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Room-Temperature Sodium-Sulfur Batteries: A Comprehensive Review
on Research Progress and Cell Chemistry

Abstract

Room temperature sodium-sulfur (RT-Na/S) batteries have recently regained a great deal of attention due to
their high theoretical energy density and low cost, which make them promising candidates for application in
large-scale energy storage, especially in stationary energy storage, such as with electrical grids. Research on
this system is currently in its infancy, and it is encountering severe challenges in terms of low electroactivity,
limited cycle life, and serious self-charging. Moreover, the reaction mechanism of S with Na ions varies with
the electrolyte that is applied, and is very complicated and hard to detect due to the multi-step reactions and
the formation of various polysulfides. Therefore, understanding the chemistry and optimizing the
nanostructure of electrodes for RT-Na/S batteries are critical for their advancement and practical application
in the future. In the present review, the electrochemical reactions between Na and S are reviewed, as well as
recent progress on the crucial cathode materials. Furthermore, attention also is paid to electrolytes, separators,
and cell configuration. Additionally, current challenges and future perspectives for the RT-Na/S batteries are
discussed, and potential research directions toward improving RT-Na/S cells are proposed at the end.
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Room temperature sodium-sulfur (RT-Na/S) batteries have recently regained a great deal of 

attention due to their high theoretical energy density and low cost, which make them 

promising candidates for application in large-scale energy storage, especially in stationary 

energy storage, such as with electrical grids. Research on this system is currently in its 

infancy, and it is encountering severe challenges in terms of low electroactivity, limited cycle 

life, and serious self-charging. Moreover, the reaction mechanism of S with Na ions varies 

with the electrolyte that is applied, and is very complicated and hard to detect due to the 

multi-step reactions and the formation of various polysulfides. Therefore, understanding the 

chemistry and optimizing the nanostructure of electrodes for RT-Na/S batteries are critical for 

their advancement and practical application in the future. In the present review, the 

electrochemical reactions between Na and S are reviewed, as well as recent progress on the 

crucial cathode materials. Furthermore, attention also is paid to electrolytes, separators, and 

cell configuration. Additionally, current challenges and future perspectives for the RT-Na/S 

batteries are discussed, and potential research directions toward improving RT-Na/S cells are 

proposed at the end. 
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1. Introduction  

Rechargeable lithium-ion batteries (LIBs) have attracted tremendous attention over the past 

two decades.[1-5] Given their relatively high cost, as well as their high energy and power 

densities, LIBs have been considered the most promising technology in small/mid-size 

applications such as portable devices and electric vehicles (EVs). They are not favourable 

power options for large-scale stationary energy storage, however, such as in electrical grids.[6-

8] Various emerging energy storage systems, including lithium-air batteries,[9-16] lithium-sulfur 

batteries (Li/S),[11, 17-23] vanadium redox batteries,[24-31] sodium-ion batteries (SIBs),[32-40] and 

room-temperature sodium-sulfur (RT-Na/S) batteries,[37,41-49] are currently attracting most of 

the attention in the quest to power our future society.  

    For the aim of stationary energy storage, RT-Na/S batteries stand out due to their 

overwhelming advantages in terms of low cost and sufficient energy density. In contrast, Li/S 

batteries with high energy density and long cycle life are mainly for operation of EVs, which 

is considered as the most promising technologies beyond routine LIBs. Sodium, as a low-cost 

and abundant alternative to lithium, has driven research on Na/S technologies beyond the cell 

chemistry of the analogue lithium system. High-temperature sodium-sulfur batteries operated 

at around 300 oC with molten electrodes and a solid beta-alumina electrolyte are now 

commercially available. This system exhibits obvious advantages in terms of reasonable 

power and energy densities, temperature stability, and high efficiency with long cycle life, so 

that it exceeds the scale and cost requirements for grid-scale applications. [42, 50] The additional 

cost and high operating temperature of this technology (300-350 oC), however, directly 

prohibit its extensive application in EVs. [51, 52] Expensive highly alloyed steels are utilized 

due to the high corrosion from the liquid sodium and sulfur. Further costs are also incurred to 

achieve the operating temperature. In order to realize a wide range of applications, ambient 

temperature sodium batteries have been arousing tremendous research interest in recent years, 

[53] because they are much safer than commercial high-temperature Na/S and Na/NiCl2 

batteries, and therefore suitable for stationary grid and even transportation applications. The 

operation of a Na/S battery at room temperature (RT-Na/S), however, faces the critical 

challenge of low reversible capacity and extremely fast capacity fade during cycling. [54-58] 

This low capacity is likely to be due to the low electrical conductivity of S at room 

temperature and the formation of soluble polysulfides, which diffuse through the electrolyte to 

the anode and undergo redox reactions to form lower-order polysulfides at the anode surface. 

This shuttle phenomenon is also a common problem in Li/S batteries.[17, 59-63] Unfortunately, 

the shuttle effect is even exacerbated in the RT-Na/S system, resulting in low efficiency and 
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rapid capacity decay during cycling. All these challenges have hindered the development of 

reversible, sustainable, and efficient sulfur cathodes. Due to the revival of interest from 2012, 

research on the cell chemistry of RT-Na/S batteries is thriving. Significant progress has been 

achieved in terms of cycling stability, accessible capacity, Coulombic efficiency, and rate 

capability. Impressively, considerable efforts have been made to alleviate the shuttle effect, 

such as by embedding sulfur species in a functional matrix, [48, 54] separator 

coating/modification,[47,64-65] passivation of the anode,[56, 66] and changing the configuration of 

the cell. [119-129] Our overall understanding of the cell chemistry, however, is still poor, and it 

varies under different experimental conditions. In this review, we will present the principles 

and development from high-temperature to room-temperature sodium-sulfur batteries, and the 

technical challenges of the RT-Na/S batteries. Significant attention will be devoted to 

discussing our current understanding of the mechanisms operating between Na and S. As 

shown in Figure 1, we will summarize the research progress on sulfur/sodium 

polysulfides/sodium sulphide cathodes and sodium metal anodes. We will also focus on the 

selection and optimization of electrolytes, separators, and cell configurations. Overall, with 

the boom in research on RT-Na/S batteries, we are summarizing the vital growth in 

understanding of, and achievements and progress on Na/S batteries from various aspects, 

thereby offering a comprehensive reference for future advances in this field.  

