edge preserving smoothing. Experi-
mental results are presented in Section 3.

II. MRF Modeling for Surfaces Containing Roof

Edges

A. Smoothness Constraint

Before presenting the new method, a review is given be-
low on how the smoothness constraint can be imposed. Let
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f = ff1; : : : ; fmg be the sample points of a (one dimensional,
for the moment) image surface. Assuming that f constitutes a
Markov random �eld (MRF) [11], [12], its joint prior distribu-
tion is Gibbsian, p(f) / e�U(f) where U(f) is called the prior
energy. p(f) encodes prior assumptions on the interested class of
MRFs (e.g. the expected type of surfaces in the image). When
it encodes the smoothness constraint, U(f) can be considered
as a measure of the extent to which the smoothness is violated
by f .
Let us consider a 
at surface of the form f(x) = a, where

a is any constant. Its �rst-order derivative is zero, f 0(x) = 0,
and so the smoothness can be imposed by choosing U(f) =R
[f 0(x)]2dx =

P
i
(fi � fi�1)

2. The energy takes the mini-
mum value of zero when f is absolutely 
at, i.e. fi = fi�1
for all i. This is referred to as the �rst order smoothness

because it involves the �rst order derivative. Next, let us
consider slanted planar surfaces of the form f(x) = a + bx,
where b 6= 0. Such surfaces have zero second-order deriva-
tive. Therefore, the smoothness can be imposed by choosing
U(f) =

R
[f 00(x)]2dx =

P
i
[fi+1 � 2fi + fi�1]

2. This is referred
to as the second order smoothness.
For edge-preserving smoothing, piecewise continuous surfaces

are considered. For piecewise 
at surfaces containing step edges,
the following �rst order piecewise smoothness can be used

U(f) =

Z
g(f 0)dx =

X
i

g(fi � fi�1) (1)

g(�) should satisfy several conditions [10] of which a necessary
condition, lim�!1 g0(�) = C (C � 0 is a constant), is the key
for the edge-preserving capability. When g is also a function
of �2, then g0(�) = 2�h(�) where h(�) is some function which
determines interaction between neighboring points.
When applied to the surface heights (pixel values), the �rst

order piecewise smoothness such as encoded by the line-process
[1] and the weak string and membrane [5] do not care about
roof edges; they allow the surface to crease without increasing
the energy [5]. As such, they always smooth out roof edges and
thus are unsuitable for detecting roof edges [5].
One might suggest to use higher order piecewise smoothness,

such as weak rod and plate [5]. However, such models are usu-
ally not recommended because of their instability [5]. In the
following, a roof-edge model is de�ned by using a piecewise
polynomial function, and a novel MRF model encoding the �rst
order piecewise smoothness is proposed to perform roof-edge
preserving smoothing.

B. Modeling Roof-Edges

An ideal roof edge can be modeled as a joining point of two
planar surfaces. Fig.1 shows a few examples of roof edges, not-
ing that they are not necessarily local extrema in surface height.
A planar surface takes the form z(x) = a + bx if it is on a 1D
domain, or z(x; y) = a+ bx+ cy if on 2D, where a, b and c are
some constant parameters. Let the parameters be denoted col-
lectively by f = fa; b; cg and a parameterized plane be denoted
by z = zf (x; y) = a + bx + cy. Each distinct set of constants
fa; b; cg represents a distinct plane. For a slanted plane, at least
one of b and c is nonzero.
Let us look at Fig.2 to see what happens when the line process

model is used to smooth z(x): the discontinuity in b (also in
a) is smoothed out and the information about the roof is lost.
However, imposing the �rst order piecewise smoothness on these
parameters can solve this problem; see below.
A general roof can be modeled as a joining point of two non-

linear surfaces represented by z = zf (x; y) = a(x; y)+b(x; y)x+
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Fig. 1. Examples of roof edges in 1D. Corner points 1, 2 and 3 are roof

edge points. No.4 is a roof to the right but a step to the left.

