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Room-Temperature Power-Stabilized

Narrow-Linewidth Tunable Erbium-Doped Fiber

Ring Laser Based on Cascaded Mach-Zehnder

Interferometers With Different Free Spectral Range

for Strain Sensing
Liqiang Zhang , Zhen Tian , Nan-Kuang Chen , Haili Han , Chun-Nien Liu , Kenneth T. V. Grattan,

B. M. A. Rahman , Fellow, IEEE, Fellow, OSA, Haimiao Zhou ,

Shien-Kuei Liaw , Senior Member, IEEE, Senior Member, OSA, and Chenglin Bai

Abstract—An automatically power-stabilized (with power fluc-
tuation <0.155 dB), narrow-linewidth (0.0171 nm), wavelength-
tunable (10.69 nm) erbium-doped fiber laser has been proposed by 
cascading two fiber Mach–Zehnder interferometers (MZI) without 
using any temperature controlling device. One of the MZIs (here 
called the 1st MZI) is composed of two 3 dB couplers to form inter-
ference patterns while the other MZI (here termed the 2nd MZI) 
is constructed with a tapered seven-core fiber (SCF) and based on 
the principle of supermode interference. For the two MZIs, the free 
spectral range (FSR), the passband bandwidth and the extinction 
ratio (ER) at 1560 nm are 0.37 nm, 0.19 nm, 16.6 dB and 13.93 nm, 
7.93 nm, 10.1 dB, respectively. Due to the major difference between 
the two FSR values, the 1st MZI and the 2nd MZI respectively play 
a role in controlling the laser linewidth and suppressing the homo-
geneous broadening effect to reach to a satisfactory level of power 
stability. The 2nd MZI is also used to fine tune the laser wavelength 
by applying strain to the tapered SCF (TSCF) over the spectral 
range of 1570.22–1559.33 nm, with an incremental step of 0.37 nm 
being used. The side-mode suppression ratio (SMSR) of the tunable 
fiber laser can be up to 45 dB. By appropriately adjusting the 
polarization controller, dual wavelength lasing can also be achieved.
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For single wavelength lasing, the 3 dB laser linewidth is 0.0171 nm.
The power fluctuation, without a temperature controlling device
being used and operating at room temperature, is found to be less
than 0.155 dB over 1 hour while the central wavelength drift is less
than 0.19 nm.

Index Terms—Erbium fiber laser, Mach–Zehnder
interferometer, narrow linewidth, ring cavity, strain sensor,
tunable laser.

I. INTRODUCTION

W
ITH the advent of various rare-earth-ion doped silica

optical fibers and high power single-mode diode lasers,

fiber lasers with many excellent optical characteristics such as

high quantum efficiency, high gain bandwidth, high SMSR,

high polarization extinction ratio, high output power, high pulse

energy, low threshold pump power, wide tuning range and

ultra-narrow linewidth have been developed extensively for ap-

plications in the field of communications, sensing, imaging, and

micro- or nano-machining [1]–[3]. Further, practical applica-

tions of tunable erbium-doped fiber lasers (EDFL) include laser

ranging, optical coherence tomography, wavelength division

multiplexing and biosensing [4]–[7]. The wavelength tuning

can usually be achieved using volume/fiber Bragg gratings

(FBG) [8], [9], fiber filters, interferometers [10], [11] or indeed

through many other methods [12]–[14]. The laser tuning range,

linewidth, SMSR, and power stability are usually determined

by the tuning devices used, such as a Mach-Zehnder interferom-

eter (MZI) incorporated into the cavity. A wide and flat gain

bandwidth, the inversion rate, and homogeneous broadening

linewidth of the gain medium are also well known as important

factors. It is known that the gain profile of the erbium-doped

fiber (EDF) changes with the inversion rate. A lower inver-

sion rate in the EDF is helpful to obtain a flatter gain plateau

near 1550 nm, though the gain peak may enter the L-band

(1560–1620 nm) regime. However, compared with C-band, the

temperature stability is naturally a matter for both L-band and

S-band amplification in EDF causing poor noise figures and

more serious power fluctuation due to the Boltzman distribution
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of the electrons occupying the excited states [15]. Moreover, the

homogeneous broadening linewidth, naturally determined by the

energy sublevels of the EDF, is also crucial to the power stability

and the wavelength fluctuation: again the L-band is in its worst

condition due to its greater broadening linewidth of 4–5 nm [16].

