
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
Room temperature ferroelectricity in fluoroperovskite thin films.

Permalink
https://escholarship.org/uc/item/3fd1d37n

Journal
Scientific reports, 7(1)

ISSN
2045-2322

Authors
Yang, Ming
Kc, Amit
Garcia-Castro, AC
et al.

Publication Date
2017-08-01

DOI
10.1038/s41598-017-07834-0
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3fd1d37n
https://escholarship.org/uc/item/3fd1d37n#author
https://escholarship.org
http://www.cdlib.org/


1SCIENTIFIC REPORTS | 7:  7182  | DOI:10.1038/s41598-017-07834-0

www.nature.com/scientificreports

Room temperature ferroelectricity 
in fluoroperovskite thin films
Ming Yang1, Amit KC2, A. C. Garcia-Castro1, Pavel Borisov1,3, E. Bousquet4, David Lederman2, 

Aldo H. Romero  1 & Cheng Cen  1

The NaMnF3 fluoride-perovskite has been found, theoretically, to be ferroelectric under epitaxial strain 
becoming a promising alternative to conventional oxides for multiferroic applications. Nevertheless, 
this fluoroperovskite has not been experimentally verified to be ferroelectric so far. Here we report 
signatures of room temperature ferroelectricity observed in perovskite NaMnF3 thin films grown on 
SrTiO3. Using piezoresponse force microscopy, we studied the evolution of ferroelectric polarization 
in response to external and built-in electric fields. Density functional theory calculations were also 
performed to help understand the strong competition between ferroelectric and paraelectric phases 
as well as the profound influences of strain. These results, together with the magnetic order previously 
reported in the same material, pave the way to future multiferroic and magnetoelectric investigations 
in fluoroperovskites.

Magnetoelectric materials, which allow manipulations of magnetic (electric) polarization by electric (magnetic) 
�eld, are intensively sought a�er. A closely related class of materials is composed of multiferroics1–3, where mul-
tiple ferroic orders (typically ferroelectricity and ferromagnetism/antiferromagnetism) coexist, but the coupling 
between them may or may not be present. Many transition metal oxides with perovskite structures are multi-
ferroic, such as BiFeO3

4, 5, YMnO3
6, 7, and TbMnO3

8, 9. So far, magnetoelectric applications of these materials 
are limited by weak coupling between the ferroelectric and antiferromagnetic orders and/or by weak electric/
magnetic polarizations10.

Besides the well-studied oxides, other materials with possible magneto-electric coupling are under investi-
gations as well, as in the case of �uoride materials11–15. In particular, recent calculations predicted multiferroic 
signatures in the perovskite �uoride NaMnF3

16. In this compound, geometric e�ects from the displacements of 
Na cations are expected to generate a ferroelectric instability under strain leading to a stable polar ground state 
where the latter instability is condensed. Additionally, presence of spin-canting in the ground antiferromagnetic 
phase was also predicted for this material. �e resultant weak ferromagnetic component could become useful to 
tune the polarization by an external �eld. Recently, quasi-epitaxial thin �lms of NaMnF3 on SrTiO3 substrates 
were successfully grown by molecular beam epitaxy (MBE), in which the low temperature antiferromagnetic 
order and spin-canting induced magnetization were veri�ed experimentally17. Remarkably, only a few �uorop-
erovskites, such as CsPbF3

18, 19 and NaCaF3
20, have shown ferroelectricity so far. �ough none of them contains a 

magnetically active cation. �erefore, the con�rmation of the ferroelectric state in NaMnF3 is of high importance 
in the multiferroics �eld since it would be the �rst perovskite-like �uoride to exhibit a multiferroic behavior. We 
note that, in �lms grown on a conducting SrRuO3 epi-layers pre-deposited on SrTiO3, temperature dependent 
dielectric measurements showed signs of an onset of low-temperature ferroelectric order-disorder transition, but 
long range ferroelectric order was not observed above 10 K17. For �lms grown without the SrRuO3 back contact 
layer, similar measurements were not possible, and the ferroelectric properties of these �lms need to be evaluated 
by other methods.

Here we report on the ferroelectric properties of NaMnF3 �lms grown directly on SrTiO3 substrates by piezo-
response force microscopy (PFM). A preferred polarization pointing out of the plane was found in the as-grown 
state. Repeatable ferroelectric switching by biased scanning probe was observed at room temperature. An inter-
esting 180° out-of-plane polarization �ip by the application of an in-plane electric �eld was discovered as well. 
�e PFM results are consistent with the weak ferroelectricity revealed by DFT calculations. At low temperatures, 
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we also discovered a tunable zero-bias photocurrent that was attributed to the persistent polarizations in NaMnF3. 
�e collection of experiments not only provides evidences of room temperature ferroelectricity, but also suggests 
the signi�cant impacts of the electric boundary conditions and strain on the ferroelectric states.