Fig. 2. A clean ideal roof in 1D before (top) and after (bottom) being

smoothed by the line-process model. From left to right are z(x) =

a(x)+b(x)x, a(x), and b(x) functions, respectively. The smoothing is

performed on the z(x). The a(x) and b(x) in the �gure are computed

from the respective z(x) functions. The discontinuities in a and b,

and hence the roof edge, are smoothed out.

c(x; y)y where a, b and c are now some functions of x and y. A
step edge is a step (C0) discontinuity in z(x; y); a roof is sig-
naled by a step (C0) discontinuity in either b(x; y) or c(x; y). In
addition, there is usually also a discontinuity in a(x; y) at either
a roof or a step discontinuity. If a(x; y), b(x; y) and c(x; y) are
(piecewise) constant, then zf (x; y) degenerates to be (piecewise)
planar. If they are (piecewise) C0 continuous, then zf (x; y) con-
sists of (piecewise) nonlinear surface(s).

For notational convenience, let the points on the x-y grid be
indexed by a single index i 2 S = f1; : : : ;mg where S is called
the set of sites in MRF literature. When all the zi = zf(xi; yi)
belong to a single planar surface of the form z(x; y) = a+bx+cy,
the problem of �nding the underlying a, b and c parameter con-
stants can be well solved, for example, by using the least squares
method. However, when they are due to piecewise surfaces and
the segmentation of the data into separate surfaces is unknown,
�nding the underlying parameters f = fa; b; cg as piecewise
functions is a non-trivial problem.

When the segmentation is unknown, we may consider the
parameters are some functions of (x; y): ai = a(xi; yi), bi =
b(xi; yi) and ci = c(xi; yi), collectively denoted by fi =
[ai; bi; ci]

T . As such, the surface heights is reconstructed as
zi = zfi(xi; yi) = ai + bixi + ciyi. Consider ai, bi and ci as
random variables, fi a random vector, and f = ff1; : : : ; fmg a
random �eld. We have the following remarks about relationship
between the a; b; c functions and the local con�guration of f :

� In the case of a single planar surface, the parameter func-
tions a(x; y), b(x; y) and c(x; y) are constant over the x-y do-
main. Therefore, there must be fi = fi0 for all i 6= i0.

� In the case of a piecewise planar surface, the functions are
piecewise constant over the x-y domain. Therefore, fi = fi0

holds only when both zi and zi0 belong to the same plane, and
fi 6= fi0 otherwise. Discontinuities occur at boundary locations

where two surfaces meet.
� In the case of a single nonlinear surface, the functions

a(x; y), b(x; y) and c(x; y) are C0 continuous over the x-y do-
main. Therefore, there should be no discontinuity between fi
and fi0 when i and i0 are neighboring sites.

� In the case of a piecewise nonlinear surface containing
roofs, i.e. C1 discontinuities in z, the parameter functions are
piecewise C0 continuous over the x-y domain. Therefore, two
neighboring parameter vectors fi and fi0 should be similar when
zi and zi0 belong to a continuous part of the surface; otherwise,
there should be a discontinuity between fi and fi0 .

C. MAP-MRF Solution

Firstly, let us de�ne the prior for the parameter vector �eld
f = ff1; : : : ; fmg which is assumed to be Markovian. The
a(x; y), b(x; y) and c(x; y) are piecewise constant functions when
z(x; y) consists of piecewise planar surfaces, and therefore their
partial derivatives with respect to x and y should be zero at non-
edge locations. These constraints may be imposed by using the
following \prior energy"

U(f) =
X
i

X
i02Ni

g(�(fi; fi0)) (2)

where Ni is the set of neighbors of i (e.g. the 4 or 8 directly
adjacent points), g is an adaptive potential function satisfying
certain conditions [10] including the necessary condition men-
tioned earlier (e.g. g(�) = 1=(1 + �2) used for experiments in
this paper), and

[�(fi; fi0)]
2 = wa[ai � ai0 ]

2 + wb[bi � bi0 ]
2 + wc[ci � ci0 ]

2 (3)

is a weighted distance between fi and fi0 where w > 0 are the
weights.
Then, let us de�ne the observation model. Assume that the

data d = fd1; : : : ; dmg, di = zfi(xi; yi) + ei, is the true surface
height zi corrupted by independently and identically distributed
(i.i.d.) Gaussian noise ei. Then the conditional density of data
p(d j f) is a Gibbs distribution with the following \likelihood
energy"