2. Principles of Sodium-sulfur batteries 

2.1 Principles of high-temperature sodium-sulfur (HT-Na/S) batteries  

The development of HT-Na/S batteries can be dated back to the 1960s, along with the 

discovery of sodium beta-alumina (β-NaAl11O17) by Kummer and his co-workers, which 

could serve as a high-temperature solid-state sodium ion conductor.[67] This significant 

discovery aroused extensive interest and led to great progress both in the field of solid state 

ionics and in Na/S electrochemistry.[68] Given the high conductivity of β-NaAl11O17 and the 

molten nature of the active electrode materials at elevated temperatures, the HT-Na/S batteries 

are practically operated at temperatures of 300 to 350 oC. This technology possesses obvious 

advantages in terms of low cost, reasonable power and energy densities, temperature stability, 

and high efficiency with long cycle life. Furthermore, the HT-Na/S batteries are 

environmentally benign, since these batteries are sealed and allow no emissions during 

operation. More than 99% of the overall weight of the battery materials can be recycled (the 

steel, copper, and aluminium). In addition to the potential hazards of sodium, [69] the safety 
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concerns due to the high operating temperature of this technology prohibit its further 

advancement and application in electrical vehicles.[51] The high operating temperature forces a 

fraction of the energy to be used to maintain the operating temperature, resulting in a lower 

overall efficiency (87 %).[52] The molten polysulfides are also proven to be corrosive to the 

electrode current collectors.[70] On the other hand, the solid electrolyte would gradually 

become fragile and eventually break during battery operation, which likely results in the risk 

of fire or even explosion due to the molten sodium penetration through the cell and 

consequent short circuits and vigorous reactions. In addition, processes for recycling the 

sodium and sulfur from these batteries are apparently still not developed. [71]  

    As shown in Figure 2, the HT-Na/S battery typically consists of molten Na (anode) 

contained within a sodium β-alumina tube, which acts as the solid electrolyte / separator and 

is surrounded by molten S (cathode). The sulfur is usually impregnated into graphite felt to 

give it sufficient electronic conduction to carry out the electrochemical reactions. The 

magnified cross-section in Figure 2 shows the transport of the Na ions through the β-

NaAl11O17 electrolyte / separator to the S cathode during the discharge process. The Na ions 

then react with the S to produce various sodium polysulfide intermediates. During the 

subsequent charge processes, reversible reactions take place, in which the resultant sodium 

polysufides are reduced to S, with Na transported back into the interior of the tube. The use of 

light elements, Na and S, endows the Na/S system with high specific capacity and high energy 

density (760 Wh kg-1, and not only in terms of mass, but also of volume: 2584 Wh L-1). [72] 

For safety reasons, the commercial HT-Na/S batteries are considered to be unfavourable for 

transportation application in EVs, and they are exploited predominantly for stationary energy 

storage.[73]  

  The discharge process is graphically represented in Figure 3a. Due to its high (sodium) ionic 

conductivity and good insulating properties towards electrons, β-NaAl11O17 solid electrolyte is 

able to avoid self-discharge. When sodium gives off an electron, the Na+ migrates to the 

sulfur container, where the electron reacts with sulfur to form sodium polysulfide (Sx
2-). The 

discharge process in the Na/S cell reactions can be described as follows: 

Anode:  2Na → 2Na+ + 2e-                (1) 

Cathode:  xS + 2e- → Sx
2-                            (2) 

Overall reaction: 2Na + xS→ Na2Sx   (3) 

   Specifically, Okuno’s group suggested that a two-phase region of sulfur and sodium 

polysulfide (Na2S5) was present at 2.075 V (Figure 3b), because these two liquids are 
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immiscible at the operating temperature. When the cell is further discharged, both S and 

Na2S5 react with Na to form a single phase region (Na2S4), and Na2S3 occurs at 1.74 V. Solid 

Na2S2 is formed at deeper discharge, which leads to increased resistance at the positive 

electrode and prohibits any further discharge reaction.[74] Therefore, most reports fail to 

achieve one-third of the theoretical gravimetric capacity of the sulfur electrode (1675 mA h g-

1), based on full reduction to Na2S.[75] 

     High-temperature sodium–sulfur batteries have been primarily manufactured by NGK 

Insulators Ltd. in Japan since 2003. They are commercially available in Japan and in the 

United States with a discharge power capacity of ~530 MW, and are extensively applied for 

load leveling, peak shaving, energy arbitrage, auxiliary power, and energy storage in electrical 

grids.   

2.2 Principles of room-temperature Na-S batteries (RT-Na/S) 

Due to the great potential of the Na/S system as a high-energy power source, research on 

alternative ambient temperature sodium batteries is currently predominant. Typically, as 

shown in Figure 4a, RT-Na/S cells are assembled with sulfur or sulfur-containing composite 

applied as the cathode and paired with a sodium metal anode. A solution of organic solvents 

(such as ethylene carbonate / propylene carbonate: EC / PC) with sodium salts (such as 

NaClO4) is used as the electrolyte. The assembled cells are placed in the ambient environment 

for electrochemical tests. During the discharge process, sodium metal is oxidized at the anode, 

resulting in the production of sodium ions and electrons. The sodium ions move internally to 

the cathode through the electrolyte, while the electrons travel to the positive electrode through 

the external electrical circuit, thereby generating an electrical current. Meanwhile, sulfur is 

reduced to produce sodium polysulfides by accepting the sodium ions and electrons at the 

positive electrode. 

             the anode and cathode reactions during charge/discharge of the RT-Na/S battery can 

be expressed as: 
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Anode: Na   ↔   Na + + e−                                                            (4) 

Cathode: nS + 2Na+ + 2e− ↔ Na2Sn (4 ≤ n ≤ 8)                          (5) 

During the discharge process, as illustrated in Figure 4b, region I represents a high-voltage 

plateau region at ~ 2.2 V, corresponding to a solid-liquid transition from elemental sulfur to 

dissolved long-chain sodium polysulfide: 

S8 + 2Na+ + 2e− → Na2S8                                                      (6) 

Region II is a sloping region in the voltage range from 2.2 to 1.65 V, corresponding to a 

liquid-liquid reaction from the dissolved Na2S8 to Na2S4: 

Na2S8 + 2Na+ + 2e− → 2Na2S4                                              (7) 

Region III is a low-voltage plateau region at ~1.65 V, corresponding to a liquid-solid 

transition from the dissolved Na2S4 to insoluble Na2S3 or Na2S2: 

Na2S4 + 2/3Na+ + 2/3e- → 4/3Na2S3                                                     (8) 

Na2S4 + 2Na+ + 2e-    →    2Na2S2                                        (9) 

Na2S4 + 6Na+ + 6e - →    4Na2S2                                        (10) 

Region IV: A second sloping region in the range of 1.65 - 1.20 V, corresponding to a solid-

solid reaction from the insoluble Na2S2 to Na2S: 

Na2S2 + 2Na+ + 2e-    →   2Na2S                                       (11)  

    Among the four reaction regions, region II is supposed to be the most complicated one and 

is affected by the chemical equilibria between the various types of polysulfide species in the 

solution. The capacity and discharge voltage of Region III depend on the competition between 

Equations (8)-(10). Owing to the nonconductive nature of Na2S2 and Na2S, region IV is 

kinetically slow and likely suffers from high polarization.[78] According to the reaction 

equations, the theoretical cell capacity is as high as 1672 mAh g-1, offering a competitive 

option for low-cost, large-scale energy storage applications. 

3. Technical challenges 
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The operation of a Na−S battery at ambient temperature, however, faces critical challenges 

arising from both the materials and the system.[54-58] The common theoretical and 

technological issues for RT-Na/S are similar to those for Li/S batteries, which mainly involve 

the following aspects, including (1) the low conductivity of sulfur (~10-30 S cm-1); (2) the low 

reactivity between sodium and solid sulfur in liquid electrolyte; (3) the unstable 

electrochemical contact within the sulfur electrode, due to its structural and morphological 

changes related to the formation of sodium polysulfides (Na2Sn) during charge/discharge 

processes; and (4) the increasing impedance resulting from the passivation of electrodes as 

cycling proceeds. In contrast to Li/S batteries, all these problems are intensified in RT-Na/S 

batteries, especially the sluggish electroactivity and rapid polysulfide migration, which make 

improvements on RT-Na/S batteries more difficult and challenging. 

