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Abstract

Word embeddings are increasingly used for

the automatic detection of semantic change;

yet, a robust evaluation and systematic com-

parison of the choices involved has been lack-

ing. We propose a new evaluation framework

for semantic change detection and find that (i)

using the whole time series is preferable over

only comparing between the first and last time

points; (ii) independently trained and aligned

embeddings perform better than continuously

trained embeddings for long time periods; and

(iii) that the reference point for comparison

matters. We also present an analysis of the

changes detected on a large Twitter dataset

spanning 5.5 years.

1 Introduction

Semantic change, i.e., the change in the meanings

of words, is inherent in language. A new mean-

ing for a word can be added to the original one,

become more or less prevalent, or even replace

a former meaning (see Koch, 2016). An exam-

ple is lit, which has gained a new sense of ‘excit-

ing’ or ‘awesome’, via the extension of its long-

established use as slang for ‘intoxicated’ to de-

scribe the vibrant environment in which acts of be-

coming intoxicated often occur.1

Automatically measuring semantic change can

discover changes that would not be apparent from

manual inspection. It can also facilitate the inves-

tigation of mechanisms driving semantic changes,

e.g., how these changes are affected by language-

internal and social factors. Moreover, there are

direct benefits to applications, such as the detec-

tion of meaning shifts in polarized words to update

sentiment lexicons and the detection of emerging

word meanings to update dictionaries.
∗*These authors contributed equally to the study.

1“What Does ‘Lit’ Mean?” Retrieved from
https://www.merriam-webster.com/words-at-play/lit-
meaning-origin. Accessed 2018-10-05.

Word embeddings are increasingly used for au-

tomatic semantic change detection (Kutuzov et al.,

2018). Words are mapped to low-dimensional vec-

tors, and the semantic change of a word is then

measured by comparing its vectors across time pe-

riods. Although word embeddings have emerged

as one of the most popular approaches to measur-

ing semantic change, researchers are faced with

various decisions, including whether to train em-

beddings independently or continuously, which

metric to use to measure change between two time

periods, and which ranking approach to use for

comparing semantic change candidates.

A major challenge in developing semantic

change detection systems is obtaining ground truth

data (Kutuzov et al., 2018), which has so far pre-

vented a systematic evaluation of different ap-

proaches. Many studies rely on hand-picked ex-

amples (e.g., Wijaya and Yeniterzi, 2011; Rodda

et al., 2017) or human judgements (e.g., Tredici

et al., 2018). Some studies have performed

evaluations based on dictionary data (e.g., Cook

et al., 2014; Basile and McGillivray, 2018), man-

ual annotation of dictionary senses in corpora

(McGillivray et al., 2019), and manual annota-

tion of word types (Kenter et al., 2015), but this

approach is not well-suited for recent, yet-to-be-

recorded changes.

In this paper, we present a new framework to

evaluate semantic change detection systems (Sec-

tion 5.1). We model multiple semantic change

scenarios and compare the impact of different

choices that are typical when using word embed-

dings to analyse semantic change (Section 5.2).

Our framework is not specific to the use of word

embeddings and can also support the evaluation of

other approaches not considered in this paper.2 We

2The dataset and all code for this pa-
per is available at https://github.com/

alan-turing-institute/room2glo.

https://github.com/alan-turing-institute/room2glo
https://github.com/alan-turing-institute/room2glo
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then apply the approaches to 5.5 years of Twitter

data and provide an in-depth analysis of the top-

ranked semantic change candidates (Section 6).

2 Related Work

There has been increasing interest in automatic

semantic change detection (Tang, 2018; Kutuzov

et al., 2018), using methods ranging from neu-

ral models to Bayesian learning (e.g., Frermann

and Lapata, 2016), Temporal Random Indexing

(e.g., Basile and McGillivray, 2018) and dynamic

topic modelling (e.g., Blei and Lafferty, 2006).

Word embeddings have been especially popular

(e.g., Dubossarsky et al., 2017; Hamilton et al.,

2016b), and recently Bamler and Mandt (2017)

and Rudolph and Blei (2018) explored dynamic

embeddings for semantic change detection by

training a joint model over all time periods.

Most previous work analysed corpora spanning

long time periods (e.g., a few centuries), such as

the Google Books Ngrams corpus and the Cor-

pus of Historical American English (e.g., Hamil-

ton et al., 2016b). Recently short-term semantic

changes have been studied, for example in Ama-

zon Reviews (Kulkarni et al., 2015), scientific pa-

pers (Rudolph and Blei, 2018), news articles (Tang

et al., 2016; Yao et al., 2018), and the UK Web

Archive (Basile and McGillivray, 2018).

In this paper, we focus on social media: in par-

ticular, on Twitter. Semantic change in social me-

dia has only been lightly explored, with studies

on Twitter (Kulkarni et al., 2015), the VKontake

social network (Stewart et al., 2017), and Red-

dit (Tredici et al., 2018). In comparison to these

studies, our data covers a longer time period and

our evaluation more deeply explores the various

choices involved in semantic change detection.