U(d j f) =
X
i

[zfi(xi; yi)�di]
2 =
X
i

(ai+bixi+ciyi�di)
2 (4)

This imposes the constraint from the data.
Now, the posterior p(f j d) is a Gibbs distribution with the

\posterior energy" function U(f j d) = U(d j f) + U(f). For
z = a+ bx+ cy, the energy can be written as

U(f j d) =
X
i

(ai + bixi + ciyi � di)
2 +
X
i

X
i02Ni

(5)

g(
p
wa[ai � ai0 ]2 + wb[bi � bi0 ]2 + wc[ci � ci0 ]2)

The MAP estimate is de�ned as f� = argminf U(f j d).
The proposed MAP-MRF model generalizes the line process

model of [1]. The latter is a special case of the former with
bi = ci = 0: When bi = ci = 0, then the surface function is
reduced to zi = ai and the two models become equivalent.

D. Energy Minimization

The posterior energy E(f) = U(f j d) may be minimized
by using a deterministic gradient descent algorithm to achieve
@E(f)

@ai
= @E(f)

@bi
= 0 for all i. Annealing can be incorporated into

the iterative gradient descent process to help escape from local
minima. For example, introduce a \temperature" parameter T



into the h function so that it becomes hT (�) = 1
1+�2=T

. At

the beginning, T is set to a high value T (0). As the iteration
continues, it is decreased towards the target value of 1 according
to, e.g. T (t+1)  0:9T (t). This is shown to be e�ective.

Randomization can also be incorporated into the gradient de-
scent to help escaping from local minima. In a simple method
called randomized gradient descent, a random weight � is ap-
plied between the two terms in every updating for every i and
n. It is more eÆcient than random sampling methods such as
Metropolis algorithm [13] and Gibbs sampler [1] because the
acceptance probability of any update is always one. A random-
ized neighborhood system [14] also works well in avoiding local
minima.

III. Experimental Results

Range images are used because in such data there are geo-
metrically well de�ned roof and step edges. The 8-adjacency
is used for de�ning the MRF neighborhood system. The sur-
faces are assumed to be of the form z(xi; yi) = ai + bixi + ciyi.
The ai, bi and ci parameters are initially estimated from the
data by local bilinear �t. The MAP estimates a�, b� and c� are
computed by minimizing U(f j d) (using an iterative gradient
descent combined with annealing). The smoothed surface is re-
constructed as z�i = a�i +b�i xi+c�i yi. Roof edges are detected by
thresholding the directional derivatives of b� and c�, and step
edges are detected by thresholding z�; this is followed by a local
maximum selection operation to get the �nal edge map.

Fig. 3. Smoothing 1D surface. Top (from left to right): surface data d(x),

initial estimates for a(x) and b(x) obtained by using �nite di�erence.

Bottom (from left to right): the smoothed surface z
�(x) = a

�(x) +

b
�(x) � x, and the MAP estimates a�(x) and b

�(x).

Before presenting results for image surfaces on the 2D domain,
let us look at a result for 1D surface. For the clean ideal roof
in Fig.2, the proposed model produces results which are very
close to the analytically calculated shapes shown in the top
row of Fig.2, with sharp steps in a� and b� and hence a sharp
roof in z�. For a noisy input (Fig.3), the discontinuities in a�

and b� are well preserved and there are no round-up's over the
discontinuities. This demonstrates signi�cant improvement over
the line process model result shown at the bottom of Fig.2.