3.1  Shuttle mechanism 

As we discussed above, a series of intermediate redox species would be formed during the 

cell operation, including high-order (Na2Sn, 4 < n ≤ 8) and low-order (Na2Sm, 4 < m ≤ 2) 

sodium polysulfides. The long-chain Na2Sn are highly soluble in organic electrolytes with 

carbonate-based solvents, and they can freely migrate between cathode and anode. When the 

Na2Sn migrate toward the Na anode, Na2Sn and Na could react to produce low-order Na2Sm 

polysulfides, which can form high-order Na2Sn again during their migration back to the 

cathode, and so on. This process is called the shuttle phenomenon, which is also a common 

problem in Li/S batteries.[17, 59] Unfortunately, due to the highly reactive nature of Na, the 

reaction between Na and Na2Sn species is more vigorous, and the shuttle effect is exacerbated 

in the RT-Na/S system, resulting in low efficiency and rapid capacity decay during cycling. 

3.2   Self-discharge 

Low self-discharge is an essential criterion for the practical application of various energy-

storage technologies. It is a significant challenge that RT-Na/S cells feature serious self-

discharge behaviour. The self-discharge occurs because the active materials gradually 
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dissolve. The high-order polysulfides continue to slowly dissolve in the electrolyte during the 

resting state and then shuttle to the sodium anode, resulting in a concentration gradient.[80] 

    Many strategies have been adopted in order to enhance the kinetics of the S cathode and 

alleviate the shuttle effect, so as to achieve high-performance RT-Na/S batteries. Most tactics 

focus on optimizing the S cathode by decreasing the sulfur particle size and/or confining 

sulfur in highly conductive matrices. Other strategies have also been explored, including 

constructing novel cell configurations with interlayers, assembling Na/high-ordered 

polysulfide cells, and utilizing efficient electrolytes. The following sections will introduce 

some representative examples of these approaches. 

4. Cathodes 

The insulating nature of cathode active materials and the polysulfide shuttle effect of RT-Na/S 

batteries are the major chronic problems impeding practical applications. The straightforward 

solution is to mix/embed/encapsulate sulfur in a suitable electrical conductor (conductive 

carbon/polymer). This strategy has been widely investigated, and representative research has 

been listed in Table 1, which summarizes the electrochemical performance of RT-Na/S 

batteries with various cathode and electrolyte compositions. So far, incorporating active 

materials in various carbon frameworks has provided significant enhancement of the 

electrochemical performance of RT-Na/S batteries. 

4.1 Conventional sulfur mixture cathode 

The direct solution to coping with the intrinsic low conductivity of S is to enhance the 

proportion of conductive additive in the cathode composition. The conductive additive, 

commonly consisting of carbon black, active carbon, or Super P, has the properties of high 

surface area and high electrical conductivity. Via mixing with an appropriate conductive 

carbon, the insulating S could be evenly distributed in the conductive framework. The sulfur 

utilization can thus be improved, with enhanced overall conductivity of the S cathode. The 

first report on the effective use of this strategy was by Park et al. Their cathode was composed 
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of 70 wt % S, 20 wt % C, and 10 wt % poly(ethylene oxide) (PEO), delivering a first 

discharge capacity of 489 mA h g-1, but suffering from rapid capacity decay over 10 cycles. [55] 

Later on, this group engaged in further efforts by utilizing acetylene black as the conductive 

carbon with polyvinylidene fluoride (PVDF) − hexafluoropropylene gel polymer electrolyte. 

Similar Na-storage performance was achieved, with the first discharge capacity of 392 mA h 

g-1, followed by higher capacity retention over 10 cycles.[57] In 2013, Wenzel et al. [47] 

increased the ratio of carbon to 40 wt %, and the cell delivered a initial discharge capacity of 

~450 mA h g-1 with enhanced cycling stability over 40 cycles. Even though this method is 

straightforward and effective, it is obvious that simple physical mixing only yields 

disappointing accessible capacity and steep capacity decline with cycling. This is because the 

direct mechanical mixing only lead to poor contact between S and the conductive additives. 

On the other hand, a large amount of sulfur agglomerates on the carbon surface, which would 

block electron diffusion and transport, resulting in inferior electrochemical performance. 

4.2 Sulfur-based composite cathode 

4.2.1 Sulfurized polyacrylonitrile 

In 2007, Wang et al. [54] made significant progress on RT-Na/S batteries, in which the first 

sulfur - conductive-polymer hybrid composite was developed. Sublimed sulfur was utilized as 

a dehydrogenating reagent to react with polyacrylonitrile (PAN) at 300 oC. During the thermal 

treatment, an S-PAN compound, composed of -conjugated ring structures covalently bonded 

to S species, is formed via the cyclization of the –CN groups in PAN polymer. Extra S is 

believed to be uniformly dispersed and stabilized in the composite. The resultant cell 

delivered a high capacity of 500 mA h g-1 with stable cycling over 18 cycles. Later on, a 

higher heating temperature of 450 oC was applied to an S-PAN nanofiber (NF) mixture,[58] 

which was fabricated via the electrospinning method (Figure 5a). Significant enhancement 

was achieved; as displayed in Figure 5b, the S could react with the PAN-derived carbon 

matrix (c-PAN) and form covalent bonds with the C atoms, forming the final c-PAN sulfur (c-
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PANS) composite. The atomic arrangements of S in the C matrix were proven to be 

responsible for the stable cycling of the obtained c-PANS composite, which exhibited high 

initial charge/discharge capacities of 250 and 364 mA h g-1 (Figure 5c). Significantly, the 

structure of the c-PANS composite was robust, leading to prolonged cycling stability over 500 

cycles and high rate performance (Figure 5d). In addition, this material can be utilized to 

construct a flexible Na/S battery. Kim et al. [81] prepared S-PAN webs via the same method, 

which was directly utilized as cathode without the addition of conductive carbon and binder. 

The S-PAN/Na cell delivered a high first charge capacity of 1473 mA h g-1, and a capacity of 

266 mA h g-1 was retained over 200 cycles. The enhancement was mainly ascribed to the 

chemical binding between S and the C framework, which could effectively suppress 

polysulfide dissolution and realize high electrochemical activity between S and Na.   

4.2.2 Sulfur - carbonaceous composite cathode 

More efforts have been devoted to engineering various composite configurations via 

incorporating a high ratio of S into carbonaceous matrices. The frequently used carbon 

materials include microporous carbon (pore size < 2 nm), mesoporous carbon (2 nm < pore 

size < 50 nm), hollow carbon spheres, macroporous carbon (pore size > 50 nm), graphene, 

and carbon nanotubes (CNTs). Each type of carbonaceous matrix possesses unique 

morphological advantages. The micropores are favourable for accommodating and 

immobilizing the active materials. The mesoporous carbon with larger pore size could realize 

high sulfur loading and improve sodium ion and electrolyte transport. The macropores usually 

can ensure excellent electrolyte immersion. In addition, CNT networks with various 

micro/meso/macropores can be fabricated, which are expected to show improved cycling 

performance. 

   For the fabrication of sulfur-carbonaceous composite, the melt-diffusion method is 

extensively utilized to load various amount of S into the carbonaceous matrices. The obtained 
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composites can confine the S in the matrixes and guarantee intimate contact between them, 

thereby immobilizing the active material and enhancing the sulfur utilization. The free space 

and pores in the carbon matrices also can trap the dissolved polysulfides, blocking the serious 

shuttle effect. Furthermore, these nanostructures are believed to absorb/channel the liquid 

electrolyte. 