Consequently, with the use of suitable narrowband tunable fiber

filters in the EDFL then operating under the proper inversion rate

and spectral range, this is advantageous for achieving an EDFL

with the desired lasing wavelengths, laser linewidth, SMSR,

tuning range, and good environmental stability for accurate

sensing applications. There have been several methods proposed

using MZIs, FBGs, long-period gratings or Fabry-Perot interfer-

ometers to achieve multiwavelength lasing in an EDF [17]–[22].

However, the power fluctuation and the measured time period for

the power stability to be achieved are usually much larger than

0.2 dB and less than 30 minutes, respectively [10], [18], [19].

In contrast in this work, two cascaded MZIs with very different

FSR are employed in a ring cavity EDFL. The 1st MZI is

composed of two 3 dB fiber couplers and a phase shifter to

provide a comb-like spectral filtering with an FSR of 0.37 nm

and a narrow passband bandwidth (PBW) of 0.19 nm. The 2nd

MZI is comprised of a TSCF with a FSR of 13.93 nm and a

PBW of 7.93 nm based on the interference of two supermodes.

In the SCF, the six Ge-doped silica cores are evenly distributed

and surrounding the central core with a rotational symmetry of

60°. The cores are well separated to avoid evanescent power

coupling and therefore the optical characteristics are more like

the weakly coupled SCF and no interference effects are produced

[23]. However, when the SCF is heated and tapered by using a

flame until the tapered diameter is below 35µm, all the separated

cores come closer to each other: the device becomes a strongly

coupled SCF structure and the supermodes are thus excited to

generate interference effects. The interferences caused by the

two supermodes are sensitive to ambient variations of strain,

bending, twist and so on. This TSCF serves as the 2nd MZI to

provide an FSR which is wider than that of the 1st MZI. In addi-

tion, a tensile strain is also applied to the TSCF by mechanically

stretching it to fine tune the lasing wavelength of the EDFL

when these two MZIs are incorporated into a ring cavity. By

correctly adjusting the polarization controller (PC), dual wave-

length lasing can occur somewhere inside the interval spanning

from the short wavelength border (1562.75 nm, 1562.4 nm) to

the long wavelength border (1569.66 nm, 1569.25 nm). The

purpose of using two cascaded MZIs is to achieve a narrow

laser linewidth and simultaneously stabilize the output power.

Accordingly, a power-stabilized wavelength-tunable single/dual

wavelength EDFL operating at room temperature is achieved.

The laser linewidth, SMSR and tuning range, are 0.0178 nm,

45 dB, 10.69 nm (1570.22- 1559.33 nm), respectively. The

power fluctuation of the 974 nm pump laser is 0.02 dB over

a period of an hour and under this situation the output power

fluctuation of the EDFL is 0.155 dB (over an hour at room

temperature) without any temperature controlling device used.

The corresponding central wavelength drift is less than 0.19 nm

and the strain sensitivity is 0.0525 nm/µε. The results achieved

here are generally better than most of the previous reports

for EDFLs in the literature [17]–[22]. The room-temperature

power-stabilized, narrow-linewidth, single-/dual-wavelength

switchable, wavelength-tunable EDFL with high SMSR and

high strain sensitivity based on two cascaded MZIs with different

FSR thus developed is useful for sensing, imaging, communica-

tions, and micromachining systems, offering high accuracy.

II. WORKING PRINCIPLE AND EXPERIMENTAL SET-UP

The laser cavity of the EDFL can be usually categorized as

either a linear or ring cavity [8]–[10]. The ring cavity featured

here is a simple structure without using reflective elements and

efficient pumping is achieved by recycling the residual pump

radiation. The experimental set-up for the EDFL is shown in

Fig. 1(a) in which a 10-m-long C-band EDF is used and the

gain spectra under 974 nm pumping, at different inversion rates,

is shown in Fig. 1(b). Clearly, the optical gain increases with

increasing pump power while the gain peak gradually moves

toward 1530 nm, from 1570 nm. A lower inversion rate can

lead to a flatter gain plateau near 1550 nm, to help widen the

wavelength tuning range for the EDFL. However, the ASE will

not be substantially suppressed and to achieve sufficient gain

with a higher SMSR and a wider tuning range, the wavelength of

974 nm for the pump, at a power of 41.8 mW is selected. In order

to suppress the backward propagating amplified spontaneous

emission (ASE) and enhance the SMSR in the EDFL, an isolator

(ISO) is used in the ring cavity, to achieve unidirectional lasing.

