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Chao Xu8, Meng Li1, Zheng Wei1, Yupeng Zhang9, Mark T. Edmonds2,4,5, Shiqiang Li10,

Jan Seidel6,11, Ye Zhu8, Jefferson Zhe Liu7, Wen-Xin Tang1†, Michael S. Fuhrer2,4,5†

Van der Waals (vdW) assembly of layered materials is a promising paradigm for creating electronic and opto-
electronic devices with novel properties. Ferroelectricity in vdW layered materials could enable nonvolatile
memory and low-power electronic and optoelectronic switches, but to date, few vdW ferroelectrics have been
reported, and few in-plane vdW ferroelectrics are known. We report the discovery of in-plane ferroelectricity in a
widely investigated vdW layered material, b′-In2Se3. The in-plane ferroelectricity is strongly tied to the formation
of one-dimensional superstructures aligning along one of the threefold rotational symmetric directions of the
hexagonal lattice in the c plane. Surprisingly, the superstructures and ferroelectricity are stable to 200°C in both
bulk and thin exfoliated layers of In2Se3. Because of the in-plane nature of ferroelectricity, the domains exhibit a
strong linear dichroism, enabling novel polarization-dependent optical properties.

INTRODUCTION

Ferroelectricity, a spontaneous electrical polarization, has broad appli-
cations in nonvolatile memories, sensors, and transistors (1). For the
purpose of minimizing ferroelectric devices, there is a growing interest
in seeking ultrathin materials demonstrating robust ferroelectricity
at room temperature (RT) (1–6). At the same time, van derWaals (vdW)
assembly of heterogeneous materials offers a route to new “materials
by design”with new functionalities, and a ferroelectric vdWmaterial
would offer new prospects for nonvolatile switching and manipula-
tion of electrical and optical properties in a vdW heterostructure (7, 8).
So far, vdWmaterials encompass a broad range of properties, including
Dirac electrons (9), semiconductors (10), superconductors (11), charge
density waves (CDWs) (12), piezoelectrics (13), and ferromagnets (14),
to provide a rich choice ofmaterials in the design of functional electron-
ics. Compared with the number of these materials, vdW layered ferro-
electrics are rare. A broad spectrum of vdW ferroelectric materials with
different sizes of bandgap is required for various electronic applications
(2, 6, 15–17). Tremendous theoretical efforts have been devoted to the
search of vdW ferroelectrics (5, 18–22).

Here, we report the discovery of in-plane ferroelectricity in vdW
layered In2Se3. In2Se3 is a complicatedmaterial exhibiting several phases
depending on the temperature and material preparation conditions
(23–25). The search for ferroelectricity in In2Se3 requires careful exam-
ination of this phase space. Very recently, Ding et al. (4) theoretically

predicted the existence of in-plane and out-of-plane ferroelectricity in
the ground-state a phase of In2Se3. Researchers (15) thereafter achieved
the experimental demonstration of out-of-plane ferroelectricity. Note
that, during the review process of our work, in-plane ferroelectricity
was also recently reported in a-In2Se3 (26). Here, we show in-plane
ferroelectricity in b′ phase In2Se3, a different In2Se3 polymorph. Pre-
viously, the b′ phase was believed to be metastable and only existed
between 60° and 200°C (24, 25). Surprisingly, by using polarized light
microscopy, low-energy electronmicroscopy (LEEM), andpiezoresponse
force microscopy (PFM), we found that b′-In2Se3 is a stable ferro-
electric at RT with a Curie temperature of 200°C. Micro–low-energy
electron diffraction (m-LEED) patterns and scanning tunneling micro-
scopy (STM) reveal that a one-dimensional (1D) superlatticewith a nine-
unit-cell periodicity forms the ferroelectric domains (24). The emergence
of ferroelectricity and the accompanying linear dichroism add to the
multifunctionality of vdW In2Se3, which has already been used in
phase-change random access memories (27), high-photoresponsivity
photodetectors (28), and thermoelectrics (23). The newly discovered
ferroelectricity adds new prospects for nonvolatile switching of the
electronic and optical properties of In2Se3 or other vdW materials in
heterostructures incorporating In2Se3.

