
Room-temperature operation of a titanium supersaturated silicon-based infrared
photodetector
E. García-Hemme, R. García-Hernansanz, J. Olea, D. Pastor, A. del Prado, I. Mártil, and G. González-Díaz 

 
Citation: Applied Physics Letters 104, 211105 (2014); doi: 10.1063/1.4879851 
View online: http://dx.doi.org/10.1063/1.4879851 
View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/104/21?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
Capacitive infrared photodetector for room temperature operation 
Appl. Phys. Lett. 102, 103108 (2013); 10.1063/1.4795520 
 
Characteristics of a tunneling quantum-dot infrared photodetector operating at room temperature 
Appl. Phys. Lett. 86, 191106 (2005); 10.1063/1.1923766 
 
Near-room-temperature operation of an InAs/GaAs quantum-dot infrared photodetector 
Appl. Phys. Lett. 78, 2428 (2001); 10.1063/1.1362201 
 
Ultrafast silicon based photodetectors 
J. Vac. Sci. Technol. A 18, 630 (2000); 10.1116/1.582239 
 
Infrared photodetection at room temperature using photocapacitance in amorphous silicon structures 
Appl. Phys. Lett. 72, 1229 (1998); 10.1063/1.121022 

 
 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:  147.96.14.15

On: Mon, 28 Jul 2014 11:12:31

http://scitation.aip.org/content/aip/journal/apl?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/test.int.aip.org/adtest/L23/1691523420/x01/AIP/JAP_HA_JAPCovAd_1640banner_07_01_2014/AIP-2161_JAP_Editor_1640x440r2.jpg/4f6b43656e314e392f6534414369774f?x
http://scitation.aip.org/search?value1=E.+Garc�a-Hemme&option1=author
http://scitation.aip.org/search?value1=R.+Garc�a-Hernansanz&option1=author
http://scitation.aip.org/search?value1=J.+Olea&option1=author
http://scitation.aip.org/search?value1=D.+Pastor&option1=author
http://scitation.aip.org/search?value1=A.+del+Prado&option1=author
http://scitation.aip.org/search?value1=I.+M�rtil&option1=author
http://scitation.aip.org/search?value1=G.+Gonz�lez-D�az&option1=author
http://scitation.aip.org/content/aip/journal/apl?ver=pdfcov
http://dx.doi.org/10.1063/1.4879851
http://scitation.aip.org/content/aip/journal/apl/104/21?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/102/10/10.1063/1.4795520?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/86/19/10.1063/1.1923766?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/78/17/10.1063/1.1362201?ver=pdfcov
http://scitation.aip.org/content/avs/journal/jvsta/18/2/10.1116/1.582239?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/72/10/10.1063/1.121022?ver=pdfcov


Room-temperature operation of a titanium supersaturated silicon-based
infrared photodetector

E. Garc�ıa-Hemme,1,2,a) R. Garc�ıa-Hernansanz,1,2 J. Olea,2,3 D. Pastor,1,2,3 A. del Prado,1,2

I. M�artil,1,2 and G. Gonz�alez-D�ıaz1,2

1Depto. de F�ısica Aplicada III (Electricidad y Electr�onica), Univ. Complutense de Madrid, 28040 Madrid,
Spain
2CEI Campus Moncloa, UCM-UPM, 28040 Madrid, Spain
3Instituto de Energ�ıa Solar, E.T.S.I. de Telecomunicaci�on, Univ. Polit�ecnica de Madrid, 28040 Madrid, Spain

(Received 5 March 2014; accepted 13 May 2014; published online 28 May 2014)

We report room-temperature operation of 1� 1 cm2 infrared photoconductive photodetectors based

on silicon supersaturated with titanium. We have fabricated these Si-based infrared photodetectors

devices by means of ion implantation followed by a pulsed laser melting process. A high sub-band

gap responsivity of 34 mV W�1 has been obtained operating at the useful telecommunication

applications wavelength of 1.55 lm (0.8 eV). The sub-band gap responsivity shows a cut-off

frequency as high as 1.9 kHz. These Si-based devices exhibit a non-previous reported specific

detectivity of 1.7� 104 cm Hz1/2 W�1 at 660 Hz, under a 1.55 lm wavelength light. This work shows

the potential of Ti supersaturated Si as a fully CMOS-compatible material for the infrared

photodetection technology. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4879851]

