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ABSTRACT: 

3D building reconstruction from remote sensing image data from satellites is still an active research topic and very valuable for 3D 

city modelling. The roof model is the most important component to reconstruct the Level of Details 2 (LoD2) for a building in 3D 

modelling. While the general solution for roof modelling relies on the detailed cues (such as lines, corners and planes) extracted 

from a Digital Surface Model (DSM), the correct detection of the roof type and its modelling can fail due to low quality of the DSM 

generated by dense stereo matching. To reduce dependencies of roof modelling on DSMs, the pansharpened satellite images as a rich 

resource of information are used in addition. In this paper, two strategies are employed for roof type classification. In the first one, 

building roof types are classified in a state-of-the-art supervised pre-trained convolutional neural network (CNN) framework. In the 

second strategy, deep features from deep layers of different pre-trained CNN model are extracted and then an RBF kernel using SVM 

is employed to classify the building roof type.  Based on roof complexity of the scene, a roof library including seven types of roofs is 

defined. A new semi-automatic method is proposed to generate training and test patches of each roof type in the library. Using the 

pre-trained CNN model does not only decrease the computation time for training significantly but also increases the classification 

accuracy. 

* Corresponding author

1. INTRODUCTION

Today, due to the availability of satellite images with high 

spatial resolution, there is an increasing interest in developing 

algorithms for 3D point cloud generation by applying stereo 

image matching techniques. Although the accuracies of the 

Digital Surface Models (DSMs) obtained from stereo satellite 

images are generally lower than that obtained from LiDAR data 

or aerial images, it is assumed that they are still sufficient for 

building recognition and reconstruction. Furthermore, due to 

their rich semantic information content, satellite images can be 

used additionally for segmentation and classification.  3D 

building model reconstruction from satellite images is an active 

research topic which is still in its early stages. Therefore, there 

are still considerable challenges for improvement of the fully-

automatic approaches. Buildings are elevated objects; therefore, 

the height information provided by DSM data can help to 

distinguish them from other objects with similar properties such 

as color or gray values (e.g., flat-roof buildings from asphalt 

roads). However, due to occlusions, clutter, and some 

deficiencies of the DSM data generation techniques (i.e. dense 

stereo matching), the resulting DSM data usually suffers from 

noise, artefacts, and imperfection (e.g. gaps), especially, at the 

building edges and roof break lines such as ridge-line and 

valleys.  

Another problem with the use of DSM data for 3D building 

model reconstruction is that the existence noise in DSM makes 

it a difficult task to discover meaningful patterns (like roof 

planes) since neighboring roof points show high variability in 

height information. For example, in some regions, the geometric 

parameters (e.g., the slopes and normal vectors) of neighboring 

pixels in the same roof plane can be significantly different. For 

this reason, data-driven based methods cannot accurately 

segment the 3D roof planes and lead to several spurious small 

segments known as an over-segmentation (Khoshelham, 2005). 

This problem appears also in the model-driven based methods, 

where the selection of the correct roof type from the building 

library will most often fail. In the previous works, the model 

which exhibits the minimum distance to the 3D point cloud of 

each building roof in the library is selected as the best roof 

model. For instance, Lafarge et al. (2010) defined a complex 

building roof library and used Reversible jump Markov Chain 

Monte Carlo (RjMCMC) to fit a model to the DSM of the 

building. The roof type was detected based on its best fit to the 

point cloud. The correctness of the final results for the classified 

roof types was not evaluated. Huang et al. (2013) defined a 

simple and small library to reconstruct 3D building roof models. 

A generative RjMCMC approach was developed to fit the 

model into the LiDAR points. Then, a jump strategy started to 

go to the multi-dimensional space of roof parameters and select 

the one that has the best fit to the point cloud. As an 

improvement of previous work for DSM of satellite imagery, 

Partovi et al. (2015) used mean curvature and Gaussian 

curvature of DSM to classify building roof to pitched and flat 

roofs. Additionally, ridge lines were extracted to simplify model 

initialization and conduct a model fitting process to reduce the 

dependencies of the reconstruction techniques on DSM data. 