Results
DFT calculations of the ferroelectric and paraelectric phases in NaMnF3. NaMnF3 thin �lms were 
grown on SrTiO3 (001) substrates by molecular beam epitaxy (MBE)17. Bulk NaMnF3 at room temperature has 
an orthorhombically distorted perovskite structure with lattice parameters a = 5.757 Å, b = 8.008 Å, c = 5.548 Å 
(Fig. 1a)22. When grown on the (001) surface of SrTiO3 (aSTO = 3.905 Å), there are two con�gurations with best 
lattice matching: one with the longest orthorhombic axis (b-axis) out-of-plane and the ac-plane rotated 45° rela-
tive to the cubic cell of SrTiO3 (Fig. 1b top), and the other one with the b-axis in-plane (Fig. 1b bottom). �e small 
lattice mismatches in both cases favor a compressive strain at the �lm-substrate interface.

Density functional theory (DFT)23, 24 calculations were performed to evaluate the ferroelectricity of 
NaMnF3 �lms under di�erent strain and growth con�gurations. �e calculated polar mode frequencies in the 
lowest-energy paraelectric phases are shown in Fig. 1b. Imaginary frequencies, indicating that the paraelectric 
phase is no longer stable, are reported as negative values for clarity.

In the growth con�guration with b-axis out-of-plane, the two lowest-energy phases are the paraelectric Pnma 
phase and the ferroelectric Pna21 phase with polar axis along the b-axis. For completely relaxed �lms (Fig. 1b, top 
graph, circle marked by arrow), the paraelectric Pnma phase is the stable ground state (∆E = EPna21 − EPnma = 24.
84 meV/unit cell (meV/uc)). When isotropic in-plane strain (ε) is applied, values of a and c change proportionally 
keeping their ratio of ≈ .a c/ 1 035 constant. �e �lm remains paraelectric under small isotropic strains, and only 
becomes ferroelectric when compressive strain larger than −4% is applied (Fig. 1b, top graph, circles). 
Commensurate growth relation with SrTiO3 requires an anisotropic in-plane strain that reduces the a/c ratio to 1. 
In this case, NaMnF3 unit cell remains orthorhombic due to the octahedral rotations that break the four-fold 
symmetry. However, the polar so�-mode is no longer vibrationally stable and the ferroelectric Pna21 phase 
becomes the ground state (∆E = −4.21 meV/uc at ε = 0%, Fig. 1b, top graph, square marked by arrow). �is fer-
roelectric state at =a c/ 1 is robust against isotropic in-plane strain (Fig. 1b, top graph, squares). �is indicates 
that small reductions of a c/  ratio can profoundly in�uence the generation of ferroelectricity, which is likely caused 
by the small size of Na atoms and the resultant geometric nature of the ferroelectric ordering15.

When NaMnF3 is grown with b-axis parallel to the SrTiO3 (001) surface, even the application of a very small 
in-plane strain will change the unit cell into a monoclinic symmetry. �e structure with small strain is in the 
paraelectric P21/m phase (Fig. 1b, bottom graph). At an isotropic in-plane compressive strain of 2.3%, commen-
surate growth relation with SrTiO3 can be reached, which still corresponds to a paraelectric phase. �e polar 
mode frequency only becomes imaginary when the in-plane compressive strain exceeds −3% (Fig. 1b, bottom 
graph). In this case, NaMnF3 transits into a ferroelectric P21 phase (∆E = −E EP Pnma21

 = −4.06 meV/uc at 
ε = −4%) in which the polar axis is also along the b-axis.