RESULTS AND DISCUSSION

As mentioned before, In2Se3 has several different crystal structures and
phases (a, b, g, d, and k) (23). Here, we start with In2Se3 of the b phase
family, which has the rhombohedral structure and belongs to the R�3m
space group (fig. S1). Figure 1A shows the crystal structure of b-In2Se3
(29). As shown, the crystal has a vdW layered structure, whose basic
building block is a five-atom-thick layer in the sequence of Se-In-Se-
In-Se. The c plane of b-In2Se3 has a triangular lattice, and b-In2Se3
has threefold rotational symmetry about the c axis. Similar to graphite,
b-In2Se3 can be mechanically exfoliated into thin layers using the sticky
tape technique (see Materials and Methods).

Figure 1B shows a schematic of the experimental setup for imaging
of the exfoliated b-In2Se3 using polarized light in transmission mode,
and Fig. 1C shows a sequence of optical images of exfoliated b-In2Se3
with a thickness of ~100nm illuminatedwith various linear polarization
directions at RT. We define the horizontal direction as 0°. Surprisingly,
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the image reveals the presence of domains in the shape of long stripes
that are not visible under unpolarized illumination. We denote the two
types of domains as A and B. Figure 1D plots the transmitted light
intensities from A and B as a function of the light polarization angle f.
We can see the transmission intensities fromAandB oscillate with 180°
periodicity, indicating linear dichroism in regions A and B (30, 31).
Inspection of the top graph of Fig. 1D shows that the contrast arises
because the optical axes of regionsA andB are different, at 330° and 30°,
respectively, with the angle difference of 60°. Examination of other
b-In2Se3 flakes showed similar results. The domains always have optical
axes differing by 60° or 120°. On the basis of these observations, we can
explain the image contrast as follows. The transmission intensitiesTA of
A and TB of B and their difference TB − TA are given by

TA ¼ To þ wIcos½2ðφþ 30Þ� ð1Þ

TB ¼ To þ wIcos½2ðφ� 30Þ� ð2Þ

TB � TA ¼
ffiffiffi

3
p

wIsinð2φÞ ð3Þ

where To is the based transmission intensity, w is the transmission
coefficient, and I is the incident light intensity. The factor of 2 in the
equations is because there is no antiparallel direction between the

polarization light and optical axis. In addition, in the above equations,
we assume that the twodomains have the sameoptical properties except
their polar directions. The bottom graph of Fig. 1D plots TB − TA as a
function of polarization angle of incident light, and the black curve is
the fitting curve using Eq. 3. We can see that the contrast between A
and B domains disappears at the light polarization angle of 0°, 90°,
180°, and 270° due to the linear dichroism of the domains. Figure 1E
plots the schematic optical axes of A and B. The domain structure is
very stable and remains the same even in a thin (45 nm) sample after
60-day ambient exposure (see fig. S2).

To further understand the properties of the domains, we applied
LEEM and selected-area m-LEED to investigate the surface of In2Se3.
In our experiments, we obtained a fresh In2Se3 surface by cleaving large
In2Se3 single crystals, followed by a brief thermal annealing at 100°C in
ultrahigh vacuum (1 × 10−9 torr) (seeMaterials andMethods). Figure 2A
shows the bright-field LEEM images of the In2Se3 surface at RT using a
tilted electron beam (fig. S3). Different from the optical images shown in
Fig. 1C, there are three types of domains, which are marked by blue,
yellow, and green dots in Fig. 2A, respectively. Figure 2B presents the
m-LEED patterns of the three kinds of domains. As shown, the diffrac-
tion pattern of each domain contains a rowof subspots, which subdivide
the distance between twomain spots, such as the (−1,0) and (0,−1) spots
denoted in the bottom image of Fig. 2B, into nine equal parts along one
of the three close-packed directions (see Fig. 2, B and C). Note that we
cannot rule outwhether there is another period, such as eighth, owing to
the weak intensities of the subspots. The results suggest that each
domain is formed by a 1D superlattice structure along any one of three
equivalent close-packed directions of the hexagonal c plane. The diffrac-
tion patterns demonstrate that our In2Se3 sample belongs to the b′ phase,
which has been discovered in electron diffraction experiments in the
1970s by cooling b-In2Se3 from 200°C (24).