The field of infrared detection has always been attracting

interest due to its useful variety of applications, such as mili-

tary targeting and tracking, civil security and surveillance,

environmental monitoring, and telecomunications.1,2

Nowadays, major infrared photo-detection technologies are

based on mercury cadmium telluride,3,4 quantum-well infra-

red photodetectors,5 quantum-dot infrared photodetectors,6

and microbolometers.7 In spite of their high performances,

these devices suffer from some important drawbacks: they

are based on non-abundant or contaminant materials, their

process technology is costly, they usually operate at cryo-

genic temperatures, and they are hardly integrated in the

very mature Si-CMOS fabrication routes. For all these rea-

sons, a non-cooled Si-based infrared photodetector would be

of a great interest since it would drastically reduce the manu-

facture costs enabling the integration of optical and elec-

tronic functions on a single chip.

Several groups are working in extending the infrared

photoresponse of Si beyond the 1.1 lm wavelength (limit

defined by its optical band gap). Some groups have thor-

oughly investigated Si supersaturated with S or Se prepared

by laser irradiation in SF6 atmosphere or by ion implantation

and subsequently pulsed laser melted (PLM).8–12 An

extended infrared photoresponse with high gain levels has

been shown.13,14 In previous works, we have deeply investi-

gated Si supersaturated with Ti15 or V,16 and we reported the

first solar cell device based on Ti supersaturated Si.17 These

materials and the solar cell device have shown a sub-band

gap optical absorption coefficient in the 104 cm�1 range,18 a

110 K photoconductive response extended up to 0.2 eV

(6.2 lm),16 and a room-temperature sub-band gap external

quantum efficiency in the 10�4 range.17 Recently, a

room-temperature operated Au supersaturated Si photodiode

has proven a similar sub-band gap external quantum effi-

ciency in the 10�4 range.19

In this Letter, we present room-temperature optoelec-

tronic properties (spectral responsivity, responsivity-

frequency dependence, and spectral specific detectivity) of a

photoconductive photodetector device based on Ti supersatu-

rated Si.

High resistivity float zone (FZ) n-type Si samples 1� 1

cm2 (q ¼ 200 X cm), with a thickness of 300 lm, grown in

the (111) direction, with a Hall mobility of l � 1500

cm2 V�1 s�1 and a carrier concentration of n� 2.2

� 1013 cm�3 at room-temperature, were implanted with
48Tiþ at high doses to overcome the Mott limit.20 Similar

samples were used to analyse the structural,21 electronic

transport,22 and optical properties of Ti supersaturated Si.18

Implantation processes were conducted in a VARIAN

CF3000 Ion Implanter refurbished by Ion Beam Services

with a tilt angle of �7� off the incident beam axis to mini-

mize channelling effects. Two 48Tiþ ion implantation proc-

esses were carried out to obtain a thicker layer,23 at energies

of 35 and 150 keV, with doses of 1015 and 4� 1015 cm�2,

respectively. The implantation parameters were designed to

obtain a layer of about 200 nm with an almost constant Ti

profile. After implantation, the samples were processed by

PLM to recover the crystal lattice. PLM processes were per-

formed at I. P. G. Photonics (New Hampshire, USA). PLM

was conducted in air, using a KrF excimer laser (248 nm),

with a 20 ns single pulse and an energy density of 1 J cm�2.

Finally, four Ti/Al (100/200 nm) triangular contacts were

e-beam evaporated in the sample corners to electrically con-

tact and characterize the devices using the van der Pauw set

up. Same metallic contacts were also evaporated over a bare

Si reference sample.

The spectral responsivity characterized in this work is

defined as the ratio of the electrical output signal of the de-

tector to the wavelength dependent input radiation power, in

V W�1. To analyse the spectral responsivity of the 1� 1 cm2

devices, we fed them through two adjacent contacts with a

fixed 1 mA current and measured the AC photovoltagea)Electronic mail: eric.garcia@ucm.es
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generated over the opposite two contacts, while a monochro-

matic chopped light impinged the devices.15 A TMc300

Bentham monochromator with a Globar (SiC) source was

used as infrared monochromatic source. The intensity of the

light was calibrated with a Bentham pyrometric detector. The

AC component of the generated photovoltage was extracted

out with a SR830 digital signal processing lock-in amplifier,

manufactured by Stanford Research Systems (California).

Frequency dependence measurement of the responsivity

was carried out using an infrared 1.55 lm wavelength

Thorlabs Light Emitting Diode (LED) 1550E with a wave-

length long pass filter at 1.3 lm illuminating the devices.