X-ray di�raction (XRD) results reported in ref. 17 show that the MBE grown �lms are mostly relaxed and 
domains with b-axis in-plane and out-of-plane are both present. �erefore, the majority portions of the �lms are 
likely paraelectric. However, the variation of lattice parameters detected by XRD ( = . ± .a c/ 1 034 0 017) for the 
out-of-plane domains suggests the possible existence of regions with a/c ratios closer to one. In these regions, 

Figure 1. Ferroelectricity depending on growth and strain con�gurations. (a) Schematic of NaMnF3 unit 
cell21. (b) Polar mode frequency as functions of isotropic strain in the plane parallel to SrTiO3 (001) surface 
when NaMnF3 is grown with b-axis out-of-plane (top, the two curves indicate di�erent a/c ratios) or in-plane 
(bottom). Arrows indicate the data points corresponding to commensurate growth and completely relaxed 
cases. Dashed lines are added as guide for the eye. Insets illustrate the orientations of NaMnF3 lattice relative to 
the cubic SrTiO3 unit cell.
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when a slight compressive strain is introduced, which in practice could be produced near the interface and grain 
boundaries or by surface adsorption and defects, the ferroelectric Pna21 phase will become energetically favora-
ble. When compared to the robust ferroelectricity predicted for the fully commensurate growth, however, the 
ferroelectric polarization in these regions is likely more easily a�ected by experimental perturbations.

PFM characterizations of as-grown film. Two 200 µm × 200 µm gold electrodes with a 40 µm gap were 
deposited on the sample surfaces by photolithography and electron-beam evaporation. Here we show PFM meas-
urements performed on a sample with 50 nm NaMnF3 at room temperature in an “out-of-plane” con�guration 
where the �exural de�ections of the cantilever were monitored. During PFM measurements, the sample was 
held at ground potential through the surface electrodes and an AC excitation voltage (VAC) with frequency f was 
applied to the PFM probe. �e amplitude and phase of the out-of-plane deformation at the sample surface in 
response to VAC were lock-in detected.

At f = 360 kHz, PFM amplitudes overlaid as color on top of 3D surface topography are shown in Fig. 2a. 
Sample surfaces typically exhibited a root mean square (RMS) roughness of 3 nm. Large PFM amplitude contrast 
can be observed, which strongly correlates with the surface topography. Changing the AC excitation frequency to 
f = 348 kHz produces an almost opposite contrast pattern (Fig. 2b). �ese PFM contrasts are caused by local 
mechanical property variations that a�ect the contact resonance frequency ( f

0
) of the sample-probe system25. As 

shown in Fig. 2c, PFM amplitudes measured as functions of f  at three positions with di�erent local topography 
revealed a more than 10 kHz variation in f

0
. �erefore, the ~100 nm scale �uctuations shown in Fig. 2a and b are 

topography-related and should not be confused with spontaneously formed polarization domains.

Ferroelectric switching and built-in field. To investigate the ferroelectric properties, we conducted local 
switching experiments with biased scanning probe (Fig. 3). Starting from the as-grown �lm, a series of contact 
mode scans were performed in the same 1.5 µm square region. In each scan, a di�erent DC probe bias (Vprobe) was 

Figure 2. PFM performed on NaMnF3 thin �lm. (a,b) 2 µm × 2 µm images with PFM amplitude (color) 
overlaid on the surface topography. �e two images were taken at two di�erent AC driving frequencies. (c) 
Frequency dependence of PFM amplitude measured at three di�erent positions as marked in (b). �e spatial 
variation of the resonance frequency (f0) leads to the non-uniform PFM response imaged.

Figure 3. Ferroelectric switching by biased scanning probe. PFM amplitude (top) and phase (bottom) images 
of a 3 µm × 3 µm area consecutively taken a�er scanning over the center 1.5 µm square (marked with the dashed 
line) with di�erent probe biases.
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applied. �e changes of Vprobe followed the general sequence of 0 V → 10 V →−10 V → 0 V. A�er each scan, a PFM 
image was taken at zero DC bias to assess the persistent polarization changes in the scanned region. Figure 3 
shows �ve representative PFM images taken during the 0 V → 10 V ramp (0.5 V, 1 V, 3 V) and 10 V →−10 V ramp 
(−0.2 V, −0.4 V) where a clear 180° phase shi� can be seen. Other typical ferroelectric characteristics, including 
the minimum PFM amplitude occurring during switching and at the boundary of switched area (Fig. 3), were also 
observed26–28.

�e hysteresis curve of PFM phase (φ) versus poling bias Vprobe was extracted from the images by averaging the 
phase values of all pixels within the poled region (Fig. 4a). �e averaged phase shi� is less than 180° due to spatial 
variations of f

0
 as discussed previously. One interesting feature of the switching loop is its highly asymmetric 

shape. While the positive probe bias induced switching occurred gradually between 1 V and 3 V, signi�cant polar-
ization reversal can be produced by negative voltages as small as −0.2 V, indicating a preferred polarization point-
ing out of the �lm (up).

