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Stable quantum bits, capable of both storing quantum information for

macroscopic timescales and of integration inside small, portable devices,

represent an essential building block for an array of potential applica-

tions. We demonstrate high fidelity readout of a solid-state qubit, which

preserves its polarization for several minutes and features coherence life-

times exceeding one second at room temperature. The qubit consists

of a single 13C nuclear spin in the vicinity of a Nitrogen-Vacancy (NV)

color center within an isotopically purified diamond crystal. The long

qubit memory time is achieved via a novel technique involving dissipative

decoupling of the single nuclear spin from its local environment. The

versatility, robustness and potential scalability of this system may allow

for new applications in quantum information science.

Many applications in quantum communication [1] and quantum computation [2] rely

upon the ability to maintain qubit coherence for extended periods of time. Furthermore,

integrating such quantum mechanical systems in compact, mobile devices remains an out-

standing experimental task. While trapped ions and atoms [3] can exhibit coherence times

as long as minutes, they typically require a complex infrastructure involving laser-cooling

and ultra-high vacuum. Other systems, most notably ensembles of electronic and nuclear
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spins, have also achieved long coherence times in bulk ESR and NMR experiments [4–6];

however, owing to their exceptional isolation, individual preparation, addressing and high

fidelity measurement remains challenging, even at cryogenic temperatures [7].

Our approach is based upon an individual nuclear spin in at room-temperature solid. A

nearby electronic spin is used to initialize the nuclear spin [8–10] in a well defined state and

to read it out in a single shot [10] with high fidelity. A combination of laser illumination and

RF decoupling pulse sequences [4, 11] enables the extension of our qubit memory lifetime by

nearly three orders of magnitude. This approach decouples the nuclear qubit from both the

nearby electronic spin and other nuclear spins, demonstrating that dissipative decoupling

can be a robust and effective tool for protecting coherence in various quantum information

systems [2, 12, 13].

Our experiments utilize an individual NV center and a single 13C (I = 1/2) nuclear spin

(Fig. 1A) in a diamond crystal. We work with an isotopically pure diamond sample, grown

using Chemical Vapor Deposition from isotopically enriched carbon consisting of 99.99%

spinless 12C isotope. In such a sample, the optically detected electron spin resonance (ESR)

associated with a single NV center is only weakly perturbed by 13C nuclear spins, resulting

in long electronic spin coherence times [14]. This allows us to make use of a Ramsey pulse

sequence to detect a weakly coupled single nuclear spin, separated from the NV by 1-2

nanometers. The coupling strength at such a distance is sufficient to prepare and measure

the nuclear spin qubit with high fidelity. For the present concentration of 13C nuclei, about

10% of all NV centers exhibit a coupled nuclear spin with a separation of this order.

In our experimental setup, the diamond sample is magnetically shielded from external

perturbations, and a static magnetic field B = (244.42 ± 0.02) G is applied along the NV

symmetry axis. The spin transition between the |0i ! | � 1i electronic spin states is

addressed via microwave radiation [15]. Figure 1B shows the free electron precession of an

individual NV center, measured via a Ramsey sequence. The signal dephases on a time scale

of T ⇤
2e = (470 ± 100)µs consistent with the given isotopic purity of the sample [14]. The

characteristic collapses and revivals of the Ramsey signal correspond to the signature of a

single weakly coupled 13C nuclear spin. This coupling strength, originating from a hyperfine

interaction, corresponds to an electron-nuclear separation of roughly 1.7 nm [15].

To confirm that the signal originates from a 13C nuclear spin, we measure the probability

of a RF-induced nuclear spin-flip as a function of carrier frequency, ω. As described below,
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we prepare the nuclear spin in either the | #i or | "i-state by performing a projective

measurement. After preparation of the nuclear spin via projection a 1.25 ms Gaussian

shaped RF π-pulse is applied. A second step of nuclear measurement then allows us the

nuclear spin-flip to be determined. Figure 1C shows that this probability is characterized

by three resonances located at ω/(2π) = 258.86, 261.52, 264.18 kHz, corresponding to the

NV electronic spin being in ms = 1, 0,�1 respectively; this indicates a projected hyperfine

interaction, Ak = (2π) (2.66± 0.08) kHz.