4.2.2.1  S-carbon nanotube (CNT) composite 

The CNTs function as an extensively interwoven conductive network in the S cathode in 

lithium-sulfur batteries. Xin et al. [82] optimized this S-based composite via coating a 

microporous carbon (~ 0.5 nm) layer on the CNTs (S/CNT@MPC), and the small sulfur 

allotropes S2-4 were successfully confined in the microporous carbon. Owing to the high 

electroactivity of S2-4 and the confinement by the microporous carbon, the S/CNT@MPC 

cathode showed superior electrochemical performance in a Li-S battery. Later on, the same 

group applied this S/CNT@MPC cathode in RT-Na/S batteries.[48] As illustrated in Figure 6a, 

the small sulfur molecules (S2-4) can be well confined in the carbon micropores (0.5 nm). 

Meanwhile, the supposed products, Na2S2 and Na2S molecules, possess denser and more 

flattened structures, which can be accommodated by the carbon micropores with similar 

diameters. Due to the complete reaction with Na to Na2S, a high specific capacity of 1610 mA 

h g-1 was delivered, which is very close to the theoretical capacity (1675 mA h g-1) of Na/S 

batteries. Without the formation of high-order sodium polysulfides, the cell no longer suffers 

from the destructive effects of the shuttle phenomenon, thus realizing stable cycling capability 

and maintaining high capacity. The composite in Figure 6b showed a reversible capacity of ~ 

500 mA h g-1 over 200 cycles and high-rate capability of ~ 815 mA h g-1 at 2 C (1 C = 1670 

mA h g-1).  

4.2.2.2 S-hollow carbon sphere composite 
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In order to address the challenges of serious polysulfide solubility and slow kinetics, Lee et 

al.[83] explored hollow carbon spheres as an effective S host. The hollow carbon spheres are 

synthesized by the hydrothermal method, and they possess a large diameter of ~1000 nm. As 

suggested by the researchers, the interior void space of the hollow carbon can accommodate a 

large amount of active elemental sulfur, guaranteeing a high sulfur loading rate in the 

composite. On the other hand, the carbon shell is capable of confining the starting active 

sulfur and polysulfides in its interior space, thereby inhibiting the occurrence of the shuttle 

effect. Furthermore, the carbon shell ensures high lithium ion and electron transport. The 

composite showed a discharge plateau around 1.3 V and delivered a reversible capacity of ~ 

600 mA h g-1 over 20 cycles. It should be pointed out that the size of the hollow carbon 

spheres is expected to be reduced to the nanoscale in the future, which is likely to suppress the 

formation of inactive sulfur cores when sulfur fills the hollow spaces, enhancing electron 

transport and thereby achieving higher accessible capacity and sustainable cycling.  

More recently, Wang et al. [80] explored interconnected mesoporous carbon hollow 

nanospheres (iMCHS) as a highly effective host, in which the size of the carbon nanospheres 

was ~100 nm, with enormous mesopores in the carbon shell ( ~ 10 nm ). The obtained 

composite of S with interconnected mesoporous carbon hollow nanospheres delivered high 

capacity retention of ~ 88.8% over 200 cycles and superior rate capability. Significantly, the 

mesoporous carbon shells can work as open active diffusion channels for ions, electrons, and 

electrolyte, and efficiently block the polysulfide shuttle. Moreover, apart from encapsulation 

in the hollow spaces, a certain amount of sulfur can be embedded in the carbon mesopores, 

which can localize the polysulfides. In addition, based on in situ synchrotron X-ray diffraction, 

the mechanism of the room temperature Na/S battery is proposed to be reversible reactions 

between S8 and Na2S4, corresponding to a theoretical capacity of 418 mAh g-1. 

4.2.2.3 S-(Cu-decorated) mesoporous carbon composite 



  

13 
 

 With the assistance of Cu nanoparticles, Zheng et al. [84] confirmed the feasibility of high-

surface-area mesoporous carbon (HSMC) as an excellent S host. The synergistic effects of 

nano-Cu decoration and the mesoporous C host were responsible for the exceptional 

performance of the HSMC-Cu-S. The nano-Cu inclusions are believed to play a key role in 

the significant enhancement of electrochemical properties. The Cu nanoparticles are able to 

immobilize S through the strong interaction between Cu and S. Meanwhile, the addition of Cu 

could enhance the overall electronic conductivity of the cathode. More importantly, the 

mesopores are supposed to provide free space for the volume changes of S during 

charge/discharge processes. The HSMC-Cu-S cathode exhibited a reversible capacity of ~ 

610 mA h g-1 up to 110 cycles with a Coulombic efficiency of 100 %. 

4.2.2.4 S-carbonized metal-organic framework composite 

A significant achievement was reported by Archer’s group.[85] A metal-organic framework 

(MOF)-derived microporous carbon polyhedral host (cMOF) was fabricated using a zeolite-

type MOF (zeolitic imidazolate framework: ZIF-8) carbonized in flowing N2 gas, which 

possesses small micropores, high surface area, and good affinity of carbon for S. As shown in 

Figure 7a, the S was successfully infused into cMOF via heating the S and cMOF mixture at 

155 oC for 2 h and then further heating at 300 oC for 6 h. It was demonstrated that the cMOF 

could provide strong physical confinement and immobilization for both S and the resultant 

polysulfides. The cell was proven to undergo solid-state electrochemical reactions with the S 

confined in the micropores, leading to a high reversible capacity of 600 mA h g-1 and nearly 

100% Coulombic efficiency (Figure 7b). Meanwhile, in Chen et al.’s work,[86] a S-cZIF 

composite was synthesized via heating the mixture at 155 oC for 12 h. With a similar S 

loading ratio of ~ 50 wt % but different electrolyte (1 M of NaClO4 in tetraethylene glycol 

dimethyl ether: TEGDME), the cell manifested higher capacity and longer cycling life than 

those for Archer’s group, delivering a reversible specific capacity of ~ 1000 mA h g-1 at 0.1 C 

and maintaining 500 mA h g-1 at 0.2 C after 250 cycles. This was because of the synergistic 



  

14 
 

effects between the C matrix and the high N-doping (~ 18 at %). This work also confirmed 

the confinement and immobilization of S molecules inside the carbon matrix. 

4.3 Sodium polysulfide/sulfide cathodes 

4.3.1 Na2S6-MWCNT composites 

As shown in Figure 8a, Yu et al. [76] synthesized long-chain sodium polysulfide (Na2S6) as a 

cathode for RT-Na/S batteries. Using liquid-phase Na2S6 instead of S as the cathode ensures a 

homogeneous distribution in the conductive matrix and high electrochemical activity. On the 

other hand, this work is a unique approach to understanding the Na-storage mechanism of the 

ambient-temperature Na-S battery system. The self-weaving multiwall carbon nanotubes 

(MWCNT) act as a high-surface-area current collector to construct the binder-free electrode. 

The Na2S6/MWCNT cathode retained a capacity of ~ 400 mA h g-1 over 30 cycles. Besides 

acting as the carbon matrix and current collector, the MWCNT fabric electrode also works as 

a trapping interlayer (Figure 8b and c). Later on, as shown in Figure 8c and d, Yu et al. further 

developed this Na2S6 polysulfide catholyte cathode with a composite matrix of activated 

carbon (AC) dispersed into the interwoven carbon nanofiber fabric (CNF/AC) with a sodiated 

Nafion® membrane as the ion-selective separator.[87] Significantly, the non-porous sodiated 

Nafion membrane offers both sufficient Na ion conductivity and decreased sodium 

polysulfide permeation, exhibiting remarkably high capacity of ~ 600 mA h g-1 with excellent 

cycling stability over 200 cycles. 

