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Abstract 

Porous CuO nanosheets were prepared on alumina tubes using a facile hydrothermal 

method, and their morphology, microstructure and gas sensing properties were 

investigated. The monoclinic CuO nanosheets had an average thickness of 62.5 nm and 

were embedded with numerous holes with diameters ranging 5 nm to 17 nm. The 

porous CuO nanosheets were used to fabricate gas sensors to detect hydrogen sulfide 

(H2S) operated at room temperature. The sensor showed a good response sensitivity of 

1.25 with the respond/recovery time of 234 s and 76 s, respectively, when tested with 

the H2S concentrations as low as 10 ppb. It also showed a remarkably high selectivity to 

the H2S, but only minor responses to other gases such as SO2, NO, NO2, H2, CO and 

C2H5OH. The working principle of the porous CuO nanosheets based sensor to detect 

the H2S was identified to be the phase transition from semiconducting CuO to a metallic 

conducting CuS. 
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1. Introduction 

H2S is one of the most common toxic contaminants, which are frequently utilized in 

various fields, including oil, gas, waste treatment and paper industries.1,2 It is also 

commonly found or generated from sewage, rubbish dumps as well as many routine 

chemical production processes. Even in the presence of trace amounts, the H2S gas is 

extremely toxic to many organisms, such as human respiratory and nerve system. 

Generally, it is recommended that the acceptable ambient levels of the H2S for a healthy 

condition are in the range of 20-100 ppb.3 Therefore, in the views of environmental 

protection, safety and health conditions of human being, it is urgently required to 

develop cheap, efficient, highly sensitive and mass-produced H2S sensors working at 

room temperature, also with other advantages of excellent selectivity and reliability 

even as low as ppb concentration. Various H2S gas sensors fabricated using different 

types of semiconductor oxides have been investigated, including In2O3,
4,5 ZnO, 6 SnO2,
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WO3,
8 Fe2O3 and CuO.9−14 Among them, CuO based nano-materials have received 

significant attention recently due to its excellent sensing performance. 

Generally, chemical, physical, mechanical and optical properties of the nanomaterials 

are strongly dependent on their nanostructure and morphology. There are lots of reports 

recently on the synthesis of various types of the CuO nanostructures, which include 

nanoparticles,15 nanoneedle,16 nanowires,17 nanoflowers,18,19 nanotube,20 nanorods,21 

nanoleaves and nanosheets.22−29 Among these, the 2D sheet-like CuO nanostructures 

have received considerable attention because of their high anisotropy and nano-scale 
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thickness. The nano-porous structures of CuO sheets could allow a fast and efficient gas 

adsorption on their surfaces, thus the response times of gas sensor will be significantly 

decreased. However, as far as we have known, there are few reports using these CuO 

sheet-like nano-porous structures for gas sensing applications. 

The sensing mechanism of a commonly used semiconductor gas sensor is based on 

the reactions of the absorbed target molecules with the metal oxide materials. For the 

electrical resistance based metal oxide H2S sensors, these reactions will occur between 

the H2S molecule and the oxygen ions on the surface of the metal oxides, thus 

generating free electrons and  thus resulting in changes in the electrical resistance of 

the metal oxides. However, the similar reaction on the CuO materials and the associated 

changes in the resistance are also commonly observed in absorption of other types of 

reducing gases, including CO,11,30 alcohol,31,32 methane and ammonia gases.33,34 

Therefore, the specific H2S sensors with a good selectivity should be explored.  

In this paper, using a hydrothermal preparation process, porous CuO nanosheets were 

prepared on alumina tubes, on which, the resistance based H2S gas sensors were 

fabricated, and their sensing performance was systematically studied.
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2. Experiment 

2.1 Preparation of porous CuO nanosheets 

Copper chloride (CuCl2·H2O), NaOH and sodium dodecyl benzene sulfonate 

(C18H29NaO3S) of analytical grades (Sinopharm Co. Ltd., China) and H2O (with a 

resistivity reading of 18.0 MΩ·cm) were used. In a typical synthesis process, 

CuCl2·2H2O of 1.70 g were dissolved into 25 ml distilled water under a continuous 

stirring at room temperature to form a 0.4 M CuCl2·2H2O homogeneous solution. 