The LED is powered using the output Transistor-Transistor

Logic (TTL) signal of the lock-in amplifier, so we could

adjust the frequency of the TTL signal in order to obtain a

pulsed light and perform a frequency scan of the responsiv-

ity. Cut off frequency of the LED is 0.1 GHz, high enough to

not interact with the measurements of this work. All the set-

ups are placed in a metallic box inside-covered with black

felt in order to avoid multiple reflections.

Noise spectral density Snð Þ, defined as the frequency

dependence of the voltage noise per unit of bandwidth root

(in units of V Hz�1=2), was also characterized in these devi-

ces using the SR830 lock-in amplifier. The measured respon-

sivity and Sn were used to calculate the specific detectivity

D�ð Þ, which is another important photodetector characteris-

tic, defined as4

D� ¼ R
ffiffiffi
A
p

Sn
; (1)

where R is the responsivity and A is the optical active area

of the devices. It provides information about the signal to

noise ratio and is measured in units of cm Hz1/2 W�1. For

the spectral responsivity and D�, the light from the source

was mechanically chopped at 23 and 660 Hz, respectively.

These frequencies were chosen in order to obtain the highest

responsivity and D� as it will be shown later.

The crystalline quality of the implanted layers was

determined by cross-sectional transmission electron micros-

copy (XTEM) experiments at Evans Analytical Group

(Sunnyvale, CA) with a JEOL 2010 TEM working at

200 keV. Simultaneously with the XTEM measurements,

electron diffraction (ED) patterns with a selected area of dif-

fraction of about 50 nm were obtained. We have analyzed

the distribution of Ti in the Si layer by performing Energy

Dispersive X-Ray Analysis (EDX) using the microscope in

the Scanning TEM (STEM) mode and using a nominal 2 nm

electron beam and an Oxford INCA EDX detector system.

Spectral responsivity will be the first parameter dis-

cussed in this work. Fig. 1 shows the measured spectral

responsivity for the Ti supersaturated Si device, as well as

for a bare Si reference device. We can observe for both devi-

ces the intrinsic photoresponse edge of the Si band gap for

energies higher than 1 eV. A slight sub-band gap photores-

ponse is measured in the case of the Si reference device.

There are some different possibilities to explain this minor

sub-band gap response in bare Si reference devices. One of

the more suitable explanations is the optical transitions

involving surface states.24 Since the substrates used have a

high purity, we can expect a high carrier lifetime. The

recombination of the surface generated charge carriers will

be reduced due to this high carrier lifetime. Another possibil-

ity that has been recently discussed19 to explain this sub-

band gap photoresponse is the two photon absorption (TPA)

process.25 This process is defined by the sub-band gap

absorption coefficient: aTPA kð Þ ¼ I kð Þb kð Þ, where I kð Þ is

the radiation power density and b kð Þ is the TPA coefficient.

b kð Þ values are 2–0.25 cm GW�1 for k¼ 1–2 lm, respec-

tively.25 The Globar source/monochromator system used in

this work has a maximum radiation density output power of

3.4 mW cm�2 for k¼ 1–2 lm interval. With this radiation

density power, we will obtain, in the best case, a maximum

aTPA kð Þ of 1.5� 10�11 cm�1, which is in any case unlikely to

explain the sub-band gap photoresponse of the Si reference de-

vice. In the work described in Ref. 19, the light excitation

source consists in a laser diode with a much higher radiation

density power. Consequently, in the present work, optical tran-

sition involving surface states seem to be the most plausible ex-

planation. Anyway, this low sub-band gap response is measured

down to 0.8 eV, where the noise floor appears at 1 mV W�1.

A completely different behaviour is observed in the case

of the Ti supersaturated Si device. A responsivity more than

one order of magnitude higher than in the Si reference device

is well measured at 0.8 eV (1.55 lm). Moreover, the respon-

sivity extends into the infrared region of the spectrum down

to 0.5 eV (2.5 lm), reaching a much lower noise floor level

of 0.26 mV W�1.