The PC is used to improve the output power and the polarization

extinction ratio. The intra-cavity filters used in this work for

wavelength-selection are two cascaded fiber MZIs with different

FSR. The 1st MZI is composed of two broadband 3 dB fiber

couplers (with a total bilateral leading fiber length of about 2 m)

and a phase shifter, as shown schematically in Fig. 1(a). The 3 dB

couplers are used for power splitting and combing, respectively.

The phase shifter is formed by using two physically separated

optical fibers with a length difference of 1.6 mm, to generate

comb-like filtering. The FSR, PBW, and ER at 1560 nm are

0.37 nm, 0.19 nm, and 16.6 dB, respectively and the transmission

spectrum is shown in Fig. 1(c). The main purpose of using the

1st MZI is to achieve narrow linewidth lasing in the EDFL.

The 2nd MZI, sample A, comprises an 8-mm-long TSCF in

a 5-cm- long SCF, splicing between two single mode fibers

(SMF) to provide the filtered spectrum shown in Fig. 1(d). Its

corresponding FSR, PBW and ER at 1560 nm are 13.93 nm,

7.93 nm, and 10.1 dB, respectively. The 2nd MZI is used for

suppressing the influence of homogenous broadening and for

fine tuning the lasing wavelength when a tensile force is applied.

By cascading the 1st and the 2ndMZIs in a ring laser cavity, the

total transfer function for the filtering yields the spectrum shown

in Fig. 1(e) in which the periodic oscillations in Fig. 1(c) are

thus modulated by the 2nd MZI. For this EDFL, no temperature

compensating or other controlling device is used.

The SCF is originally designed to enlarge the transmission

capacity by space division multiplexing when each of the seven

cores independently transmit signals along the fiber. The cross-

sectional micrograph of the SCF with a tapered diameter, D, of

8.2 µm and operating at 1550 nm. For the SCF, the six Ge-doped

cores are evenly distributed and surrounding the central core and

the spacing between each core is 29 µm (to avoid evanescent

power coupling). The core diameter and the numerical aperture



Fig. 1. (a) Experimental set-up of the EDFL used. TSCF: tapered seven-core
fiber, LD: laser diode, WDM: wavelength division multiplexer, ISO: isolator,
PC: polarization controller. (b) Gain profile of EDF at different pump power.
Measured transmission spectra for (c) 1st MZI, (d) 2nd MZI, and (e) cascaded
MZIs.

(NA) for each core are 5.62 µm and 0.2, respectively. To avoid

exciting the high order core modes, two special SMFs with a NA

of 0.15 and 0.2 are inserted (in that order) between the standard

SMF (NA = 0.13) and the SCF, achieving a NA transition by

fusion splicing. Moreover, the SCF near the splicing point is

also intentionally coiled with a radius of curvature of 5 mm to

suppress significantly the excitation of the high order modes.

As mentioned above, the 2nd MZI is made by splicing a

segment of SCF between two SMFs. When a part of the SCF is ta-

pered, the core diameter and the spacing between adjacent cores

are both reduced to turn this TSCF into a strongly coupled MCF.

This produces the intermodal coupling and the supermodes are

thus excited to generate interferences in the TSCF. To analyze

the operating principle of the supermodes interference in the

TSCF, a coupled mode equation is employed. When the light is

launched into the central core of the TSCF, the coupled equation

can be written as [24],

d
⇀

A

dz
= −

⇀

C
⇀

A(z), (1)

where
⇀

A = [A1(z)A2(z)A3(z)A4(z)A5(z)A6(z)A7(z)]
T is

the column vector of the amplitude of each core mode of the

tapered SCF.
⇀

C is a matrix of the coupling coefficient, and the

elements cpq can be written as

cpq =

{

jCpq exp[j(βp − βq)z, p �= q

0, p = q
, (2)

where βp represents the propagation constant of core mode p.