Using LEEM, we can shedmore light on the b′↔ b phase transition
through imaging in real time in both real and reciprocal space.We focus
on one long stripe domain with uniform width, as shown in Fig. 3A.
Figure 3B shows a number of LEEM images of the domain at different
temperatures during the cycle of heating and cooling. From 42° to 190°C,
the width of the domain only shrinks from 1.9 to 1.6 mm; the slight
shrinkage indicates that the domain is stable over the temperature
window. However, the width markedly decreases from 1.6 to 0.67 mm
when the temperature increases from 190° to 195°C and, finally, the
domain disappears at 204°C. Meanwhile, the m-LEED pattern (Fig. 3D)
taken from the surface at 204°C only indicates the Bragg spots of hexagon
but no subspots of the superstructure, which still exist at 190°C (see Fig.
3C). Thus, both the real space and the diffraction patterns confirm the
completion of the phase transition from b′ to b at 204°C (24).

Afterward, we start cooling the sample to investigate the recovery of
the domains. The right columnof Fig. 3B shows the results. The domain
reappears at its previous location, with the onset temperature of the
domain contrast at 145°C, much lower than that of the large domain
shrinkage (195°C) during heating. As the temperature continues
decreasing, the width of the domain grows gradually. Figure 3E shows
the width of the domain as a function of temperature during the heating
(red) and cooling (blue) processes. At each point in the figure, we sta-
bilized the sample at the temperature for at least 10 min to achieve the
equilibrium state of the domain. As shown, there is a large hysteresis
loop of the phase transition between the heating and the cooling
periods. The domain grows (shrinks) continuously during the cooling
(heating) period near criticality. The continuous phase transition indi-
cates that the b-to-b′ phase transition is of second order. Moreover, our
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Fig. 1. Linear dichroism of In2Se3. (A) Crystal structure of layered b-In2Se3.
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LEEMexperiments reveal that thedynamics of domain growth/shrinkage
is highly anisotropic. The length of the domain grows much faster than
the width. The anisotropic dynamics is possibly due to the 1D nature of
the superstructure.

So far, the phase transition from b to b′ is still not fully addressed. In
previous studies, it is generally believed that b′ phase was formed by
cooling b-In2Se3 from 200°C and the phase exists in the temperature
between 60° and 200°C (24, 32). Below 60°C, the b′ phase in the bulk
crystals or thick layers of In2Se3 is thought to change to a phase with
the disappearance of the superstructure (24). To date, the RT super-
structures of the b′ phase were only observed in nanoribbons, nanowires,
or monolayers of In2Se3 (32–34). However, our optical microscopy and
LEEM experiments (Figs. 1 to 3) show that the b′ phase is stable at RT,
both in thin layers and in bulk, and therefore suitable for electronic

applications. The discrepancy might be due to the difference in crystal
quality.

Previous studies speculated that the superstructures were due to a
CDWstate and the structural distortionwas due to the freeze-in of a par-
ticular vibrationmode (24). CDW formation is hard to reconcile with the
semiconducting nature of b ′-In2Se3, and the electrical measurements
carried out by other groups observed that the resistance of the b′ super-
structure phase was significantly lower than that of the b phase, which is
difficult to understand if the b′ phase is due to CDW formation (34, 35).
The linear dichroism and the angle-dependent LEEM contrast of the
domains (fig. S5) suggest instead that the b′ phase is polar, and we thus
speculate that the b-to-b′ phase transition is a ferroelectric transition.

To examine whether there is ferroelectricity in b′-In2Se3, we applied
PFM to scan the surface in air at RT. Figure 4A shows the atomic force
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microscopy (AFM) topographic image of a freshly cleaved In2Se3
surface. As expected for a vdWmaterial, the surface is atomically flat
over large areas, with the exception of a few extraneous particles. Figure
4 (B andC) indicates the PFMout-of-planemagnitude and phase images
of b′-In2Se3 surface. We observe no vertical piezoelectric response signal
across the surface, suggesting that the material does not exhibit mea-
surable out-of-plane ferroelectricity. In contrast, the in-plane PFMmag-
nitude image (Fig. 4D) and phase image (Fig. 4E) show a strong signal,
with stripe domains similar to those observed in polarizationmicroscopy
and LEEM. These results verify the existence of in-plane ferroelectricity
in In2Se3. In-plane ferroelectricity also explains the LEEM contrast
mechanism, as seen in Fig. 2, as due to the polar structure. The disap-
pearance of the LEEM contrast at the b′-to-b phase transition thus indi-
cates that ferroelectricity is associated with the b′ phase, that is, the

presence of the superlattice. On the basis of the linear dichroism and
LEEM image contrast study, we can now plot the polarization direction
of each domain (see Fig. 4F).