It has been shown extensively that ferroelectric switching of thin �lms is very sensitive to the electric bound-
ary conditions at the �lm surface and the interface with substrate29–34. Many factors, including space charge gen-
erated from band bending or charged states formed from defects/surface adsorbates, can contribute to a built-in 
electric �eld (E0

). When the ferroelectric double well pro�le is shallow, the presence of a modest E0
 can e�ectively 

lead to a thermodynamically favored polarization direction (Fig. 4b). A large external �eld in the opposite direc-
tion is required to overcome E0 in order to �ip the polarization state (Fig. 4c). And assisted by E0

, only a small 
external �eld in the same direction is needed to restore the favored polarization state (Fig. 4d). A large enough E0

 
may even counteract the poling e�ect of external �eld completely or cause the polarization to �ip back quickly 
a�erwards, which might make the �lm appear unswitchable in the subsequent PFM measurements. As shown by 
Fig. 4a, the switch loop is almost completely shi�ed horizontally to the positive bias side. �is indicates that the 
magnitude of E0 is likely very close to the coercive �eld. �e existence of such a built-in �eld may critically a�ect 
the stability of the probe-poled down-polarized domains.

Reversal of out-of-plane polarization by in-plane electric field. Unperturbed, the down polarization 
domain created by positive probe biases typically �ips back within approximately 30 min in air. However, it was 
found that the application of in-plane electric �eld can revert these into-the-plane (down) polarized regions 
quickly back to the preferred up orientation. Figure 5a (le�) shows the PFM images taken immediately a�er the 
center square was poled down by 10 V probe bias. �is poled area was located in the middle between the two 

Figure 4. Asymmetry in ferroelectric hysteresis loop induced by built-in �eld. (a) Hysteresis of PFM phase and 
amplitude as a function of poling probe voltage. (b–d) Illustrations of the ferroelectric double well potential and 
polarization states a�ected by the built-in �eld (E0

) and external probe �elds.
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surface electrodes. A�er applying a 200 V relative bias across the two electrodes for 30 s, the center square region 
completely �ipped back (Fig. 5a, right). Considering the 40 µm gap, the 200 V bias can generate an in-plane �eld 
of ×5 10

6 V/m. �e reversal of the out-of-plane polarization is slower at smaller �eld. At a relative electrode bias 
of 50 V, 120 s of in-plane �eld application time was needed to completely �ip the down polarized domain (Fig. 5b). 
�e observed results, however, are independent on the direction of in-plane �eld applied.

Ferroelectric switching by biases applied between planar electrodes can be achieved when the polarization has 
an in-plane component35–37. Alternatively, cross-coupling between orthogonal electric �eld and ferroelectric 
polarization can also occur through, for example, a ferroelastic e�ect38–41. �ough in that case, ferroelastic switch-
ing usually produces �eld-orientation-dependent polarization rotations, instead of 180° �ips. In order to under-
stand the out-of-plane polarization reversal generated by an in-plane �eld, regardless of the bias polarity, the 
effects of E0

 must be taken into account. As shown in Fig. 6b, Na ions are displaced downward from their 
high-symmetry position a�er being poled by the positive probe bias. However, due to the shallow ferroelectric 
potential well and the e�ect of E0

, the activation barrier of this down polarization state is small (Fig. 6c). When an 

Figure 5. Restoration of up polarization by in-plane �eld. (a) PFM amplitude (top) and phase (bottom) 
measured right a�er the biased probe poling (le�) and a�er the application of 200 V across the two surface 
contacts for a duration of 30 s (right). (b) PFM phase measured a�er consecutive applications of 30 s 50 V 
bias between the surface electrodes, showing the graduate reversion of the center 500 nm probe poled down-
polarized region.

Figure 6. Ferroelectric switching triggered by weak perturbation. (a,d) Illustrations of the polarization rotation 
induced jointly by external in-plane �eld (Ein) and the up direction built-in �eld (E0

) in the region poled by 
positive probe bias. (b,e) Displacements of Na ions (green) with respect to the MnF6 octahedral (violet) (b) a�er 
probe poling and (e) under an external in-plane �eld. �e octahedral tilts and rotations were removed to 
schematically show only the Na-site behavior, which is the one responsible for the ferroelectricity in NaMnF3. 
(c,f) Double well model showing (c) the down polarized state weakened by the built-in �eld (E0), and (f) 
polarization switching triggered by perturbation from external in-plane �eld.
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in-plane �eld is applied, Na ions now move horizontally in response to the �eld (Fig. 6e), which produces an 
excitation to the ferroelectric polarization. A�er the external �eld is removed, the potential pro�le tilted by the 
built-in �eld then thermodynamically drives the system from the metastable perturbed state back to the favored 
up polarization state (Fig. 6f). Since small perturbations can be generated by Na ion displacements in any orien-
tations in the ac-plane, this process also explains why the same out-of-plane polarization �ip was observed inde-
pendent of the in-plane �eld direction.