For the homogenous SCF, the propagation constants for each

core mode should be the same, and C is thus given as follows:

⇀

C =
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⎜

⎜

⎜
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, (3)

where the off-diagonal zeros correspond to the pairs of cores,

assumed that the coupling between cores are negligible due to

the large inter-core distances. If the light is launched into the

central core, the intensities of the normalized central core mode

and the six side-core modes can be derived as

|A1(z)|2 =
1

7
+

6

7
cos2(

√
7Cz) (4)

|Ap(z)|2 =
1

7
sin2(

√
7Cz) p �= 1 (5)

The coupling coefficient C can be derived as [25], [26]

C =
π

2

√

n2

1
− n2

2

an1

U2

V 2

K0 (Wd/a)

K2

1
(W )

, (6)

where n1 and n2 are the refractive indices of the core and

cladding modes, respectively. a and d are the core diame-

ter and the distance between two cores, respectively.K0 and

K1represent the 0 and the 1st order Henkel functions. U , W
and V are respectively the normalized radial phase constant,

normalized radial attenuation constant, and the normalized



Fig. 2. Simulation results using a Rsoft software. (a) Propagation field dis-
tribution and the normalized propagating power along the TSCF at 1550 nm.
(b) Transmission spectra of the TSCF.

frequency and they are defined as

U = a

√

(2πn1/λ)
2 − β2, V =

2πa

λ

√

n2

1
− n2

2
,

W = a

√

β2 − (2πn2/λ)
2. (7)

From Eqs. (4) and (5), it is evident that the central core mode

and the side core modes can be beat periodically with a phase

difference ofπ/2[24]. The variation of the tapered fiber diameter

changes the core diameter and the spacing between two cores,

resulting in the variation of the coupling strength among multiple

cores. The structure was simulated using a beam propagation

method (BPM) module from Rsoft 2019 software to analyze

the light propagating through the TSCF. The effective refractive

indices of the core and cladding are 1.459 and 1.444 respectively

at 1550 nm wavelength. The core diameter and the distance

between each core are set to be 5.62µm and 29µm, respectively.

The length of the uniform tapered region is 8 mm. The results

are shown in Fig. 2(a). Fig. 2(a) gives the propagation and the

normalized propagating power along the TSCF at the input

wavelength of 1550 nm when the tapered diameter is 24 µm.

The input light is launched into the central core. As shown in

Fig. 2(a), it is apparent that the light is tightly confined in the

central core before the SCF is tapered. In the tapered region, the

distance between each core is reduced and the evanescent field

of the core mode is extended simultaneously. Thus, intermodal

coupling between the central core mode and side core modes is

induced. When the light is passing through the tapered region,

the field is divided to propagate in central core and side cores.

Fig. 2(b) shows the calculated transmission spectra of central

core mode for the TSCF at a D of 32 µm (blue solid line),

24 µm (red solid line) and 16 µm (green solid line), respectively.

The FSR decrease with a decreasing D. To investigate the phase

difference between central core mode and side core mode, the

transmission spectra of one of the side core mode (red dashed

line) is also given in Fig. 2(b) with the tapered diameter of

24 µm. The phase difference of the transmission oscillations of

the central core (red solid line) and side core mode (red dashed

line) was estimated to be π/2, which agrees with the results

shown in Eqs. (4) and (5).

To investigate the optical characteristics of the TSCF inter-

ferometer, it is found that when the SCF is tapered until D is

below 60 µm, the supermodes can be excited since the seven

cores come closer to become a strongly coupled waveguide

structure [27]. The typical mode field patterns, taken using a

1000x CCD microscope, of the SCF and the supermode in

TSCF, for the case where D is 60 µm, are shown in Fig. 3(a)

and 3(b), respectively. The supermodes interfere with each other

and thus produce interference effects [27]. When the broadband

spectrum (spanning the wavelength range 1250- 1650 nm) from

the superluminescent diodes is launched into the central core

of the SCF, the transmission spectra for the TSCF at different

values of D (24 µm, 13 µm, and 7 µm) are respectively shown in

Fig. 3(c)–(e). In agreements with the results of the simulations,

the FSR and ER respectively decrease and increase with decreas-

ing value of D. From Fig. 3(d), the best value of ER achieved can

be up to 27.9 dB, at 1504.3 nm. The temperature sensitivity of

the 2nd MZI is also investigated using another TSCF, sample B,

with D of 8.12 µm, and the results are shown in Fig. 4. When the

temperature was increased from 20 °C to 80 °C. One of the dip

wavelengths observed drifts from 1555.92 nm to 1556.64 nm.