An important facet of quantum control involves the ability to perform high fidelity ini-

tialization and readout. We use repetitive readout to achieve single shot detection of the

nuclear spin state. In this approach (Fig. 2A) the electronic spin is first polarized into the

|0i state. Next, a CnNOTe logic gate (electronic spin-flip conditioned on the nuclear spin) is

performed and the resulting state of the electronic spin is optically detected; this sequence

is repeated multiple times to improve the readout fidelity. The required quantum logic is

achieved via a Ramsey sequence on the electronic spin, where the free precession time is

chosen to be τ = π/Ak. Fig. 2B depicts an example trace of the accumulated fluorescence

of 20000 readout repetitions per data point. The resulting signal clearly switches between

two distinct values, which correspond to the two states of the spin-1
2

13C nuclear spin. We

associate high (low) count rates with the | " (#)i states of the nuclear spin, noting that these

do not necessarily correspond to alignment/anti-alignment with the external field [15]. This

time trace indicates that the nuclear spin preserves its orientation, on average, for about

half a minute.

To achieve high fidelity initialization of the nuclear spin, we post-select repetitive readout

measurements that are below (above) a threshold corresponding to 147 (195) counts per 2.2

s. This allows us to prepare the nuclear spin state with > 97 % fidelity [15]. After successful

initialization via projection, a second repetitive readout measurement is performed. This

allows us to extract readout count statistics dependent on the nuclear spin state. As shown in

Fig. 2C, the two distributions for the count rates of | "i and | #i are clearly resolved and their

medians match the high and low levels of the fluorescence trace in Fig. 2B. From the overlap

between the two distributions, we obtain a projective readout fidelity of (91.9± 2.5) % [16].

The long spin orientation lifetime, extracted from Fig. 2B, implies that our 13C nuclear

spin is an exceptionally robust degree of freedom. To quantify the nuclear depolarization

rate, the T1n time was measured as a function of laser intensity. In the dark, no decay was
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observed on a timescale of 200 s [15]. However, consistent with predictions from a spin-

fluctuator model[17, 18], when illuminated with a weak optical field, T1n drops to (1.7±0.5) s

and increases linearly for higher laser intensities (Fig. 2D).

To probe the qubit’s coherence time, our nuclear spin is again prepared via a projective

measurement, after which, an NMR Ramsey pulse sequence is applied. The final state of

the nuclear spin is then detected via repetitive readout. The results (Fig. 3B) demonstrate

that, in the dark, the nuclear coherence time T ⇤
2n is limited to about (8.2 ± 1.3) ms. The

origin of this relatively fast dephasing time can be understood by noting its direct corre-

spondence with the population lifetime of the electronic spin T1e = (7.5±0.8) ms (blue curve

Fig. 3B) [19]. Because the electron-nuclear coupling Ak exceeds 1/T1e, a single (random)

flip of the electronic spin (from |0i to | ± 1i) is sufficient to dephase the nuclear spin.

To extend the nuclear memory time, we must effectively decouple the electronic and

nuclear spin during the storage interval. This is achieved by subjecting the electronic spin

to controlled dissipation. Specifically, the NV center is excited by a focused green laser beam,

resulting in optical pumping of the NV center out of the magnetic states (|±1i). In addition,

the NV center also undergoes rapid ionization and deionization at a rate γ, proportional

to the laser intensity. When these transition rates exceed the hyperfine coupling strength,

the interaction between the nuclear and electronic spin is strongly suppressed owing to a

phenomenon analogous to motional averaging [17].

Using this decoupling scheme, we show in Fig. 3C that the nuclear coherence time can be

enhanced by simply applying green laser light; in particular, 10 mW of green laser excitation,

yield an extended nuclear coherence time of T ⇤
2n = (0.53±0.14) s. An improvement of T ⇤

2n by

almost two orders of magnitude compared with measurements in the dark. The dependence

of T ⇤
2n on green laser intensity shows a linear increase for low intensities and saturates around

one second (Fig. 3D).

The observed limitation of coherence enhancement arises from dipole-dipole interactions

of the nuclear qubit with other 13C nuclei in the environment. In our sample, we estimate

this average dipole-dipole interaction to be ⇠ 1 Hz, consistent with the observed coherence

time. Further improvement of the nuclear coherence is achieved via a homonuclear RF-

decoupling sequence. The composite sequence (Fig. 3D) is designed to both average out the

inter-nuclear dipole-dipole interactions (to first order) and to compensate for magnetic field

drifts. Applying this decoupling sequence in combination with green excitation can further
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extend the coherence time to beyond one second (Fig. 3E, blue points).