Subsequently, C18H29NaO3S of 3.48 g was mixed into the CuCl2·2H2O solution under 

a continuous stirring. NaOH (4 mol/L) with 15 ml volume was gradually dripped into 

the prepared solutions within 10 minutes to obtain a blue-colour solution. The 

obtained solution was placed inside a 50 ml Teflon-lined stainless autoclave, and 

tubes of alumina (1.5 mm of outer diameter and 4 mm long) were placed vertically on 

the bottom of the autoclave. The chemical reactions in the autoclave took about 24 

hours with a constant temperature oven of 120 oC. After the reaction, it was naturally 

cooled down to room temperature (~25 oC). The alumina tubes were found to be 

covered with a layer of black precipitates of CuO materials. These alumina tubes were 

flushed with the distilled water for 3 times, and then washed with alcohol for 3 times. 

Finally, the alumina tubes with CuO materials were dried at 55 oC for 6 hours and 

annealed for 2 hours in air at 600 oC. 

2.2 Characterization of CuO samples 

The XRD spectrum of the porous CuO nanosheets was measured by a D/MAX2500 

diffractometer with a copper target of 1.5406 Å of wavelength, operated with 
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voltage/current of 40 kV/30 mA. Scanning electron microscope (SEM, Inspect F50) 

was used to investigate the morphologies of the CuO nanosheets. The crystallographic 

features were also analyzed using a scanning transmission electron microscope 

(STEM, JEOL 3100R5) operated using a 300 kV Cold field emission gun (STEM). 

Surface areas of the CuO nano-sheets were characterized based on the 

Brunauer−Emmett−Teller (BET) method. The measurement was operated using an 

equipment (Tristar 3000, Micromeritics) for detecting the N2 adsorption on the 

nanosheet surfaces at a temperature of 77 K. Chemical binding analysis was 

performed by an X-ray photoelectron spectrograph (XPS, KratosAxis-Ultra DLD), 

operated using a monochromatic Al Kα source with a source energy of 1486.6 eV. 

UV–vis spectroscopy was recorded using a UV-2101 spectrophotometer (Shimadzu 

Corporation, Japan). 

2.3 Manufacture and testing of gas sensor 

The alumina tubes coated with the porous CuO nanosheets were used to directly 

fabricate the sensors. The surfaces of the alumina tubes were covered with a layer of 

the porous CuO nanosheets layer (as shown in the schematic illustration of Figure S1 

in the Supporting Information).9 At opposite ends of the alumina tube, there was a Pt 

wire connected to gold electrode. The electric current of the sensor was recorded 

using a Keithley 2400 source meter with an applied working voltage of Vs= 0.25 V. In 

this paper, the definition of gas response (S) for the gas sensor is following the ideas 

reported in literature9: S=Ra/Rg, in which Rg and Ra are the resistance of CuO 

nanosheets layer measured in the H2S and air, respectively.9 All the testing gases were 
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commercially ones. In a standard testing process, the gas sensor was placed in a 

chamber of two liters and a fixed relative humidity of 30%. During the gas sensing 

test, the concentrations of the gas were adjusted based on the injected volumes of the 

H2S. 

3. Results and discussion 

 3.1 Structural characterization 

The SEM images of the CuO samples are shown in Figure 1. Clearly, the CuO 

nanosheet structures can be identified, which have the average widths and lengths of 

about 0.5 µm and 1.2 µm, respectively. The average thickness of the CuO nanosheets 

is 62.5 nm. The STEM image shown in Figure 2a confirms the sheet-like CuO 

structures. From the STEM dark field image in Figure 2b, there are many pores with 

diameters ranging from 5 nm to 17 nm inside these nanosheets (see the areas with red 

circles). The porous structure is obviously different from the literature for those 

leaves-like or sheet structures of CuO.25-39 The surface area of these CuO nanosheets 

obtained based on the BET method is 10.03 m2·g-1. These porous CuO nanosheets are 

efficient for the gas flowing in and out, thus enhancing their gas sensing performance. 

The crystalline structure in Figure 2c shows a well-defined crystal structure with 

lattice spacings of 0.231 and 0.196 nm, which were identified as the (200) and   0    
planes of CuO, respectively. 

The XRD spectrum of the porous CuO samples is shown in Figure 3, revealing the 

monoclinic CuO structures (JCPDS No. 48-1548). The lattice constants are a = 0.4688, 

b = 0.3423 and c = 0.5132 nm. No characteristic peaks from the other phases were 
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identified, meaning that the porous CuO nanosheets are composed of a single phase 

monoclinic CuO. 