Consequently, the temperature sensitivity is 11.5 pm/°C which

is small enough to allow the EDFL to operate in a very stable

manner.

By applying a tensile strain to the two ends of the TSCF

using stepping motors, the spectral responses of the cascaded

MZIs are shown in Fig. 5, with a gradually increasing step of

45 µε from top to bottom. The FSR and PBW seen for fast

oscillations are unchanged, whereas the FSR for the slowly

varying envelope varies slightly with changing tensile force.

By monitoring a particular peak wavelength of the envelope,

at 1559.11 nm, the wavelength red-shifts with increasing values

of applied strain. As a result, the lasing wavelength can be tuned

by varying the strain and dual wavelength lasing can also be

generated by appropriately adjusting the PC. Eventually, a TSCF

with a value of D = 8.2 µm is inserted into the ring cavity of the

EDFL, to be used as the 2nd MZI, for measurement purposes.

III. RESULTS AND DISCUSSIONS

In the experiment carried out, a 974 nm wavelength-locked

laser diode (LD) with 400 mW maximum output power is used

as the pump source. The pump power fluctuation is 0.02 dB



Fig. 3. Cross-sectional micrograph of (a) SCF and (b) the mode field pattern
of TSCF. The measured transmission spectra of the TSCF at different values of
D of (b) 24 µm, (c) 13 µm, and (d) 7 µm.

in an hour at room temperature. The pump light is launched

into the 10-m-long EDF through a 980/1550 nm WDM coupler

and an output coupler (OC) is used to tap 1% optical power

from ring cavity as laser output. The spectral responses for

different pump powers, shown in Fig. 6, are recorded by using

an Optical Spectrum Analyzer (OSA, Yokogawa, AQ6370D)

with an optical resolution of 0.02 nm. The threshold pump

power of the EDFL is 7.9 mW and the initial lasing wavelength

occurs at 1564.06 nm. By continuously increasing the pump

power, P, the SMSR was gradually increased to a maximum of

45 dB, with a laser linewidth of 0.0171 nm until P = 41.8 mW

is reached, as shown in Fig. 7. The initial lasing wavelength

changed to 1563.96 nm when P was increased to 16.9 mW. This

arises because at the initial stage, a higher inversion rate makes

Fig. 4. Temperature sensitivity of the second MZI.

Fig. 5. Spectral responses of the cascaded MZIs varying with different strain
values, with an increment of 45 µε.

the gain peak substantially blue-shift and the gain coefficient

increases, as can be seen in Fig. 1(b). The gain peak for P =
16.9 mW is located at 1563.96 nm. For the situations where P

is above 16.9 mW, the lasing wavelength is almost stabilized

at 1563.96 nm. When the value of P goes beyond 41.8 mW,

the laser output power reaches a maximum of −20 dBm and

other multiple lasing wavelengths start to grow on both sides of

1563.96 nm. In the case multiple wavelength lasing, the FSR

is 0.37 nm, which is mainly determined by the 1st MZI and

remains the same at different values of P. The 10-m-long EDF

is fully inverted when P is 219.5 mW. The central lasing wave-

length does not move with increasing value of P and multiple

wavelength lasing can be produced simultaneously when P is



Fig. 6. Spectra of the fiber laser at different pump

Fig. 7. Spectrum of the EDFL when P is 41.8 mW.

above 16.9 mW. This arises because of the existence of the 1st

and 2nd MZI having greatly suppressed the influence of the

homogeneous broadening effect, even if the gain peak for the

EDF blue-shifts, to 1531 nm, when P is set to 41.8 mW.

To achieve wavelength fine tuning, when P is fixed at 41.8 mW,

a tensile strain is applied to the 2nd MZI: here the two ends of

TSCF are fixed by clamps mounted on a stepper motor (with

a spatial resolution of 1 µm). The lasing wavelength gradually

red-shifts with increasing strain, with an increment of 19 µε
used. When the elongation of the TSCF increases from 16 µm

to 39µm, the lasing wavelength can be tuned from 1570.22 nm to

1559.33 nm with a corresponding tuning range of 10.69 nm. The

SMSR for all the lasing conditions is always higher than 40 dB.