Partovi et al. (2014) applied clustering of the various local 

features of an optical image (e.g. pixel intensities, texture, 

geometrical structures) to classify the building roofs into two 
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categories: pitched and flat roofs. Zhang et al. (2015) 

demonstrated that synthetic data could be used to improve the 

performance of the classifier. Roof type classification was 

performed based on recognizing detected edges of the roofs. A 

library including six different roof types (e.g. flat, gable, 

gambrel, half-hip, hip and pyramid) were determined. Primarily, 

ridge lines or valley lines were extracted for each roof style. 

Then, synthetic data were generated by means of the 

Multichannel Autoencoder (MCAE). The extracted features 

were used to train a Lenet-5 CNN model and a SVM for roof 

type classification. Training and test patches were aligned using 

their footprint principal directions and were cropped inside of 

the building footprint. For simplicity, background and other 

objects were neglected inside of the aforementioned patches. 

The total numbers of training and test patches were 3860 and 

5684 respectively. F1-score values of roof style classification 

reached 65% for the CNN method and 77% for the SVM 

method.   

Alidoost and Arefi (2016) proposed three strategies to combine 

aerial image and DSM of LiDAR data to evaluate the efficiency 

of this fusion on the roof type classification using fine-tuning of 

a pre-trained CNN model. As a first strategy, a pre-trained CNN 

model was fine-tuned on RGB and DSM separately. Next, the 

label of the roof type with the highest probability of one of the 

determined models was selected as optimal label for the 

building roof region. In the second strategy, a fined-tuned CNN 

model trained on RGB data was used for training of the CNN 

on DSM data. This strategy improved the final accuracy and 

reduced the training time. In the third strategy, Principle 

Component Analysis (PCA) was used on RGB-D data to 

perform whitening of data as input to the pre-trained CNN 

model. They also defined a library including seven roof types 

such as flat, gable, hip, pyramid, mansard, complex and non-

building roof. Each training and test patch was assigned to one 

roof style. Each patch was aligned based on the principle 

direction of the footprint. A segmentation method was used to 

remove the other objects inside of the patch and focus on the 

building roof. 

Concerning roof shapes (such as flat, gable, hip, half hip, and 

etc.) can be recognized from high resolution satellite imagery 

and with inspiration of the previous methods, we propose a new 

strategy for roof type classification based on convolutional 

neural networks (CNNs). A CNN is one of the state-of-the-art 

classification methods, very successful in object recognition, 

classification, and object detection. As training of CNNs, from 

scratch needs large datasets with labels which are hard to obtain 

in the remote sensing community, using a pre-trained CNN 

models is suggested. Marmanis et al., (2016) used a pre-trained 

CNN model which was pre-trained on ImageNet dataset 

(Krizhevsky, et al., 2012) and successfully achieved good 

results in the classification of remote sensing datasets. To select 

the roof types, two methodologies are utilized for classification 

of roof patches. The first method uses fine-tuning of a pre-

trained VGGNet (Simonyan and Zisserman, 2015) model on 

ImageNet in the Caffe framework (Jia, 2013).  

The second method uses deep features obtained from output of 

the last fully-connected layers of three large pre-trained CNNs 

and concatenates the information into a new feature vector. The 

extracted feature vectors for training and test roof patches are 

employed by Support Vector Machines (SVM) classifier 

(Chang and Lin, 2011) in order to classify the roof types. 

The first step of using a pre-trained CNN model in classification 

starts with preparing training and test datasets. Training and test 

patches including only one type of roof are prepared and 

labelled. We propose a new semi-automatic method for 

generating roof patches based on building skeleton and building 

outlines. To generate training and test patches, three channels 

(RGB) of a pansharpened image of WorldView-2 data from 

Munich city are used. Each patch is manually labelled related to 

the roof type. The main difference between this way of 

generating patches and previous methods (Zhang et al., 2015) 

and (Alidoost and Arefi, 2016) is that, the main direction of 

each roof is also considered inside the patch selection. In this 

way, the quality of roof patches cannot be degraded by rotation 

and resizing.  

The rest of the paper is organized as follows: Section 2 

introduces the developed CNN and the pre-trained model. In 

section 3, methodologies for roof type classification are 

explained. Section 4 provides experimental results and 

discussion. Finally, section 5 concludes the paper.  

 

2.  CNN AND PRE-TRAINED MODELS 

A convolutional neural network (CNN) is one of the deep 

learning architectures which have been applied in different 

fields of computer vision and machine learning. A CNN is a 

kind of feedforward neural network which is composed of 

several convolutional, subsampling layers, fully connected 

layers, activation functions and classifier layers. The 

convolution layer is the main part of the CNN architecture. 