The sub-band gap photoresponse of the Ti supersatu-

rated Si device can be further analysed for a better under-

standing of its nature. We can observe an exponential

dependence of the responsivity beginning at 0.52 eV with a

kink in the activation tendency at about 0.72 eV. This kink

energy of 0.72 eV could be closely related to the

Ec� 0.78 eV donor deep level found in Ti doped Si devices

obtained by diffusion.26 Excitation of charge carriers from

the valence band (VB) to the conduction band (CB) through

FIG. 1. Spectral room-temperature responsivity for the Ti supersaturated Si

device and the bare silicon reference device. Inset shows the fitting to the

Urbach absorption edge (Eq. (2)). Measurements performed at 23 Hz chop-

ping frequency.
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the deep level impurity could be a possible mechanism to

explain the sub-band gap photoresponse. As the photon

energy increases and approaches the impurity energy level,

EC � Ei ¼ 0:78 eV, transitions from the impurity level to the

conduction band become exponentially more likely. This ex-

ponential activation is the behaviour observed on the respon-

sivity edge from 0.52 to 0.72 eV (Fig. 1). A possible model

to explain this exponential activation is based on assuming

that there exists an energy broadening of the conduction

band or the impurity level induced by disorders in solids. In

that case, an exponential activation of the sub-band gap

absorption coefficient is observed, known as the Urbach

rule.27 Assuming that our spectral responsivity is propor-

tional to the absorption coefficient, we have the dependence

R Ephð Þ / e
Eph�Ei

Es

� �
; (2)

where R Ephð Þ is the spectral responsivity, Ei is the impurity

level which act as the threshold energy of the Urbach activa-

tion process (0.72 eV), and Es is the slope of the Urbach

absorption edge due to disorder in solids.27 Fits of the experi-

mental data to Eq. (2) are shown in the inset of Fig. 1, and a

value of 48 meV has been extracted as the slope of the

Urbach edge. This mechanism has been previously observed

at low temperatures in gold-diffused Si28,29 and recently at

room-temperature in gold supersaturated Si.19 Moreover, the

value of the slope of the Urbach edge extracted in this work

(48 meV) closely matches the 42 meV value obtained in the

Au supersaturated Si devices,19 suggesting that induced

energy broadening of the conduction band or the impurity

level could be a common property of Si supersaturated mate-

rials with transition metals.

However, with this scenario in mind, we still have to

deal with the detrimental effect that the introduction of such

a high amount of Ti in the Si lattice would produce. As it is

well known, Ti is a lifetime killer in Si,29 so its presence has

a harmful effect on the photogenerated charge carriers by

assisting the recombination process. In the framework of the

intermediate band (IB) materials,17,30,31 we could explain the

increase in the responsivity in spite of the high concentration

of Ti deep levels. Once the Ti concentration overcomes the

Mott limit (also known as insulator-to-metal transition),32

the electron wave functions overlap producing a delocaliza-

tion of the states associated to the impurities, just as it hap-

pens with the electron wave functions in the VB and in the

CB. The concentration that determines the insulator-metal

transition (Mott limit) has been theoretically calculated to be

approximately 6� 1019 cm�3 for a general case of study.20

This value is in agreement with experimental results in Ti

supersaturated Si22 and S supersaturated Si.33 Once this limit

is achieved, the reduction of the recombination is possible

and an increase of the charge carrier lifetime may take place,

as explained in the configuration diagram theory20 and

reported experimentally.34 However, we have to note that

some authors, based on their theoretical calculations, do not

support the predicted lifetime recovery.35 As it has been

shown in Refs. 23 and 36, the Ti supersaturated Si devices

investigated in this work present a Ti concentration over the

theoretical limit to form an IB material, and all of the ana-

lysed properties have been well related with the predictions

of the IB materials. Therefore, the sub-band gap responsivity

could be a consequence of these two mechanisms: the deep

levels assisted photogeneration and the reduction of the

recombination process due to the formation of the IB.