These measurements demonstrate that individual nuclear spins in isotopically pure dia-

mond represent an exceptional candidate for long-lived memory qubits. The qubit memory

performance is fully quantified by two additional measurements. First, the average fidelity

is determined by preparing and measuring the qubit along three orthogonal directions. This

fidelity, F̄ = 1
2
(1 + hCi), is extracted from the observed contrast (C) of the Ramsey signal

and is presented in Fig. 4A for two cases (with and without homonuclear decoupling) [8].

Even for memory times up to (2.11 ± 0.3) s, the fidelity remains above the classical limit

of 2/3. Finally, a full characterization of our memory (at one second of storage time) is

obtained via quantum process tomography. The corresponding χ-matrix (Fig. 4C) reveals

an average fidelity of F̄ = (87± 5) % [15].

To quantitatively understand the coherence extension under green illumination, we con-

sider depolarization and dephasing of the nuclear spin due to optical illumination and in-

teraction with the nuclear spin environment. Excitation with 532 nm (de)ionizes the NV

center with a rate proportional to the laser intensity[20]. Adding up the peak probabilities

(Fig. 1C) for the nuclear RF transitions reveals a total transition probability of (63± 5) %.

This is consistent with recent observations, where, under strong green illumination, the NV

center is found to spend 30 % of its time in an ionized state [20]. In this state, RF in-

duced nuclear transitions are suppressed since the depolarization rate of the electronic spin

is much faster than the nuclear Rabi frequency [20]. Because the hyperfine interaction is

much smaller than the electronic Zeemann splitting, flip-flop interactions between the elec-

tronic and nuclear spin can be neglected. However, in the presence of an off-axis dipolar

hyperfine field A?, nuclear depolarization still occurs at a rate 1/T1n
⇠

A2

?

(γ13CB/2)2+(γ)2
γ [15].

While this simple analysis is already in good agreement with our observations (Fig. 2D),

further insight is provided by a detailed 11-level model of NV dynamics [15]. As T1n limits

our readout, a careful alignment of the external field (i.e. choosing A? ! 0) and enhanced

collection efficiency should enable readout fidelities greater than 99%.

For (de)ionization rates γ much larger than the hyperfine interaction, the dephasing rate

depends on the parallel component of the dipole field, 1/T ⇤
2n

= Γopt + Γdd, where Γdd is

the spin-bath induced dephasing rate and Γopt ⇠
A2

k

γ
is the optically induced decoherence.

The dashed red line in Fig. 3E demonstrates that this model is in good agreement with

our data. Application of our decoupling sequence also allows us to suppress nuclear-nuclear



6

dephasing. We find that the main imperfection in this decoupling procedure originates from

a finite RF detuning [15]. Accounting for this imperfection, we find excellent agreement

with our data, as shown by the dashed blue line in Fig. 3E. Moreover, this model indicates

that the coherence time increases almost linearly as a function of applied laser intensity,

suggesting a large potential for improvement.

The use of even higher laser intensities is limited by heating of the diamond sample,

which causes drifts in the ESR transition [21]. However, this can be overcome via a com-

bination of temperature control and careful transition-frequency tracking, yielding an order

of magnitude improvement in the coherence time to approximately one minute. Further im-

provement can be achieved by decreasing the hyperfine and the nuclear-nuclear interaction

strength through a reduction of the 13C concentration, potentially resulting in hour-long

storage times [15]. Finally, it is possible to use coherent decoupling sequences and tech-

niques based upon optimal control theory [22], which scale more favorably than our current

dissipation-based method. With such techniques, we estimate that the memory lifetime

can approach the timescale of phonon-induced nuclear depolarization, measured to exceed

Tmax
1n ⇠ 36 h [23].