Convolution layers consist of a set of learnable filters which are 

convolved across the width and height of input values and 

produce a 2-D feature map of that filter. The convolution layer 

is formed by stacking the feature maps of all filters along the 

depth of the input volume. Another important part of CNN is 

pooling which is a kind of non-linear down sampling. There are 

several functions such as average pooling, L2-norm pooling and 

max-pooling for implementing pooling among which max-

pooling is the most common. The pooling layer reduces the 

spatial size of the representation. Subsequently it reduces the 

number of parameters in the network to control overfitting and 

also reducing the computation time. After several convolutional 

and max-pooling layers, the last fully-connected layer holds the 

output, such as the class scores. Neurons in a fully connected 

layer have full connections to all feature maps in the previous 

layer. The loss layer is the last layer of the CNN which is 

employed to penalize the deviation between the predicted and 

true labels during network training phase. Various loss 

functions appropriate for different tasks may be used. Cross 

Entropy loss is the most widely used loss function in object 

recognition tasks.  As classifier layer, softmax is the most 

common one to produce on output probability for each object 

class to predict a single class of several potential classes. To 

train large numbers of parameters in deep CNN networks, 

starting from random values of weights and bias vectors, a high 

capacity of memory and time as well as a huge dataset in 

various classes are needed. Therefore, without having large real 

datasets for training, the training process from scratch will fail 

due to the overfitting problem. To solve this problem, a pre-

trained CNN model, already trained on a big dataset, is used as 

a starting point of the training process. Pre-trained CNN models 

can be adapted to small datasets by re-adjusting their learned 

weights and bias using a back-propagation algorithm. This 

method is called “transfer learning”. This is motivated by the 

observation that the earlier layers of CNN model will have 

learned almost the same basic features such as edge, color or 

gradient features for visual recognition tasks, while the upper 

layer has more specific features related to the classes and 

properties of the original dataset. Therefore, upper layers can be 

fine-tuned to match to a different but correlated problem. Pre-

trained model for CNNs like Alexnet (Krizhevsky and  

Sutskever,  2010), VGGNet or GoogleNet (Szegedy and Liu, 
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2015) that have been trained on large dataset such as ImageNet 

can be used for other visual recognition tasks without any 

needing to train the first few layers. Such a property is very 

useful for classification tasks in remote sensing, where the 

acquisition of large sets of training data need a lot of effort and 

cost (Marmanis et al., 2016). In addition to fine-tuning a pre-

trained model for a new classification task, a pre-trained CNN 

can be treated as fixed feature extractor. In this structure, the 

classification layer of the CNN is removed and the rest of the 

CNN is treated as a feature extractor for the new dataset. When 

these features are extracted from all images, a classifier like 

SVM or softmax is used in the end to classify images based on 

extracted features. These features are known as DeCAF features 

(Donahue, et al., 2014).      

 

3. METHODOLOGY 

Building roof type classification is one of the important steps 

for model-driven based 3D building reconstruction. In model-

driven methods, first a library of building roof types is created. 

Depending on the roof complexity of a city area, we designed a 

library consisting of seven types of different roofs such as flat, 

gable, half hip, hip, pyramid, mansard and complex roofs. The 

automatic selection of the roof type from the library is a 

classification problem. To select the correct roof type from the 

library, we evaluate two common strategies based on using a 

pre-trained CNN model instead of training the CNN models 

from scratch. 

 

3.1 Roof type classification based on pre-trained CNN 

model  

The first strategy is fine-tuning of the pre-trained VGGNet (16-

layer version) model on the ImageNet dataset (The actual size 

of the training data set consists of about 1.2 million images with 

1000 distinct classes). Among many pre-trained model, 

VGGNet adopts the simplest kernel and pooling windows. Only 

3×3 convolutions and 2×2 pooling are used throughout the 

whole network. VGG also shows that the depth of the network 

plays an important role and gives better results. In this strategy, 

we fine tune the higher level portion of the network on our 

training patches.  

 

3.2 Roof type classification based on deep features and 

SVM classifier 

The idea of deep features is to use the first stage of a CNN only. 