4.3.2 Na2S-C composites 

Similarly, Yu et al. also carried out a series of studies on the Na2S cathode, which allows the 

utilization of sodium-free anodes for room-temperature sodium-sulfur batteries, with the 

possibilities including hard carbon, metal oxides, Sn, and Si. In 2015, they were the first to 

report the electrochemical performance of a Na2S cathode. The Na2S slurry was made from 

Na2S powder, short MWCNTs, and tetraethylene glycol dimethyl ether (TEGDME) solvent. 

After magnetic stirring, the Na2S-MWCNT cathode could be obtained by injecting the Na2S 
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slurry into the self-weaving, binder-free MWCNT fabric. The Na/S batteries with the 

Na2S/MWCNT cathode exhibited remarkable capacity of 650 mAh g-1 after 50 cycles at the 

current density of 167 mA g-1.[88] Furthermore, Yu et al. optimized Na ∥ Na-Nafion/AC−CNF 

coating ∥ Na2S/AC−CNF cells in a coin-cell configuration (CR2032).[89] For the Na2S cathode, 

the activated carbon nanofiber (AC-CNF) was utilized to form a self-weaving and free-

standing paper matrix. Novel modified Nafion membranes were utilized as the separator. This 

separator was enhanced by sodiation and coated by the AC-CNF material, which was 

effective for suppressing the polysulfide shuttle effect and for both the electrochemical 

utilization of the sulfur cathode and the preconditioning of the cell, thereby delivering 

reversible capacity of ~ 600 mA h g-1 with enhanced cyclability of the cell (100 cycles). 

5. Anodes 

Almost all the research has exploited sodium metal as anode, which possesses an extremely 

high theoretical capacity (1166 mAh g-1) and low redox potential. It is well known that Na 

metal anode in liquid electrolytes poses safety concerns. Non-uniform nucleation of Na at the 

anode leads to the formation of Na dendrites during cycling, which might pierce the separator 

to internally short-circuit the cell. On the other hand, on exposure to the liquid electrolyte, the 

fresh sodium metal might react with the solvent, leading to low Coulombic efficiency, non-

uniform ionic flux, and large Na dendrites. Lee et al. [83] reported the utilization of a Na-Sn-C 

alloy anode, which could improve the cycling stability, but sacrificed the overall output 

voltage of the RT-Na/S batteries. Cui’s group[90] reported a simple liquid electrolyte to 

achieve highly reversible and non-dendritic plating-stripping of Na anode at room temperature. 

The electrolyte was NaPF6 in glymes (mono-, di-, and tetraglyme), in which uniform 

protective solid electrolyte interphase (SEI) films consisting of inorganic Na2O and NaF could 

be generated on the surface of the Na metal. Surprisingly, the SEI films are impermeable to 

the electrolyte and conducive to non-dendritic Na growth. Most recently, ionic liquid 1-

methyl-3-propylimidazolium-chlorate tethered to SiO2 nanoparticles (SiO2-IL-ClO4 particles) 
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as an additive in liquid carbonate electrolytes has been proven to play a specific role in Na 

anode protection. The additives serve as an agent to stabilize electrodeposition, and further 

investigations are expected to fully explain the protective mechanism of SiO2-IL-ClO4.
[85] 

High safety and high energy-density RT-Na/S batteries are expected to be achieved with the 

significant development of the Na metal anode. 

6. Advances in the electrolyte, separator, and cell configuration 

Electrolytes offer ion transport pathways between the anode and the cathode. The selection of 

the electrolyte directly determines the RT-Na/S battery performance. Typically, a solid-state 

electrolyte is favorable to alleviate the dissolution of polysulfides and the shuttle phenomenon. 

The utilization of solid electrolyte, however, is challenging due to the low ionic conductivity 

and interfacial instability. For liquid electrolyte, more attention needs to be paid to the severe 

solubility of intermediate polysulfides. The investigation of various electrolytes is imperative 

to determine the optimal electrolyte composition for enhanced electrochemical performance 

of RT-Na/S batteries. 

    Separators can physically block electrical contact between the anode and cathode, while 

maintaining the ion diffusion in the electrolyte. In addition, it is essential for separators to 

possess high mechanical strength and flexibility in case they are pierced, leading to battery 

failure. For RT-Na/S batteries, ion selective separators have become more promising due to 

their action towards reducing the polysulfide shuttle. 

    According to the experience on Li-S batteries, the cell configuration of RT-Na/S cells was 

modified by introducing a bifunctional interlayer between the separator and the cathode, 

which can work well to prevent internal short circuits, while permitting sodium ion diffusion. 

More importantly, the interlayer can effectively localize the migration of polysulfides within 

the cathode region of the cell and protect the sodium metal anode, leading to long-term 

cycling stability with high sulfur utilization. 

6.1 Electrolytes 
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6.1.1 Polymer/solid-state electrolyte 

During the initial stages of research, non-aqueous polymer-based gels were used in RT-Na/S 

batteries, including NaCF3SO3-polyvinylidene fluoride (PVDF)-tetraglyme,[91] NaCF3SO3-

poly(ethylene oxide) (PEO),[55] NaCF3SO3-PVDF-hexafluoropropylene (HFP)-tetraglyme,[92] 

and NaCF3SO3/SiO2 − ethylene carbonate (EC) − propylene carbonate (PC)-(PVDF-HFP).[93] 

This type of electrolyte could effectively avoid the potential fire hazard, although the cells 

tended to deliver low capacity and rapid cycling decay，which were due to the poor 

dimensional stability, low ionic conductivity, and poor interfacial stability of the polymer-

based gels. Beta-alumina, as a solid-state electrolyte, is commercially available and possesses 

a high ionic conductivity of ~ 2 mS cm-1. As illustrated in Figure 9a and b, beta-alumina was 

placed between the two half cells and applied as a separator by Wenzel et al. [47] The 

electrolyte consisted of 1 M NaCF3SO3 in a mixture of 1,3-dioxolane (DOL) 

/dimethoxyethane (DME). Glass fiber was utilized for the separator. This strategy was 

verified to prevent the diffusion of polysulfides towards the sodium electrode. More recent 

progress was made by Kim et al. on a high S ratio cathode (~ 60 %), and they further studied 

a hybrid electrolyte made by combining beta-alumina and a liquid electrolyte consisting of 1 

M NaCF3SO3 in TEGDME. [94] As shown in Figure 9c, what they found was that the high-

order sodium polysulfides (Na2Sn, 4 ≤ n ≤ 8) could be confined in the sulfur cathode area by 

using the hybrid electrolyte. They also believe that the high voltage region, corresponding to 

the formation of the high-order sodium polysulfides, is associated with the cycling stability, 

while the low voltage region, associated with the formation of solid-state Na2Sm (1 ≤ m ≤ 3), 

is responsible for the capacity fade. This RT-Na/S battery showed a high first discharge 

capacity (855 mA h g-1), good cycling performance (100 cycles), and high Coulombic 

efficiency (close to 100%). 