Frequency-responsivity dependence is a key factor related

with the response time of the devices. Fig. 2 shows the fre-

quency dependence of the responsivity (left axis) and of the D�

(right axis) of the Ti supersaturated Si device measured at

room-temperature using the infrared 1.55lm wavelength LED

setup described in the experimental. Error bars of the responsiv-

ity graph are obtained by dividing the standard deviation of the

measured responsivity by the root of the number of measure-

ments, taking into account that the responsivity is obtained as

the mean value over 30 measurements. We can observe that the

responsivity could be measured in a range from 1 Hz to 10 kHz

and presents a cut-off frequency (frequency for which the

responsivity is �3 dB of the nominal value) at 1.9 kHz. With

such a high bandwidth, we could discard that the observed

responsivity is due to thermal (bolometric) processes,4 since

this kind of processes have strong frequency dependence and

quite long response time, determined by the thermal mass and

thermal diffusivity of the material.4,37 This observation is in

contrast with the low-temperature sub-band gap photoresponse

previously reported in S supersaturated Si, where the sub-band

gap photoresponse of the S supersaturated device is reported to

have a strong thermal component.12

Measurement of the Sn for the Ti supersaturated Si devi-

ces is shown and discussed in the supplementary material,38

showing a 1/f
1=2-like noise behavior at lower frequencies and

a white noise behavior at higher frequencies. Also a TEM

and STEM images as well as an EDX analysis are provided

in the supplementary material.38 Using the responsivity and

the Sn, we are able to calculate the D� dependence on the fre-

quency as it was shown in Eq. (1). Right axis of Fig. 2 shows

this parameter. We can observe a high increase of the D� as

the pulsed light frequency increases, obtaining a maximum

value of 1.7� 104 cm Hz1/2 W�1 at a frequency of 660 Hz.

Finally, one of the most important properties of a photo-

detector is its spectral D�. Fig. 3 shows the spectral D� meas-

ured at 660 Hz, for the Ti supersaturated Si device and the

FIG. 2. Frequency dependence of the responsivity (left axis) and of the spe-

cific detectivity (right axis) for the Ti supersaturated Si device measured at

room-temperature and under the 1.55 lm wavelength LED light.
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bare Si reference device. We have chosen a chopping fre-

quency of 660 Hz since it was the frequency at which we

measured the highest D� (Fig. 2).

We can observe that D� of the bare Si reference device

is almost 106 cm Hz1/2 W�1 for wavelength in the range of

0.6–1.1 lm and presents an abrupt decrease for longer wave-

length (sub-band gap photons energies). However, the Ti

supersaturated Si device presents in the energy region above

the band gap, a D� one order of magnitude higher than the Si

reference device. Moreover, its D� is far extended into the

infrared region of the spectrum, up to a 2.5 lm wavelength,

and presents a D� at 1.55 lm (important band for telecom-

munications applications) of 1.7� 104 cm Hz1/2 W�1. The

sub-band gap increase of D� for the Ti supersaturated Si de-

vice is mostly due to the increase in the responsivity, as we

have observed in Fig. 1. The observed increase for

above-band gap photon energies is mostly due to a reduction

in Sn observed for the Ti supersaturated Si device, which

presents a 1.4� 10�6 V Hz�1/2 Sn in contrast with the

1.6� 10�5 V Hz�1/2 Sn observed for the bare Si reference

device. We propose that this reduction of the Sn is mostly

due to the formation of an ohmic contact between the Ti

supersaturated Si device and the Ti/Al evaporated contact

metals. As it was shown in Refs. 22 and 39, once the Ti con-

centration overcomes the Mott limit and an IB material is

formed, excellent ohmic contacts are obtained. This also

indicates the metallic behaviour of the IB in the Ti implanted

Si layers.

Regarding the value of D� attained in this work, we

must take into account that this photoconductor device is in

a very early stage of development, and that there is plenty of

room for optimizations related with device architecture. For

example, applying anti-reflection coatings, optimizing con-

tacts geometry, optical active area, or thicker layers of the Ti

supersaturated Si absorber could derive in a higher D�. Also

studying other transition metals could improve the photode-

tector parameters obtained in this work.16

In conclusion, Ti supersaturated Si photodetectors oper-

ating at room-temperature have been fabricated by means of

ion implantation at high doses and PLM process. The most

representative properties of photodetectors have been ana-

lysed. The Ti supersaturated Si device has shown a high and

extended sub-band gap responsivity up to 0.5 eV (2.5 lm).

The properties of this high sub-band gap responsivity have

been explained in the context of the Urbach rule and the IB

materials. An analysis of the responsivity/frequency depend-

ence has shown a high bandwidth with a cut off frequency at

1.9 kHz. From measurements of the Sn, we have calculated

the frequency dependence of the sub-band gap D�, showing

a maximum value of 1.7� 104 cm Hz1/2 W�1 at a frequency

of 660 Hz, under a 1.55 lm wavelength light. At this fre-

quency, we have performed measurements of the spectral

D�, showing an increase of more than one order of magni-

tude with respect to a bare Si reference device and an

extended D� into the infrared up to 2.5 lm. All these charac-

teristics have shown the potential of Ti supersaturated Si

materials for a room-temperature infrared imaging or tele-

communication technology based on Si.
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