To attempt to resolve the atomic structure, we imaged the surface of
In2Se3 using STM at 77 K. Figure 5A shows the large-scale STM image
of b′-In2Se3 surface scanned at 77 K. Many dark depressions are ev-
ident on the surface, possibly pinholes in the crystal or defects due to
imperfect cleaving. The STM image indicates the weak contrast of
well-aligned stripes throughout the surface. According to the line
profile taken from the rectangular region shown in Fig. 5A, the distance
between the stripes is either 1.6 or 2 nm, which is equal to the length of
4 or 5 unit cells, respectively (see the inset of Fig. 5A). Similarly, a Fourier
transformof the STM image (inset) showswell-defined spots correspond-
ing to a real-space periodicity of 1.822 nm. The result suggests that the
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STM probes a periodicity that is half the periodicity seen in electron
diffraction (Fig. 2), suggesting that the actual supercell consists of two of
the rows imaged in STM. Figure 5B shows the zoomed-in STM image
showing the positions of Se atoms of In2Se3 surface. The Se lattice is
roughly triangular with a Se-Se distance of 0.4 nm, which is similar to
the b phase. The 1D superlattice structure appears as an apparent
height variation of Se atoms, although we cannot determine from the
image whether this is due to an actual height variation or an electronic
effect (variation in the local density of states). Figure 5C shows the high-
magnification image of the 1D superstructure. By taking the line profile
along the blue line, we can see the intermixing of stripes of four-atom
and five-atomwidths.We note that the sample was rapidly cooled from
RT to 77 K upon insertion into the STM, so we cannot rule out the pos-
sibility that the b′ requires rapid quenching to be stabilized at 77 K.
However, given that the distortion associated with b′-In2Se3 is appar-
ently imaged by STM, we conclude that the b′ phase is at least meta-
stable at 77K.The transmission electronmicroscopy (TEM)observations
confirm the same structure at RT (see fig. S7).

The b phase appearing at >200°C belongs toR�3m 166 group, which
owns inversion symmetry (24). The emergence of ferroelectricity re-
quires the breaking of inversion symmetry. However, the detailed
atomic displacements are not evident in electron diffraction or STM.
More experimental work is required to determine the atomic structure.

We performed density functional theory (DFT) calculations to study
the stability of the single unit cell of b-In2Se3. We started from the high-
temperature phase, b. This structure has inversion symmetry and
exhibits no ferroelectricity in our DFT calculations (see Fig. 6). We
found that, by shifting the central Se atom along one of the threefold
symmetry direction, the total energy values reduced by 0.27 eV per unit
cell. Our calculation (fig. S8) shows a polarization of 0.199 C/m2 for this
new structure (Fig. 6). The lower total energy of this polar structure in-
dicates that it is more energetic favorable at low temperatures. The po-
larization direction also appears to be consistent with the b′ phase in the
experiments. However, our single-unit-cell model is not a superlattice

structure as the b′ phase. More experimental and simulation work
are required to establish the relationship between crystal structure
and ferroelectric polarization of In2Se3.

In summary, we have discoveredRT in-plane ferroelectricity in vdW
material b′-In2Se3 in bulk crystals and thin layers down to 45 nm. The
b′-In2Se3 phase and superlattice structure are stable at RT, with a Curie
temperature of up to 200°C. Because of the appearance of ferroelectric
domains, In2Se3 shows linear dichroism. PFM confirms the existence of
ferroelectric domains, and STM shows the 1D superstructure distortion
of the atomic lattice. DFT confirms that b-In2Se3 is unstable to a
ferroelectric distortion along the threefold high-symmetry directions.
However, the exact structure of the large unit-cell superlattice distortion
leading to ferroelectricity remains to be uncovered by further theoretical
and experimental studies. Because of the difficulty in making large-area
monolayer In2Se3 using exfoliation, we have not been able to confirm
whether ferroelectricity persists to the monolayer limit. However, the
observation of a similar superlattice structure in thin nanostructures
of In2Se3 by others suggests that ferroelectricity is likely in ultrathin
layers (33–35). We thus anticipate our results to open new possibilities
of making multifunctional electronics of vdW materials coupling with
in-plane ferroelectricity and linear dichroism of In2Se3.