6.1.2 Ether-based electrolyte 
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Various ether solvents have been investigated as one of the most promising candidate types 

for Li/S batteries.[95-98] Compared with small-molecule ethers, the long-chain analogs show 

favorable electrochemical performance, due to their high boiling/flash points, non-

flammability, and stability at high potentials. Among them, TEGDME showed the best 

electrochemical properties in Li/S batteries, with beneficial effects due to the greater solvation 

of oxygen atoms in the glyme structure, thereby solubilizing and dissociating the Li salts and 

polysulfide compounds.[98] 

    The investigation of liquid electrolyte solvents for RT-Na/S started with ethers, including 

DOL/DME, TEGDME, and tetraglyme. Studies suggested that the ether-based electrolytes are 

likely to contribute to low capacity.[41，55，65] Although the theoretical end product Na2S could 

be detected, the capacity was only about 350-550 mA h g-1, indicating that the sodiation 

reaction is incomplete, with the production of an overall composition of Na2Sx (3 ≤ x ≤ 5). 

The charge/discharge plateaus occur at ~1.85 V, which is close to the overall expected cell 

potential. The low achieved capacity is due to the high solubility of high-order polysulfides in 

the ether-based electrolyte. As discharge proceeds, more and more dissolved polysulfides 

shuttle to the anode side, leading to less formation of low-order polysulfides. The cells with 

ether-based electrolyte, therefore, undergo a severe shuttle effect and strong self-discharge, 

leading to low capacity and fast capacity decay. 

6.1.3 Carbonate-based electrolyte 

Carbonate solvents commonly possess high ionic conductivity and wide electrochemical 

stability, while offering favorable anode passivation. According to the results in Li/S batteries, 

however, carbonates can react with reduced-solubility polysulfides through a possible 

nucleophilic attack on the carbonate molecules during the initial discharge process, resulting 

in degradation of the electrolyte, loss of active sulfur, and sudden capacity failure. [99,100] On 

the other hand, carbonate-based electrolytes have been used successfully in Li/S batteries 
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when the S is completely encapsulated or covalently immobilized in the host materials / 

polymeric composites. [82, 101-105] 

  Carbon-based electrolytes, such as NaClO4 in EC/dimethyl carbonate (DMC) and NaClO4 in 

EC/PC, are commonly investigated in RT-Na/S batteries.[48,54,58,76,82] It is interesting that the 

voltage profiles of these cells with the carbonate-based electrolyte are very different from 

those with ether-based electrolytes.[41] The cells usually display continuously decreasing 

profiles during subsequent cycling, and much of the capacity is obtained below 1.5 V, which 

indicates a different reaction mechanism to that in the ether-based electrolyte. High-order 

polysulfides are formed and irreversibly react with the carbonate electrolyte in RT-Na/S 

batteries as well.[106, 107] Similarly, considerable work has been focused on embedding the S in 

a C host, and in this case, the cathode coupled with carbonate electrolyte undergoes a solid-

state reaction without the formation of soluble intermediate polysulfides in Na-S batteries. 

Wang et al. and Hwang et al. demonstrated that sulfur confined in PAN-based materials can 

work well with EC/DMC electrolyte.[54, 58] Xin et al. [49] showed that EC/PC electrolyte can be 

used in cells with short-chain sulfur molecules of S2-4 embedded in a narrow microporous 

carbon matrix. Recently, Wei et al. [85] significantly optimized the compatibility of S cathode 

with carbonate electrolyte via immobilization of the S in a microporous C matrix and 

utilization of ionic liquid combined with the liquid carbonate electrolyte. 

6.1.4 Ionic-liquid-based electrolyte 

Room-temperature ionic liquids (ILs) are composed entirely of ions, which favorably possess 

negligible volatility, low flammability, high thermal stability, acceptable conductivity, and a 

wide electrochemical potential window. These advantages have promoted the study of ILs as 

electrolytes in Li/S batteries.[108-112] Until now, research on ILs in RT-Na/S has been very rare. 

Very recently, Wei et al. [85] utilized 1-methyl-3-propylimidazolium-chlorate ionic-liquid-

tethered silica nanoparticle (SiO2–IL–ClO4) additive as an agent in a carbonate-based 

electrolyte (1 M NaClO4 in EC/PC). The electrochemical performance suggested that the ILs 
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are capable of stabilizing the cell. The tethered ILs are favorable for forming a robust and 

stable solid electrolyte interphase (SEI) film on the sodium anode surface, which prevents the 

occurrence of side reactions with the electrolyte.[113] Meanwhile, the SiO2 particles can anchor 

ClO4
- anions, which serve as supporting electrolyte, thus reducing the electric field through 

the tethered anion effect.[114, 115] 

6.2 Separator 

Polypropylene and glass fiber separators are commonly used in RT-Na/S batteries. The high-

order polysulfide intermediates in Na/S batteries are likely to diffuse into the separators 

during charge/discharge processes, and then preferentially precipitate as inactive S-related 

species on the surface of the S cathode. [116] The micron-scale pores of the polypropylene 

separators and of glass fiber separators are definitely not able to prevent the permeation of the 

sodium polysulfides. Through surface modification, the functionalized membranes lead to 

enhanced specific capacity and cycling stability. Based on the effective tactic of constructing 

permselective separators for Li/S batteries,[117-120] research efforts on RT-Na/S batteries are 

shifting to ionic separators as well. Obvious shuttle suppression was achieved by Bauer et 

al.,[65] who presented for the first time a polysulfide inhibiting separator that was made by 

coating a thin layer of Nafion on a conventional polypropylene separator. This cation 

selective separator prohibits the diffusion of polysulfide anions through the separator, thereby 

demonstrating alleviation of the polysulfide shuttle, efficient operation, and good cycling 

stability. Furthermore, Yu et al. exploited non-porous sodiated Nafion membrane as a Na-ion 

exchange separator,[87, 89] which demonstrated high ionic conductivity of 2.7 × 10-5 S cm-1 at 

room temperature. Thus, the Na-Nafion separator provided favorable Na+-ion conductivity. 

As illustrated in Figure 10a, the Nafion membrane consists of a hydrophobic region and a 

hydrophilic ion-cluster region (~ 4-5 nm). These hydrophilic clusters are connected to each 

other through hydrophilic channels (~ 1-2 nm). Significantly, with its –SO3- groups at the 

hydrophilic “pore” surface, the Nafion membrane offers a negatively charged environment, 
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so that it works as an excellent cation-exchange membrane (Figure 10b). Therefore, this 

membrane can suppress the sodium polysulfide migration through the “structure effect” and 

the “electronic effect” at the fine hydrophilic nanopores (< 5 nm).[89] These cells with Nafion 

membranes exhibited remarkably high energy density and cycling stability.   