In the synthesis process of the porous CuO nanosheets, the ratio of Cu2+ and NaOH 

was 1:6. It was previously reported that, in the NaOH aqueous solution with a high 

concentration, the Cu2+ ions produced a square-planar complex [Cu(OH)4]
2- ions, 

rather than Cu(OH)2 (as can be seen from chemical equation 1 below).35 

Cu2++4OH-→[Cu OH)4]
2-                                           (1) 

[Cu(OH)4]
2-→Cu OH 2↓+OH-                                                            (2) 

Cu(OH)2→CuO+H2O
                                                                      (3) 

During decompositions in the hydrothermal process, because of coordination 

self-assembly of [Cu(OH)4]
2- ions, Cu(OH)2 is easily formed into 2D layered 

orthorhombic nanostructures (see chemical equation 2).36 Therefore, once the nuclei 

was formed on the surface of alumina tube, the Cu(OH)2 nanosheets could start to 

grow. It is likely that some sodium dodecyl benzene sulfonate ligands were trapped in 

these nanosheets. The Cu(OH)2 was then transformed into CuO structures in the 

post-hydrothermal process which is under high temperature and pressure (see 

chemical equation 3). At the same time, the trapped sodium dodecyl benzene 

sulfonate was released and nano-pores were formed in the CuO nanosheets. 

The porous CuO nanosheets showed a broad absorption from 200 nm to 800 nm (as 

shown in the UV-vis absorbance spectrum of Figure S2a in the Supporting 

Information). The band gap energy can be obtained by the standard Tauc’s 

relationship.37 Based on this classical Tauc approach, the Eg value of the porous CuO 

nanosheets of 3.08 eV can be obtained by extrapolating the value at α=0 (as shown in 
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the  αhν 2 vs hv curve of Figure S2b in the Supporting Information). This value is 

significantly larger than the band gap energy values of the bulk CuO crystals of 1.85 

eV.37 The larger Eg values of various CuO nanostructures have been reported, such as 

3.48 eV for ultra-long CuO nanowires,38 3.55 eV for CuO nanoplates,39 and 3.02 eV 

for CuO nanoplatelets.40
 It has been reported that the specific sites of molecular 

adsorption were remarkably influenced by the band gap energy, and thus could 

remarkably influence the gas sensitive property.37,38 

3.2 Sensing performance 

Figure 4 shows the response/recovery curves of the gas sensor based on CuO 

nanosheets to H2S from 10 ppb to 60 ppm at room temperature. The porous CuO 

nanosheets sensor provides a stable baseline in the dry air condition before the 

sensing measurement at different concentrations. Upon the H2S injection, a positive 

sensor response was obtained, meaning that resistance was decreased drastically. After 

the H2S gas was pumped away, the signal was returned back to its initial stable 

baseline. The sensitivity values of the porous CuO nanosheets sensor to various 

concentrations of the H2S were calculated, and the results are shown in Figure 5a. The 

inset of Figure 5a shows the sensitivity values to sub-ppm concentrations of H2S. The 

sensitivity of the sensor increases with the increasing concentrations of the H2S. Even 

with the H2S concentration as low as 10 ppb, the sensor still has good response 

sensitivity value about 1.25 at room temperature as shown in Figure 4a and Figure 5a.  

Most previously published papers reported that the H2S sensing could be 

successfully performed at a relatively high temperature. For example, Steinhauer et 
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al11 reported the detection of 10 ppb H2S using a CuO nanowire based sensor at 325 

oC, and Zhang et al14 reported the detection of 30 ppb H2S using CuO nanosheet based 

sensor at 240 oC. Although Ramgir et al reported a room temperature operated sensor 

using CuO thin films, the detection limit to H2S was higher than 100 ppb.12 Therefore, 

we can confirm that at room temperature, our sensor based on the porous CuO 

nanosheets in this study has an excellent property for detecting hydrogen sulfide at 

lower concentrations.  

Figure 5b shows the response/recovery times of the porous CuO nanosheets based 

sensor. The definition of response/recovery times was based on the report of the 

literature.9 There was an obvious change of the response/recovery times based on the 

results shown in Figure 5b. The response times were in the range from 41 s to 606 s 

when the H2S concentrations were changed from 10 ppb to 60 ppm. However, when 

the H2S gas concentration was higher than 1 ppm, it was less than 90 s. The recovery 

time is in the range from 17 s to 1173 s, but it was less than 76 s when the 

concentration of H2S was less than 0.04 ppm. It can be concluded that the huge 

amount of nanopores in the nanosheets (as shown in Figure 2b) are favorite for both 

absorption/desorption of H2S gas, leading to the shorter response/recovery times.  