As a future application of our techniques the realization of fraud resistant quantum

tokens can be considered. Here, secure bits of information are encoded into long-lived

quantum memories. Along with a classical serial number, an array of such memories, may

possible constitutes a unique unforgeable token [24, 25]. With a further enhancement of

storage times, such tokens may potentially be used as quantum-protected credit cards or as

quantum identification cards [25] with absolute security. Furthermore, NV-based quantum

registers can take advantage of the nuclear spin for storage, while utilizing the electronic

spin for quantum gates and readout [8, 9]. In particular, recent progress in the deterministic

creation of arrays of NV centers [27] and NV-C pairs‘[28], enables the exploration of scalable

architectures [26, 29]. Finally, recent experiments have also demonstrated the entanglement

of a photon with the electronic spin-state of an NV center [30]. Combining the advantages

of an ultra-long nuclear quantum memory with the possibility of photonic entanglement

opens up novel routes to long-distance quantum communication and solid state quantum

repeaters [1].

†These authors contributed equally. All authors contributed extensively to this work.
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FIG.1: Experimental System. (A) The NV center with a proximal 13C spin can be

modeled as a simple four-level system to understand readout dynamics. Nuclear spin

sublevels | "i and | #i are split by a Zeeman shift (γ13CB) and addressed via RF radiation

with Rabi frequency ΩRF . The electronic transition |0i ! | � 1i (red arrows) can be

simultaneously driven by a microwave field with relative detuning given by the hyperfine

coupling strength, A =
q

A2
k + A2

?. (B) An electron Ramsey measurement as a function

of free evolution time (t), depicts beating due to the different hyperfine transitions and a

T ⇤
2e = (470 ± 100) µs. (C) NMR spectra of 13C, obtained via the depicted pulse sequence,

demonstrate three different nuclear transitions corresponding to electronic spin states

ms = 0,±1. The pulse sequence contains a blue Gaussian RF pulse and two repetitive

readouts (purple), c1 and c2.

FIG. 2: Qubit readout. (A) Circuit diagram of repetitive readout of the nuclear spin

|ni. The readout uses a CnNOTe gate consisting of multiple repetitions of an electronic

spin Ramsey and subsequent repolarization. (B) Fluorescence time trace showing single

shot readout of the nuclear spin and corresponding quantum jumps. The integration time

for a single point is 4.4 s. (C) Histogram of continuous repetitive readouts (per 4.4 s)

showing two overlapping distributions of nuclear spin states: | #i (blue) and | "i (red) [15].

(D) Nuclear spin orientation lifetime, T1n (here and below error bars are one standard

deviation), as a function of laser power in the presence of illumination by a 532 nm laser.

As shown in the inset, each data point is extracted from a series of two repetitive readout

sequences. The solid red curve represents the theoretical prediction from the simple model

of nuclear depolarization induced by the off-axis dipolar hyperfine field.

FIG. 3: Nuclear spin coherence. (A) Model for repolarization and ionization dynamics.

In the NV� charge state, the electronic spin can be pumped via green illumination to

ms = 0 at a rate R. (B) Nuclear Ramsey experiment (red curve) depicting a dephasing

time T ⇤
2n = (8.2 ± 1.3) ms. The origin of this dephasing is the depolarization of the

electronic spin (blue curve), with T1e = (7.5 ± 0.8) ms. (C) Nuclear Ramsey experiment

with concurrent green illumination, showing T ⇤
2n = (0.53 ± 0.14) s. (D) Experimental

sequence used to measure the nuclear coherence time. A modified Mansfield Rhim Elleman

Vaughan (MREV) decoupling sequence [4] is utilized. It consists of 16 MREV-8 pulse trains
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interwoven with 8 phase-refocusing π-pulses. Each MREV-8 pulse sequence can be achieved

through π/2 rotations around four different axes. (E) Nuclear coherence as a function of

green laser power. Red data constitute a measurement of T2n using a nuclear spin echo; blue

data T2n contain the additional MREV sequence. The dashed fits are calculated from the

spin-fluctuator model [15]. Each data point is extracted via a measurement analogous to C).

FIG. 4: Nuclear memory fidelity. (A) Average fidelity as a function of time obtained

from states prepared along |xi = 1p
2
(| #i + | "i), |yi = 1p

2
(| #i + i| "i) and |zi = | #i. The

nuclear echo (red curve) is obtained at 10 mW of green power while the MREV sequence

(blue curve) is obtained at 30 mW of green power. The square data point represents the

fidelity extracted from process tomography. (B) Pulse sequence depicting the initialization

of four different nuclear states and three subsequent rotations. (C) The χ matrix of the

full quantum process tomography at one second of storage time with 30 mW of continuous

green illumination [15].
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