Persistent polarization induced photocurrent. A �eld tunable zero-bias photocurrent was observed 
in NaMnF3 �lm samples at low temperatures. �e experiment setup is illustrated in Fig. 7a. First, a DC bias 
was applied between the two surface electrodes with a 40 µm separation. A�er this DC bias was turned o�, the 
sample was illuminated by a chopper modulated 400 nm laser beam (0.5 mW), and AC photocurrent under zero 
external bias was lock-in detected at the modulation frequency. Varying the pre-poling DC bias, the subsequently 
measured zero-bias photocurrent exhibited a clear hysteresis (Fig. 7b). As a comparison, the same experiment 
performed on bare SrTiO3 showed no measurable signal (Fig. 7e).

�is observed e�ect can be attributed to the �eld poled persistent polarizations inside NaMnF3. As already 
discussed, at room temperature (RT), the application of biases up to 200 V between the surface electrodes can 
only generate 106 V/m level �eld with an orientation in-plane. However, as the permittivity (ε) of SrTiO3 increases 
from 300 (RT) to larger than 10000 at temperatures below 20 K42, 43, the field profile changed dramatically  
(Fig. S1). With ε ~ 10000, the screening e�ect of the substrate strongly facilitated the potential drop in the 
NaMnF3 regions underneath the electrodes, where the �eld became primarily out-of-plane and approached 
108 V/m level at a bias of 10 V (Fig. 7c,d). As a result, out-of-plane �eld with an intensity comparable to what was 
generated by nanoscale AFM probe can be produced by the surface electrodes, which switched the polarization 
of the two NaMnF3 region underneath to be opposite to each other (Fig. 7a, le�).

Without external bias, the presence of two oppositely polarized regions can still generate an electric �eld 
(Fig. 7a, right). Most likely due to the defect-related in-gap states in SrTiO3 substrate44–47, electron-hole pairs can 
be created by the incident 3.1 eV photons. �e excited electrons and holes moved in opposite directions under 
the in�uence of the polar �eld, leading to a photocurrent along the direction of the pre-poling DC bias. Since the 
direction and magnitude of such photocurrent was dependent on the orientation and strength of the persistent 
polarizations in NaMnF3, tuning of the photocurrent as shown in Fig. 7b can be achieved by controlling the 
pre-poling DC bias.

Discussion and Conclusions
It is worth pointing out that one needs to be careful when interpreting PFM data in terms of ferroelectricity. �is is 
because probe �eld induced PFM signal switching as presented in Fig. 3 can also be due to mechanisms other than 
ferroelectricity, such as hysteretic surface charging or ionic motion48–50. However, the also observed out-of-plane 

Figure 7. Photocurrent generated from the persistent polarizations in NaMnF3. (a) Illustration of DC bias 
poling and subsequent AC photocurrent measurements. (b) Hysteresis of AC photocurrent measured at 5 K 
a�er the application of di�erent DC biases. Di�erent colors indicate the data taken during increasing (red) or 
decreasing (blue) bias sequences. (c) Simulated potential distribution in the heterostructure at 10 V DC bias. (d) 
Simulated out-of-plane and in-plane �eld distributions in NaMnF3 �lm at 10 V DC bias. (e) Control experiment 
performed on bare SrTiO3 substrate under identical conditions, where no photocurrent was measured.

http://S1
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PFM signal reversal by in-plane �elds applied between surface electrodes rules out these non-ferroelectric mech-
anisms. We note that the �lm remains highly insulating in our experiments. No leakage current was observed for 
in-plane biases up to 200 V and probe biases up to 10 V. In such an insulating state, the application of an in-plane 
�eld is not likely to deplete surface charges. Additionally, while the in-plane �eld might drive in-plane ion migra-
tion, in that case a distortion and dri� of the probe-poled region would occur, instead of the gradual reversal 
observed in our experiments. In contrast, the PFM phase reversal observed can be well explained by the presence 
of relatively shallow ferroelectric potential wells and a built-in electric �eld as discussed above. �erefore, the 
combination of di�erent PFM responses under the in�uences of out-of-plane probe �eld and in-plane �eld pro-
vided a stronger support to the ferroelectricity in NaMnF3 �lm.