Besides the high sensitivity, the reproducibility of the gas sensor is another 

important performance indicator. Figure 6a shows the reproducibility testing results of 

the porous CuO nanosheets based sensor, which was successively exposed to 200 ppb 

H2S for five times at the room temperature. Clearly a good reproducibility was 

obtained. During the repeated absorption/desorption of the H2S, the dynamic curves 

javascript:void(0);
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for five times are almost identical. It shows a stable response curve with a maximum 

response sensitivity about 5.01 to 200 ppb H2S.  

Long-term stability is also a critical parameter for the application of gas sensor. The 

measurement readings of the porous CuO nanosheets based H2S sensor were recorded 

for a month, and the result are plotted in Figure 6b. The response deviation when the 

device was exposed in 200 ppb H2S is lower than 5% after long-term testing for a 

month, indicating that the CuO nanosheet sensor has a good long-term stability. 

The selectivity of a gas sensor is another critical parameter. Figure 7 shows the 

response curves of the sensor exposed to various gases (SO2, NO, NO2, H2, CO, 

C2H5OH and NH3) at the same gas concentration of 40 ppm compared with the H2S 

of 0.2 ppm at room temperature. It is obvious that, compared with the remarkable 

responses to the 0.2 ppm H2S, there was no responses of the gas sensor to 40 ppm 

SO2, NO, NO2, CO, H2 and C2H5OH. Only one exception is the 40 ppm of NH3, with 

a low response sensitivity of 1.42. However, it is clear that the response sensitivity of 

0.2 ppm H2S was 3.5 times higher than that to the 40 ppm NH3. The results indicated 

that there is a good selectivity of the porous CuO nanosheets H2S sensor compared 

with the previously reported results.11,33,41 

3.3 Gas-sensing mechanism 

CuO is a p-type semiconductor, and the charge carriers are positive holes. The 

adsorption and desorption of the H2S on the surface of the CuO will result in the 

changes of electrical resistance. According to the mechanism of oxidation of H2S by 

the adsorbed oxygen ions, the resistance of the CuO will be increased.42,43 However, 



12 

from the real-time response shown in Figure 8, it is worth mentioning that the 

resistance of the sensor decreased quickly upon the H2S injection,, which is opposite 

to the commonly accepted mechanisms for the p-type semiconductor gas sensors. It 

is apparent that there is a totally different sensing mechanism of the porous CuO 

nanosheets with the H2S. In this paper, we proposed that the working principle of 

sensor should be the transformation from CuO to CuS, the latter of which has a good 

metallic-like conductivity. 

When the H2S molecules are absorbed on the CuO surface, it will react with the 

CuO directly, based the chemical reaction 4 as shown below:43 

H2S g  +CuO s → CuS s  +H2O(g)                           (4) 

Firstly, the CuxS (x<1) layer is formed on the CuO surface, and then it converts to 

CuS layer, which covers the surface of CuO sheets. The S2- ions continue to percolate 

inside the bulk CuO and form CuxS percolation regime in the sub-layer, as shown in 

Figure 9a. Formation of the CuS on the CuO has been proven by the XPS analysis 

results.43,44 CuS, a metallic-like conductor, will increase the connectivity between the 

neighboring CuO sheets, leading to a decrease of the resistance of the CuO 

nanosheets film. The porous CuO nanosheets are convenient for the adsorption of the 

H2S gas molecules, thus facilitating the transformation of CuS. Because of existence 

of the porous structures of the sheet-like CuO nanostructures, the reaction of CuS 

formation is very fast. It was 336 s to achieve a reaction equilibrium for the 200 ppb 

H2S gas at room temperature as shown in Figure 8. 

After the H2S gas was replaced with the dry air, recovery of the measured response 
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was initiated immediately. Based on a schematic illustration of the recovery pathway 

as shown in Figure 9b, the CuS will transform back into CuO in air based on the 

chemical reaction 5 as shown below:43 

2CuS(s) + 3O2 g  →  CuO s  +  SO2(g)                             (5) 

The porous structures of the CuO nanosheets are convenient for the molecular 

diffusion/desorpton. Therefore, the reading of the sensor can be quickly recovered at 

room temperature as shown in Figure 8, revealing its reliability to the applications. 