MATERIALS AND METHODS

Linear dichroism measurement
A large single crystal of In2Se3 (HQ Graphene) was exfoliated using
sticky tape (3MScotch), and the flakes were deposited on polydimethyl-
siloxane substrates. The linear dichroism measurements were carried
out using an optical microscope (Nikon Eclipse) with a linear polarizer.
Duringmeasurements, the sample was fixed, and the polarization angle
relative to the sample was changed by rotating the linear polarizer at
steps of 15°. A 50× objective lens was used, and the charge-coupled
device integration time was 1 ms.

LEEM measurement
The LEEM experiments were carried out on a SPECS FE-LEEM P90
with an aberration corrector. Clean In2Se3 was prepared by cleaving
the large single crystals using sticky tape in ambient temperature,
followed by a quick loading into the load lock chamber and pumping
down to vacuum. Before the LEEM observation, the surface was briefly
cleaned by annealing at 100°C for 2 hours and exposing to ultraviolet
radiation for 15 min under ultrahigh vacuum (<10−9 torr). The tilted
electron beam was necessary to observe the ferroelectric domains of
In2Se3. Selected-area m-LEED was applied to identify a single ferro-
electric domain structure. Temperature-dependent phase transition was
conducted under ultrahigh vacuum condition during imaging process.

PFM characterization
PFM measurement was carried out on a commercial AFM (Dimension
Icon, Bruker) using aNanoScope V controller in near-contact resonance
mode. During measurements, the Pt/Ir-coated conductive probes
(SCM-PIT, Bruker) were driven at the frequency of ~340 kHz. To elim-
inate electrical charging effects, the samples were exfoliated and stuck to
a conducting carbon tape.

STM measurement
STM images were obtained with a CreaTec LT-STM/AFM under
ultrahigh vacuum (base pressure, <10−10mbar) and a base temperature
of 77 K.
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Fig. 6. DFT calculation. The top view (top) and the side view (bottom) of the b

phase before and after relaxation, respectively. Ferroelectricity exists in a crystal

structure relaxed from the b phase. The Se atoms in the middle of the five-atom

layer shift along one of the threefold symmetry directions.
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DFT calculation
The Vienna ab initio simulation package (VASP v.5.3.3) was used to
perform DFT calculations in this study (36). Projector augments
wave method and the generalized gradient approximation were used
(37, 38). A plane-wave cutoff energy was set to 600 eV. A Monkhorst-
Pack k-pointsmesh of 13× 13×3was adopted for the unit cell (Fig. 1A).
For the monolayer In2Se3, a thick vacuum layer was included to mini-
mize interlayer interactions. An interlayer spacing of 24 Å was used
throughout, which represents a good balance between computational
accuracy and efforts. To hold this interlayer space constant, the VASP
source code (constr_cell_relax.F) wasmodified to allow the cells to relax
within the basal plane only. In all cases, the atomic positions were re-
laxed in all directions until the forces acting on each atom were below
0.005 eV A−1. To calculate the ferroelectric polarizations of the bulk
In2Se3, the Berry phase method was applied (39).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/

content/full/4/7/eaar7720/DC1

Fig. S1. X-ray diffraction spectrum of In2Se3 flakes.

Fig. S2. Air stability of In2Se3 and domains.

Fig. S3. Image contrast of domains under a tilted electron beam in LEEM.

Fig. S4. The control of electron beam tilt in LEEM.

Fig. S5. Tilt angle–dependent domain contrast.

Fig. S6. Proposed ferroelectric polarizations.

Fig. S7. TEM measurements.

Fig. S8. Ferroelectric polarization calculated using Berry phase method.
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