Now, let us look at two results for 2D surfaces. The �rst is
obtained from a synthetic pyramid image composed of piece-
wise planar surfaces (Fig.4) containing ideal roof edges. The
smoothed image has clean surfaces and clear roof boundaries
as can be seen in the 3D plots. The the a; b; c and the edge
maps before and after smoothing demonstrate the removal of
noise and the preservation of discontinuities in the a, b and c
parameter functions. The detection of step edges (the out-most

            

            

                        

                        

                        

                        

Fig. 4. Upper part: 3D plots of a pyramid image before and after smooth-

ing. Lower part: The parameter and edge maps of the pyramid before

(left) and after (right) smoothing; from top to bottom are: parameter

maps a, b and c and the detected edges.



part of the edge map) and roof edges (the inner part) is nearly
perfect even with the simple thresholding edge detector.
The second result is obtained on a Renault part image com-

posed of free-form surfaces with roof edges (Fig.5), noting that
the orginal image is severely quantized in depth. In this case, a,
b and c are piecewise continuous nonlinear functions (of x and
y) rather than piecewise constant. True roof edges emerge as
a result of the edge-preserving smoothing. This result demon-
strates that the proposed model also works well for free-form
surfaces containing general roof edges.            

            

            

Fig. 5. The Renault part image (top, shaded for visualization of the

shape) and edges detected before (middle) and after (bottom) roof

edge preserving smoothing.

IV. Conclusion

A new MRF model has been proposed for roof-edge (as well
as step-edge) preserving smoothing. The approach is the fol-
lowing: The image surface function is modeled using a para-
metric polynomial representation. Based on this, the problem
of preserving C1 discontinuities in the image surface function
is converted to preserving C0 discontinuities in the governing
parameter functions; in other words, the piecewise smoothness
is imposed on the parameter functions rather directly on the
image surface height function itself. In this way, only the �rst

derivatives are required to preserve roof edges. This avoids the
instability of using higher order derivatives and is the advantage
of the proposed MAP-MRF model. As such, the model extends
the ability of the existing �rst order piecewise smoothness mod-
els in edge preserving smoothing.

Acknowledgment This work was supported by NTU-AcRF
RG 43/95 and RG 51/97.

References

[1] S. Geman and D. Geman, \Stochastic relaxation, Gibbs distribution and

the Bayesian restoration of images", IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 6, no. 6, pp. 721{741, November 1984.

[2] H. Elliott, H. Derin, R. Cristi, and D. Geman, \Application of the Gibbs

distribution to image segmentation", in Proceedings of the International

Conference on Acoustic, Speech and Signal Processing, San Diego, March

1984, pp. 32.5.1{32.5.4.

[3] J. L. Marroquin, Probabilistic Solution of Inverse Problems, PhD thesis,

MIT AI Lab, 1985.

[4] T. Poggio, V. Torre, and C. Koch, \Computational vision and regulariza-

tion theory", Nature, vol. 317, pp. 314{319, 1985.

[5] A. Blake and A. Zisserman, Visual Reconstruction, MIT Press, Cambridge,

MA, 1987.

[6] T. Hebert and R. Leahy, \A generalized EM algorithm for 3D Bayesian

reconstruction from Poisson data using Gibbs priors", IEEE Transactions

on Medical Imaging, vol. 8, no. 2, pp. 149{202, June 1989.

[7] K. Lange, \Convergence of EM image reconstruction algorithm with Gibbs

smoothing", IEEE Transactions on Medical Imaging, vol. 9, no. 4, pp. 439{

446, December 1990.

[8] C. Bouman and K. Sauer, \A generalized Gaussian image model for edge

preserving MAP estimation", IEEE Transactions on Image Processing, vol.

2, no. 3, pp. 296{310, July 1993.

[9] R. L. Stevenson, B. E. Schmitz, and E. J. Delp, \Discontinuity preserving

regularization of inverse visual problems", IEEE Transactions on Systems,

Man and Cybernetics, vol. 24, no. 3, pp. 455{469, March 1994.

[10] S. Z. Li, \On discontinuity-adaptive smoothness priors in computer vi-

sion", IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 17, no. 6, pp. 576{586, June 1995.

[11] R. Chellappa and Anil Jain, Eds., Markov Random Fields: Theory and

Applications, Academic Press, 1993.

[12] S. Z. Li, Markov Random Field Modeling in Computer Vision, Springer-

Verlag, New York, 1995.

[13] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller,

\Equations of state calculations by fast computational machine", Journal

of Chemical Physics, vol. 21, pp. 1087{1092, 1953.

[14] S. Z. Li, \Invariant surface segmentation through energy minimization

with discontinuities", International Journal of Computer Vision, vol. 5, no.

2, pp. 161{194, 1990.