The weights of internal layers are used as feature vector to be 

classified with traditional methods, e.g. SVM.  Thus for the 

second strategy, we remove the last fully connected layer of the 

VGG (16 and 19-layer version) and also GoogleNet pre-trained 

model which act as classifier layer together with softmax layer, 

then treat the rest of CNNs as fixed feature extractors for the 

training and test patches. The extracted features from fc7 layer 

of the VGGNet (16 and 19-layer versions) and pool5/7x7_s1 

from GoogleNet  pre-trained model are concatenated to the 

single vector and employed SVM classifier using RBF kernel in 

order to classify roof types.  

 

3.3 Dataset generation 

The quality of training and test patches are an important issue to 

obtain higher accuracies. In roof type classification, each patch 

should be related to only one roof type. To reduce the 

computation time of generating training and test patches, a new 

semi-automatic method is proposed. First the skeleton of the 

building mask which is extracted from cadastral building 

footprint is computed by morphological operator. After that, the 

junction points of the skeleton are projected on pansharpened 

satellite images. Three channels of pansharpened images are 

used to generate the patches. Around each junction point of the 

skeleton, a square box with fixed size crops the image. The size 

of the square box is selected so that other building parts cannot 

involve into the patch of the selected building since only one 

roof type should be inside of each patch. 

 

4. EXPRIMENTS AND RESULTS 

 

4.1 Satellite roof classification dataset  

The main dataset of the experiments is provided from an 

orthorectified panchromatic and multispectral WorldView-2 

satellite image from Munich city. In order to use a RGB image 

with high spatial resolution, a pan-sharpened image is generated 

by fusion of the panchromatic image with 50 cm spatial 

resolution and 8 channels of the orthorectified multispectral 

image with 2 m spatial resolution. Then 3 channels (channel 5 is 

red, channel 3 is green and channel 2 is blue) from 8 channels 

are selected to generate the RGB image. To separate buildings 

from other objects, a building mask is extracted from a building 

footprint mask. Based on the prominence of roof types in 

Munich city, we define a building roof library consisting of 

seven roof types (flat, gable, half hip, hip, pyramid, mansard 

and complex roof shape). Satellite data exhibit great challenges 

even for visual analysis tasks. First, the quality of some satellite 

images is degraded because of blurring which occurs during the 

capturing process. Second roofs are covered by various kinds of 

facilities such as air conditioning, chimneys and other roof 

build-ups. 

In addition, some roofs in satellite imagery are occluded by 

shadow and trees. These imperfections are significant obstacles 

to reliable visual and computerized analysis tasks. Furthermore, 

the number of instances for some roof classes is extremely low 

in comparison to other classes (such as mansard and pyramid 

roofs). Although augmentation methods such as converting 

color space to HSV and flipping can modulate the shortage of a 

dataset partly, there is still need for more data to have a better 

balance among classes.      

These unbalanced distributions of data before and after data 

augmentation is shown in Table 1.  

 

Roof type Data Augmentation Training # Test # 

Flat yes/ no 2491/624 116 

Gable yes/no 2603/651 193 

Half hip yes/no 2599/650 176 

Hip yes/no 1751/438 46 

Pyramid yes/no 303/76 0 

Mansard yes/no 99/25 3 

Complex yes/no 44/11 0 

Table 1. The distribution of the training and test sets used in the 

experiment  

 

Training patches are selected from different areas of Munich 

and test patches are from a completely new area and are 

therefore totally independent from the training data. Figure 1 

shows a library of roof patches generated by the proposed 

method in section 3. The pre-trained VGGNet (16-19) layer 

model architectures require inputs of a fixed 224×224×3 patch 

size. All of the training and test patches are generated with a 
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Figure 1. illustration of library of roof patches 

fixed size of 50×50×3 and resized to the required input size of 

network without any rotation. Since the CNN pre-trained on 

ImageNet ILSVRC benchmark dataset, all of the training data 

and test data are subtracted from the mean image which is 

computed from 1.2 million images with 1000 different 

categories of ILSVRC challenge dataset which is ImageNet 

dataset. 

 

4.1.1 Training step: For the training phase of the first strategy 

based on fine-tuning the pre-trained model, 20% of each class 

of training data are considered as validation data and separated 

from training data. Next, new weights of the pre-trained CNN 

model are fine-tuned based on the rest of the training data. 