By further elongating the TSCF, the lasing wavelength jumps

back to 1570.07 nm, as shown in Fig. 8(a). Again, this shows

explicitly that the 1st and 2nd MZI respectively determine the

laser linewidth and suppress the optical gain outside the 1560–

1570 nm range. The position of the 1st and the 2nd MZI has

also been exchanged and no obvious changes can be observed,

Fig. 8. Spectral responses of the EDFL for (a) single wavelength lasing and
tuning by strain and (b) dual wavelength lasing and tuning and (c) wavelength
shift versus applied strain, sample A.

as the overall system is reciprocal. By changing the state of

polarization through a PC, dual-wavelength lasing can thus be

achieved, as shown in Fig. 8(b). These dual lasing wavelengths

occurs somewhere inside the interval from the short wavelength

border (1562.75 nm, 1562.4 nm) to the long wavelength border

(1569.66 nm, 1569.25 nm), this being contingent upon the state

of polarization. The FSR between the dual lasing wavelengths

is 0.37 nm under all these conditions, which is in agreement

with the FSR of the 1st MZI. For single wavelength lasing, this

tunable EDFL can also be used as a strain sensor by monitoring

the wavelength shift achieved. The corresponding results of the

relationship between the wavelength shift and applied strain are

shown in Fig. 8(c), yielding a strain sensitivity of 52.5 pm/µε -

this result is more accurate than seen in some previous reports in



Fig. 9. Wavelength shift versus applied tensile strain for the TSCF, sample B,
under the stretching and retracting situations.

Fig. 10. Central wavelength drift and output power stability of EDFL at room
temperature over a period of an hour.

the literature [28]–[30]. To investigate the reproducibility of the

wavelength shift under different tensile strain for the TSCF, the

sample B was used and the relationship between the wavelength

shifts and applied strain at an increment of 2 µm are shown

in Fig. 9. From Fig. 9, the strain sensitivity κ1 and κ2 for

the stretching and retracting are 49.8 pm/µε and 48.9 pm/µε,

respectively. Obviously, the reproducibility for the TSCF is quite

good and this is advantageous to make tunable EDFL with

desired lasing wavelengths.

To investigate the stability of the EDFL at room temperature,

monitoring of the central wavelength drift and output power

stability for single wavelength lasing were both done over a

period of an hour and the results are shown in Fig. 10. The

OSA was set-up to scan repeatedly (every 5 minutes for an

hour in total). During this hour of monitoring, the EDFL was

placed on a smart optical table (Newport: RS 2000) and no

part of the laser system was adjusted or moved. In Fig. 10,

the measured central wavelength drift and the power fluctuation

observed are respectively less than 0.19 nm and 0.155 dB. In

contrast to previous reports in the literature on the stability of

fiber lasers, the performance of the EDFL using a cascaded MZIs

TABLE I
PARAMETERS FOR EDFLS: COMPARISON OF THIS WORK

WITH LITERATURE DATA

∗performance superior to all previous literature reports. NA: not available

with different FSRs in this work is superior, in terms of the

power stability and monitoring time period used. The results

are listed in Table I, with literature data for comparison. The

central wavelength drift is still better than has been reported

in most other works [17]–[22], although still not optimum.

Consequently, the EDFL reported with two MZIs with different

FSR can be automatically power-stabilized at room temperature,

for an hour. The EDFL is also sensitive to strain on the 2nd MZI

using TSCF and can also be employed as a strain sensing device

(with its high accuracy ascribing to the power-stabilized EDFL).

IV. CONCLUSION

By cascading two MZIs with different FSRs, an EDFL with

single-/dual wavelength lasing has been demonstrated. The 2nd

MZI comprises a TSCF which is sensitive to tensile strain

which then allows the achievement of wavelength tuning. The

EDFL for single wavelength lasing was shown to be tunable

over 1570.22–1559.33 nm and the best SMSR achieved was

45 dB, with the laser linewidth being 0.0171 nm. The power

fluctuation and central wavelength drift over a period of an hour

were respectively less than 0.155 dB and 0.19 nm and the strain

sensitivity κ achieved was 52.5 pm/µε. This result is superior to

most previous works reported and is believed to be due to the

contribution from the 2nd MZI based supermode interference

in the tapered seven-core fiber. This EDFL is automatically

power-stabilized at room temperature, simple and single-/dual-

wavelength lasing switchable and thus is promising for accurate

strain sensing applications.
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