As discussed above, NaMnF3 �lms grown on SrTiO3 substrate exhibited a preferred up-polarization because 
of a built-in �eld. �is built-in �eld, in conjunction with the thermal activation process at room temperature, 
likely give rise to the short (~30 min) retention time of the down polarization state poled by positive probe biases. 
Consistent with the DFT model, the ferroelectricity observed is highly sensitive to small changes in growth condi-
tion. Slight variations of substrate or �lms thickness can produce very di�erent material properties, as reported in 
ref. 17. Out of the total fourteen samples grown on di�erent substrates and characterized by PFM, only three with 
�lms directly grown on SrTiO3 showed signatures of ferroelectricity. While the experiment discussed here showed 
signatures of theoretically predicted ferroelectricity in NaMnF3, the marginally stable ferroelectric polarizations 
are certainly not ideal. One way to enhance the ferroelectricity in NaMnF3 is by strain engineering16. Additionally, 
spacer and capping layers can be tailored to control the electric boundary conditions and minimize the built-in 
�eld32, 33. Moreover, domain walls and the coupling between in-plane and out-of-plane domains under strain 
can also a�ect the ferroelectric switching as already been theoretically investigated in the barium-based �uo-
rides (BaZnF4 and BaMgF4)51. �ese methods and studies, as well as epitaxial quality optimizations, need to be 
explored to improve the stability of the polarized states and the overall ferroelectric performances.

Methods
Sample synthesis. NMF thin �lms approximately 50 nm thick were grown on pre-polished single crys-
tal (100) SrTiO3 substrates (a = 3.905 Å) by molecular beam epitaxy (MBE) in an ultra-high vacuum chamber. 
During growth the pressure was 5.0 × 10−9 Torr. Before the growth, atomically at surface and single termination 
of SrTiO3 substrates was achieved by the combination of two thermal annealing steps and de-ionized water treat-
ment. �e �lms were grown via co-deposition of NaF (99.99%) and MnF2 (99.99%) using commercial Knudsen 
cells. �e �uxes of NaF (0.027 Å/s) and MnF2 (0.043 Å/s) were measured using a quartz crystal monitor placed 
at the sample growth position. �e growth was performed at a nominal substrate temperature of 250 °C. Growth 
was monitored in-situ using re�ection high energy electron di�raction (RHEED), and x-ray di�raction and x-ray 
re�ectivity were used to characterize the structure of the samples. More details may be found in ref. 17.

DFT calculations. We used density functional theory (DFT) by using the projected augmented-wave method 
(PAW)52 to describe the Kohn-Sham orbitals as implemented in the Vienna ab-initio simulation package, VASP53, 54.  
The used electronic configurations in the PAW pseudopotentials are as follows: 7 valence electrons for Na 
(2p63s1), 13 for Mn (3p64s23d5), and 7 for F (2s22p5). �e exchange correlation was represented by means of the 
generalized gradient approximation (GGA) with the PBEsol parameterization55 and corrected with the DFT + U 
method56 (U = 4.0 eV) in order to treat the localized d electrons of Mn within a G-type AFM ordering. �is U 
value fairly reproduces the experimentally observed magnetic ordering and the structural properties such as 
vibrational modes and lattice parameters at the Pnma bulk ground state of the NaMnF3. Additionally, the qual-
itative results on the ferroelectric and magnetoelectric coupling remain invariant under the U and J parameters 
variation16. �e structural relaxations were performed as follows: �e lattice parameters that belong to the strain 
plain were �xed to the percentage values that takes as a reference the bulk lattice parameters. �en, the internal 
coordinates and the perpendicular lattice parameter to the strain plain, were allowed to relax. In this way, the vol-
ume and atomic coordinates forces were converged up to the de�ned tolerance value. �e periodic solution was 
represented by using Bloch states with a Monkhorst-Pack57 k-point mesh of 8 × 6 × 8 and 700 eV energy cut-o�. 
�e latter parameters give forces converged to less than 1 meV/Å−1. �e phonon calculations were performed 
with density-functional perturbation theory (DFPT)58, as implemented in the VASP code.

Piezo response force microscopy (PFM). PFM measurements were performed at room temperature 
using Asylum Research MFP-3D AFM system. Platinum coated Si cantilevers (Olympus OMCL-AC240TM) were 
used in the measurements.

Data Availability. All data generated or analysed during this study are included in this published article 
(and its Supplementary Information �les). Additional information are available from the corresponding author 
on reasonable request.
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