6.3 Cell configuration 

As mentioned above, the RT-Na/S batteries suffer from an accelerated shuttle effect, so the 

traditional cell configuration might be unsuitable and incompatible with this system. Based on 

the research achievements in Li/S batteries, cell configuration modification has been regarded 

as an effective strategy to optimize cell performance through improvements in terms of the S 

loading and active material utilization ratio. In particular, the use of an interlayer could 

perfectly solve the problem of polysulfide migration, and such interlayers have been 

extensively applied in the Li/S cell configuration.[120-122] 

    This concept has been imported into the RT-Na/S technologies. Manthiram’s group 

developed the interlayer strategy for the S cathode. Similarly, the interlayer could confine the 

dissolved sodium polysulfide on the cathode side and enhance the electroactivity of the 

cathode. This interlayer, therefore, leads to less shuttle effect and better capacity retention. In 

contrast to the traditional RT-Na/S cells (Figure 11a), the interlayer in Figure 11b is typically 

placed between the cathode and separator as a polysulfide-diffusion inhibitor. It has been 

confirmed that the interlayer can effectively capture/localize the migrating polysulfides within 

the cathode region of the cell, leading to high S utilization and prolonged cycling stability. On 

the other hand, the interlayers should be highly conductive, which can enhance the 

conductivity of pure sulfur cathodes and promote the re-utilization of the trapped active 

materials. Various carbonaceous materials, therefore, have been employed as interlayers, 

including micro/mesoporous carbon,[120, 123, 124] interwoven CNFs/CNTs, [121, 125, 126] porous 

metal foam, [127] carbon paper, [128] and porous biomaterials. [129, 130] 
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  As shown in Figure 11c, a carbon nano-foam interlayer consisting of carbon nanofibers was 

placed between the separator and the sulfur cathode. The conductive interlayer can localize 

the soluble polysulfide species and prevent their migration to the anode. On the other hand, it 

also acts as a secondary current collector to capture the polysulfide species by electrochemical 

deposition during charge/discharge processes. It is obvious that the capacity with the 

functional interlayer is much higher than that without the interlayer over 20 cycles (Figure 

11d).[77] Moreover, they investigated the impact of three interlayers, including a CNF thin film 

and a CNT thin film, as well as commercially available carbon foams (CCFs).[78] The 

nanostructures of these interlayers could come into direct contact with the S cathode, which 

reduces the electrical resistance and facilitates electrolyte penetration during charge/discharge 

processes. The cell with the CNT interlayer showed low initial discharge capacity due to the 

poor wettability of the CNTs by the electrolyte. Over 20 cycles, all the cells with various 

interlayers showed similar cycling performance, with remarkable capacity of 400 mAh g-1 and 

energy density of 720 W h kg-1 based on sulfur mass, which is a significant enhancement 

compared to the conventional cell configurations.[54-56, 91-93] Nevertheless, it should be pointed 

out that the high capacity retention of the RT-Na/S with this configuration is realized at the 

expense of energy density, being the same problem as is encountered in using additional 

separators. Further work on elaborately regulating the weight and thickness of the interlayer 

should be deployed to balance the energy density and cycling stability. 

7. Conclusions and Perspectives 

In this review of research progress, we have considered the development from high-

temperature to room-temperature Na/S batteries, emphasizing a comprehensive understanding 

of RT-Na/S batteries, including the essential principles, associated technical challenges, and 

significant progress to date. We have mainly focused on the latest advances in cathode 

materials, which are the most essential and critical factor for a leap in performance of RT-

Na/S batteries. 
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    By developing functional nanocomposites, utilizing efficient electrolytes, and constructing 

novel cell configurations, research on the RT-Na/S system is booming, and significant 

breakthroughs have been achieved in recent years. Nanostructured composites, such as S-

microporous carbon, Na2S8-CNT, and Na2S-CNT nanocomposites, have been intensively 

pursued over recent years. The introduction of a C matrix can directly enhance the overall 

conductivity of the cathode. The nanoscale composites are able to facilitate rapid ion/electron 

transport. More importantly, the porous C matrix is capable of trapping the polysulfide 

intermediates. This type of cathode has achieved superior performance in terms of high 

capacity, good rate capability, and prolonged cycling stability. Furthermore, the selection of 

the electrolyte plays an important role in coping with the polysulfide migration in RT-Na/S 

batteries. For example, the high-order polysulfide species are highly soluble in TEGDME-

based electrolyte but insoluble in EC/PC-based electrolyte. Some subtle factors, including the 

solubility of polysulfides in the electrolyte and the competition between the affinity of S 

towards the C matrix and towards the electrolyte, determine whether and what intermediate 

species are present. In ether-based electrolytes, the charge/discharge curves show similarity to 

those in Li/S cells; but the cells only deliver low capacities and rapid cycling decay. A 

different mechanism is deduced when carbonate-based electrolyte is used. The voltage 

profiles are much less defined, and the carbonates might react with polysulfides, as in the case 

of Li/S batteries. Much higher capacity and long cycle life can be achieved. The 

electrochemistry of RT-Na/S, therefore, is very complicated, and advanced characterization 

techniques are required to provide a better understanding of the Na-storage mechanisms. 

Moreover, cell configuration modification plays a critical role in improving the performance 

of RT-Na/S batteries. Currently, it only involves the utilization of an interlayer. A favorable 

impact has been achieved via the confinement effect of the interlayer, which could localize 

the polysulfides and prevent the occurrence of the shuttle phenomenon, effectively addressing 

the challenges of low active material utilization and high self-charging.  
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    In comparison to Li/S batteries, the study on RT-Na/S batteries has not been fully deployed 

and literally involves the above-mentioned fundamental research. Much effort should be made 

to catch up with the pace of Li/S batteries in the near future. The low sulfur elelctroactivity 

and accelerated shuttle phenomenon are the critical issues to tackle in RT-Na/S batteries. 

Currently, nanostructured metal oxides and sulfides have been confirmed as favourable S host 

in Li/S batteries, which have showed superior ability to optimize S cathode with high sulfur 

utilization and prolonged cycling life. The effects of metal oxides and sulfides have been 

speculated by experimental results and theoretical calculation, which are closely related to 

their conductivity, adsorption ability to polysulfides, elecatalytic capability, and affinity to 

polysulfides.[131] Regarding S cathode in RT-Na/S batteries, great attention should be paid to 

these two types of matrices, which includes to explore suitable host materials and investigate 

the corresponding conversion mechanism of soluble polysulfides and insoluble (di)sulfides. 

Meanwhile, it is profound to compare and understand the different Na-storage mechanisms 

when various host materials and electrolytes are applied. In the future, more research efforts 

are expected towards the design of unique sandwich-structured electrodes and the use of 

porous current collectors. Separator modification, e.g., Na-Nafion® coatings on Celgard®, 

could significantly suppress the polysulfide shuttle, thereby improving the capacity and 

cyclability of the RT-Na/S cells. In addition, efforts towards developing safe anode materials 

are imperative as well, which involve exploring alternative protected sodium metal anodes, 

Na/M (M = metal) alloys, and favorable electrolytes as a feasible approach to build safer RT-

Na/S batteries. 

    Even with these intensified efforts and even though the RT-Na/S batteries have made great 

progress since 2012, the research on RT-Na/S batteries is still in its infancy, and it will be a 

long process to realize their practical applications. Future efforts should be guided by the rich 

experience on Li/S batteries and towards basic scientific research and approaches.  
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Figure 1. An overview diagram showing the advantages and applications for, and extensive 

research interest on cathodes, anodes, separators, electrolytes, and cell configurations. 

Advantages include the natural abundance and environmental benignity of S and Na. Potential 

applications are focused on stationary energy storage: Reproduced with permission.[68] 

Copyright 2011, American Chemical Society. Cathode images: Reproduced with permission. 