XPS results confirmed the formation of CuS. Because it is quite difficult to 

characterize the H2S sensing process using XPS, here, the XPS analysis was only 

used to prove that the CuS has formed on the surface of CuO powder. The testing 

sample used in the XPS analysis was CuO powder. The CuO powder was firstly 

placed in a chamber with the H2S gas at room temperature, then it was taken out and 

measured using XPS. The CuO powder without exposed to the H2S gas was also 

characterized using the XPS for a comparison. Before and after exposure in H2S gas, 

the XPS spectra of Cu 2p3/2 and S 2p of the CuO nanosheets are shown in Figure 10, 

respectively. Before exposure in H2S gas, the Cu 2p3/2 spectrum shows a main peak 

at 933.9 eV along with its satellite peaks, which are all attributed to those of the 

CuO.18,45 However, for the CuO sample which had been exposed in H2S gas, the 

main peak of the Cu 2p3/2 shows a broad asymmetric curve which was deconvoluted 

into two peaks at 932.6 and 930.8 eV, attributing to CuO and CuS, respectively. 45,46 

For the S 2p spectra, the peaks at 162.3 and 163.4 eV could be identified (Figure 10b) 

after exposure to H2S, which are attributed to S 2p3/2 and S 2p1/2 states respectively. 
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This result clearly confirms the formation of CuS.46,47 When it was exposed to air 

again, the XPS spectra were found to be almost the same as those before exposure to 

the H2S, indicating the transformation from the CuS to CuO. 

As shown in Figure 7, when the sensor was exposed into ammonia, the resistance 

of the sensor was also reduced, although compared with the results from the H2S, its 

response sensitivity is quite low. The sensing mechanism to the NH3 for the CuO 

sensor could be explained based on proton conductivity of NH4
+.48 The H2O 

molecules were absorbed on porous CuO nanostructures at room temperature. The 

absorbed NH3 molecules could react with the H2O molecules, based on the following 

chemical reaction: 

NH3(abs) + H2O abs  ↔ NH4
+ + OH−                            (6) 

Therefore, the resistance of gas sensor was decreased due to the proton conductivity 

of NH4
+.48 

4. Conclusions 

In this paper, we presented the fabrication and characterization of porous CuO 

nanosheets on the alumina tubes. And the fabricated H2S sensor showed an excellent 

sensing performance. The CuO nanosheets had an average thickness of 62.5 nm. 

Detailed structural analysis confirmed that the synthesized CuO nanosheets had 

monoclinic CuO structures, and there were many holes with a diameter ranging from 

5nm to 17 nm inside the nanosheets. The working principle of sensor was attributed 

to the transformation of semiconducting p-type CuO to metallic CuS. The porous 

CuO nanosheets based H2S sensor showed excellent gas sensitive performance and 
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remarkably good selectivity, which showed little responses to SO2, NO, NO2, H2, CO 

and C2H5OH at room temperature, and a relatively weak response to NH3. Therefore, 

the porous CuO nanosheets based sensor prepared in this study can be efficiently 

used for high-performance H2S gas sensor. 
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Figures 

 

 

Figure 1. SEM images with different magnifications of the CuO sample (a) Low 

magnification; (b) High magnification. 

 

 

 

 

Figure 2. (a) STEM image of low magnification bright field; (b) STEM image of dark 

field image; (c) the crystalline framework of the CuO samples. 
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Figure 3. XRD pattern of the porous CuO nanosheets. 

 

 

 

 

 

Figure 4. Response and recovery curves of the porous CuO nanosheets based gas 

sensor to H2S with the concentration (a) from10 ppb to 1 ppm and (b) from 

1 ppm to 60 ppm at room temperature. 
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Figure 5. (a) Variation of the sensitivity and (b) Response time and recovery time of    

the porous CuO nanosheets based gas sensor at different H2S gas 

concentration from 10 ppb to 60 ppm. 

 

 

 

 

 

Figure 6. (a) Reproducibility and (b) Long-term stability of the porous CuO 

nanosheets based gas sensor exposed to 200 ppb H2S gas for five times. 
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Figure 7. Response and recovery curves of the porous CuO nanosheets based gas 

sensors to difference gases (SO2, NO, NO2, H2, CO, C2H5OH, NH3) of 40 

ppm and 0.2 ppm H2S at room temperature. 

 

 

 

Figure 8. Real-time gas sensing curve of the sensor based on the porous CuO 

nanosheets to 200 ppb H2S gas. 



28 

 

Figure 9. Schematic illustration of (a) reaction pathway in H2S and (b) recovery 

pathway in air of CuO nanosheet. 

 

 

 

 

Figure 10. (a) Cu 2p3/2 and (b) S 2p XPS spectra of the CuO samples before and after 

exposure to H2S. 

 

 

 

 