Figure 2 shows how the accuracy of validation data is improved 

through the fine-tuning process. It also shows that the pre-

trained model on ImageNet can transfer learning to the new 

dataset by fine-tuning without many number of iterations. In the 

second strategy after extracting deep features of training and test 

patches, a 5-fold cross validation is used on the training features 

to train a SVM in order to find the best parameters 

(gamma=7.0711 and c=0.0001953) of a RBF kernel (Chang and 

Lin, 2011). Since the goal of the second strategy is to test the 

use of deep features, training patches are used without any 

augmentation step. This is to speed up the classification 

process.  

 
Figure 2: Learning curve (red curve: training Loss, green curve: 

Validation Loss, blue curve: Validation accuracy) 

 

4.1.2 Testing step: To predict the class of each roof type in the 

test data which is selected from different areas, the pre-trained 

model and the SVM using determined RBF parameters obtained 

from the previous step are employed. The validation of the 

proposed methods for roof type classification is performed 

through quantitative comparison of the predicted classes and 

ground truth (Vakalopoulou, et al., 2015). The standard 

measures of completeness, correctness and quality of the 

predicted classes for test data are calculated as given in 

Equations (1). 

 

 
 

 
 

 

 

where TP is True Positive, FP is False Positive, and FN is False 

Negative. Table 2 and 3 show the results of these measures for 

each class of test area for the two strategies respectively.  

 

Images TP FN FP Compl. Corr. Qual. 

flat  98 18 29 84% 77% 68% 

gable  149 45 35 77% 80% 65% 

half-hip  122 55 35 69% 77% 58% 

hip  36 10 30 78% 54% 47% 

pyramid  0 0 0 --- --- --- 

mansard  0 3 0 0 --- 0 

Complex 0 0 2 --- --- --- 

All classes 405 131 131 76% 76% 60 % 

Table 2. Quantitative evaluation results for test data using the 

first strategy 

 

In the test data, no patch belongs to pyramid and complex roof, 

therefore their accuracies cannot be evaluated. We only found 

three patches for mansard roof in the region which are classified 

as flat and half-hip roof. The reason for this misclassification is 

due to the low number of training patches and the pre-trained 

(1) 
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model that cannot distinguish mansard roofs from hip roofs 

which have a similar structure. As Table 1 and Table 2 show, a 

high number of training patches results in high quantitative 

evaluation measures so that gable and flat roofs have higher 

completeness, correctness and quality compared with other roof 

types in the test area.  

Images TP FN FP Compl. Corr. Qual. 

flat 102 14 24 87% 80% 72% 

gable 72 122 19 37% 79% 34% 

half-hip 130 47 116 73% 52% 44% 

hip 31 15 42 67% 42% 35% 

pyramid 0 0 0 --- --- --- 

mansard 0 3 0 0 --- 0 

Complex 0 0 0 --- --- --- 

All 

classes 
335 198 201 63% 62% 45 % 

Table 3. Quantitative evaluation results for test data using the 

second strategy 

In the second method, the goal is to use deep features from 

different pre-trained CNN models and to compare the 

performance of SVM classifier with the pre-trained CNN 

classifier. As Table 3 shows, the overall performance of using 

deep features and SVM classifier is lower than the first method 

in average, and only flat roof obtained higher correctness and 

quality measures than the first strategy. Although standard 

procedures to prevent overfitting have been used, overfitting 

seems to be responsible for the unsatisfying performance. In the 

work of Zhang et al. (Zhang, et al., 2015), the SVM classifier 

performed better in roof type classification compared to a 

classifier based on a CNN only.  This behaviour could not be 

confirmed with our experiments. However, since our dataset is 

highly different from the dataset used in (Zhang et al., 2015), 

strong conclusions cannot be drawn.     

5. CONCLUSION

In this paper, we investigated the potential of pre-trained 

ImageNet models and their deep features using the Caffe 

framework for roof type classification from satellite imagery. 

We defined a library of the roof models based on the 

complexity of roofs in Munich city including flat, gable, half-

hip, hip, pyramid, mansard and complex roofs. We also 

proposed a new semi-automatic method for training and test 

patch generation using building masks. In the first method, a 

pre-trained VGGNet model is used for classifying roof models. 

In the second method, deep features are extracted from three 

pre-trained models (such as VGGNets 16-19 layers and 

GoogleNet) to classify roof types by SVM classifier. Since the 

initial results of the two methods on a small dataset are 

promising, we will investigate their performance on a much 

larger dataset in future work.   
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