[85] Copyright 2014, Royal Society of Chemistry. Reproduced with permission.[83]Copyright 

2013, Royal Society of Chemistry. Reproduced with permission.[80] Copyright 2016, 

American Chemical Society. Reproduced with permission.[76] Copyright 2014, American 

Chemical Society. Anode images: Reproduced with permission.[85] Copyright 2016, Nature 

Publishing Group. Separator images: Reproduced with permission.[89] Copyright 2016, 

American Chemical Society. Electrolyte images: Reproduced with permission.[47] Copyright 

2013, Elsevier. 
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Table 1. Cathode composition, electrolyte composition, and electrochemical performance of 

RT-Na/S batteries with various cathodes that are reported in the literature. 

Cathode a) 
 

Electrolyte b) 
Current 
density 
 

1st cycle 
capacity 
(mA h/g) 

Capacity  
(mA h/g) 
 after (n) 
 cycles 
 

References 
 

70 wt. % S  
20 wt. % C 
10 wt. % PEO 
 

NaCF3SO3  
in PVDF-TEGDME 
 

No data 489 105 (10) [91] 

 
50 wt. % S  
40 wt. % C 
10 wt. % PVDF 
 

1 M NaCF3SO3  
in DOL/DME 
 

0.148 mA cm−2 450 75 (40) [47] 

 
70 wt. % S-PAN  
20 wt. % C 
10 wt. % PTFE 
 

1 M NaClO4 

 in EC/DMC 
 

0.1 mA cm−2 654.8 500 (18) [54] 

70 wt. % c-PANS  
15 wt. % Super P 
15wt. % PVDF 
 

0.8 M NaClO4  
in EC/EMC        
 

220 mA g-1 364 150 (500) [58] 

0 wt. % S/CNT@MPC 
10 wt. % CB 
10 wt. % PVDF 

1 M NaClO4  
in PC/EC 
 

3340 mA g-1 1610 500(200) [82] 

     
60 wt. % S-hollow carbon 
20 wt. % C 
20 wt. % PEO  

NaCF3SO3  
in TEGDME   
 

167 mA g-1 1000 600 (20) [83] 

      
70 wt. % S@iMCHS  
10 wt. % CB 
20 wt. % CMC 
 

1 M NaClO4  
in EC/ PC+FEC 
 

100 mA g-1 328.4 292 (200) [80] 

80 wt. % S/Cu-decorated 
mesoporous C  
10 wt. % C 
10 wt. % CMC 
 

1.0 M NaClO4 
 in EC/ DMC  
 

50 mA g-1 718 641 (110) [84] 

80 wt.% MCPS 
10 wt. % CB 
10 wt. % PVDF 

1 M NaClO4  
In EC/PC 

84 mA g-1 689 354 (100) [85] 

Na2S6-MWCNTs  
fabric cathode 

1.5 M NaClO4  
+ 0.3 M NaNO3 

 in TEGDME 
 

No Data ~935 400(30) [76] 

Na2S-C nanotube  
Fabric cathode 

1.5 M NaClO4  
+ 0.3 M NaNO3 

 in TEGDME 
 

167 ~850 560(50)         [88] 

a) PEO: polyethylene oxide, PVDF: polyvinylidene fluoride, PTFE: polytetrafluoroethylene, 
 PAN: polyacrylonitrile, CNT@MPC: carbon nanotube core@microporous carbon shell, 
iMCHS: interconnected mesoporous carbon hollow nanospheres, CMC: carboxymethyl 
cellulose, MCPS: S/microporous carbon polyhedron composite, MWCNTs: multiwall carbon 
nanotubes. b) NaCF3SO3: sodium triflate, NaClO4: sodium perchlorate, NaNO3: sodium nitrate, 
TEGDME: tetraethylene glycol dimethyl ether, DOL: 1,3-dioxolane, DME: dimethoxyethane, 
EC: ethylene carbonate, DMC: dimethyl carbonate, PC: propylene carbonate, FEC: 
fluoroethylene carbonate. 
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Figure 2. Schematic representation of a high-temperature HT-Na/S battery. Reproduced with 
permission.[1] Copyright 2011, American Association for the Advancement 
of Science (AAAS). 
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Figure 3. (a) Principle of operation of Na/S cell during the discharge process. (b) 
Representation of voltage profile of Na/S cell with the various phases present at each stage of 
discharge. Reproduced with permission.[74] Copyright 2004, Wiley-VCH. 
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Figure 4. (a) Schematic representation of room-temperature Na/S battery on discharge. (b) 

Theoretical versus practical discharge capacities of RT-Na/S cells. Reproduced with 

permission.[78] Copyright 2014, Wiley-VCH. 
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Figure 5. (A) Electrospinning process for the generation of PAN nanofibers. (B) Structural 

changes during carbonization and sulfurization of c-PANS. (C) Capacity retention and 

Coulombic efficiency of c-PANS NFs. (D) Rate performances of the electrospun c-PANS 

NFs and c-PANS powder measured at various C-rates. Reproduced with permission.[58] 

Copyright 2013, American Chemical Society. 
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Figure 6. (a) Electrochemical reactions between S and Na+ during the discharge process. (b) 

Cycling performance of the S/CNT@MPC cathode at 1 C. Reproduced with permission.[48] 

Copyright 2014, Wiley-VCH. 
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Figure 7. (a) Fabrication procedure for the cZIF-8/S. (b) Long cycle test of Na–S cell at 

initially 0.1 C for 5 cycles and then 0.2 C up to 250 cycles. The capacity retention after 250 

cycles is about 60 %. Reproduced with permission.[86] Copyright 2014, Royal Society of 

Chemistry. 
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Figure 8. (a) Schematic illustration of the preparation of long-chain Na2S6, (b) schematic 

illustration of a Na/dissolved-polysulfide cell with a MWCNT fabric electrode, (c) cycling 

performance of the Na/sodium polysulfide cell. Reproduced with permission.[76] Copyright 

2014, American Chemical Society. (d) Schematic representation of an RT-Na/S battery with a 

sodiated Nafion® membrane as a Na-ion selective separator and sodium polysulfide catholyte 

dispersed into CNF/AC composite as the cathode. (e) Discharge capacities and Coulombic 

efficiencies of cells with various interlayers. Reproduced with permission.[87] Copyright 2015, 

Wiley-VCH. 
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Figure 9. (a) RT-Na/S cells with liquid and solid electrolytes; and (b) discharge capacity as a 

function of cycle number for the cells with solid and liquid electrolytes, respectively. 

Reproduced with permission.[47] Copyright 2013, Elsevier. (c) First charge/discharge curves 

of RT-Na/S batteries with a porous separator and with solid electrolyte; and (d) cycling 

performance of a Na/S battery with a solid electrolyte over 104 cycles at a current density of 

1/64 C (based on sulfur) at room temperature. Reproduced with permission.[94] Copyright 

2016, Elsevier. 
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Figure 10. (a) Architecture of Nafion® membrane; and (b) schematic illustration of the ionic 

selectivity of the Nafion membrane, showing ionic interactions at the hydrophilic pores of the 

membrane. Reproduced with permission.[89] Copyright 2016, American Chemical Society. 
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Figure 11. Cell configuration of (a) the traditional cell and (b) a modified cell. (c) Schematic 

representation of a room-temperature sodium−sulfur battery with an interlayer. The anode, 

separator, interlayer, and cathode are firmly packed with good mechanical contact, with the 

spaces between the cell components filled with liquid electrolyte, and the space between the 

sulfur cathode and the interlayer also filled with polysulfides; and (d) electrochemical 

characteristics of room-temperature Na/S batteries with and without an interlayer. Reproduced 

with permission.[77] Copyright 2014, American Chemical Society. 
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