Much of the previous work on semantic change

discovery has relied on qualitative evaluations of

small samples from the output, case studies of

a few well-known historical changes (e.g., Kim

et al., 2014; Hamilton et al., 2016a,b; Stewart

et al., 2017), or attested changes extracted from

dictionaries (e.g., Rohrdantz et al., 2011; Cook

et al., 2014; Basile and McGillivray, 2018). Some

evaluations have been based on related tasks for

which performance is expected to correlate, such

as classifying the time period a text snippet be-

longs to (Mihalcea and Nastase, 2012) or predict-

ing real-world events (Kutuzov et al., 2017).

Here we look for meaning changes over a short,

recent time period. There is little existing lit-

erature on words that have undergone meaning

change within the relevant time-frame, and lan-

guage on social media is not always fully reflected

in general language dictionaries. Moreover, even

if we were able to obtain a substantial list of at-

tested meaning changes, a system might still dis-

cover other valid meaning change candidates. Un-

fortunately, determining the validity of seman-

tic change candidates is time-consuming, labour-

intensive, and subjective; so, building on prior ap-

proaches (e.g., Kulkarni et al., 2015; Rosenfeld

and Erk, 2018; Nguyen and Eisenstein, 2017), we

introduce a new synthetic evaluation framework

for semantic change detection.

Synthetic evaluation is especially important for

short, recent time periods given the lack of other

resources for evaluation, but it is also valuable

for longer periods to detect hitherto unknown

changes. Moreover, phenomena like seasonal

trends are more likely to interfere with semantic

change detection for short time periods, making

this a challenging use case for semantic change

detection. At the same time, it is an important use

case in order to advance semantic change detec-

tion for contemporary data to be used to update

lexicons, sentiment/polarity ratings, and other lan-

guage resources.

3 Data

We collected tweets from Twitter’s ‘sta-

tuses/sample’ streaming API endpoint from

January 1, 2012, to June 30, 2017. There are

a few minor gaps in our data due to occasional

data collection issues. Most are a few minutes

or at most a day, but one gap spans January and

February 2015. Overall, our dataset consists of

over 7 billion tweets sent during 1,889 days.

We use the Compact Language Detector ver-

sion 2 (CLDv2),3 following guidance from Gra-

ham et al. (2014), and we discard any tweets for

which CLD detects less than 90% of the text to be

in English, resulting in roughly 2.5 billion tweets.

The remaining tweets are then lowercased, and

usernames, urls, and non-alphanumeric characters

(except emoji and hashtags) are removed. The text

is then tokenized on whitespace. Digit-only tokens

are replaced with ‘<NUM>’. Finally, we discard

tweets that are duplicated within a given month,

as tweets which are re-tweeted or copied verba-

3https://github.com/CLD2Owners/cld2

https://github.com/CLD2Owners/cld2
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tim many times are not independent language sam-

ples and may exert undue influence on embed-

dings (Mikolov et al., 2018). Our final dataset con-

sists of 1,696,142,020 tweets and 20,273,497,107

tokens.

4 Methods

Following the approach introduced by Kim et al.

(2014) and adopted by Hamilton et al. (2016b) and

others, we divide our dataset into discrete time pe-

riods, and for each time period t we compute word

embeddings, representing each word w by a d-

dimensional vector. We then compare the embed-

dings between different time periods to measure

the semantic change of words. We use monthly

bins, but the approach is applicable to time peri-

ods of any length, provided there is sufficient data

in each bin to train quality embeddings.

4.1 Training Word Embeddings

We train word embeddings using gensim’s (Ře-

hůřek and Sojka, 2010) implementation of the

continuous bag of words (CBOW; Mikolov et al.,

2013) model.4 Two evaluation tasks (word sim-

ilarity using the dataset Wordsim3535 and word

analogy using the word test dataset6) were used

to tune four hyperparameters, resulting in 200 di-

mensions, a window size of 10, 15 iterations, and

a minimum frequency of 500 (per time-step). For

all other hyperparameters we use gensim’s default

values.

4.2 Comparable Embeddings

To compare embeddings for a word between two

time-points, the embeddings need to be in the

same coordinate axes. We experiment with three

approaches: (1) Training continuously by initial-

izing the embeddings for a given time-step t with

the embeddings trained at the previous time-step

t− 1 (e.g., Kim et al., 2014); (2) Training embed-

dings for each time-step independently and post-

hoc aligning them (e.g., Hamilton et al., 2016b;

Kulkarni et al., 2015) using orthogonal Procrustes

4We only report results using CBOW in this paper. We
found similar trends when using the skip-gram model, which
has been used in previous works on semantic change (e.g.,
Kim et al., 2014; Kulkarni et al., 2015; Hamilton et al.,
2016b; Stewart et al., 2017; Tredici et al., 2018).

5http://www.cs.technion.ac.il/~gabr/

resources/data/wordsim353/
6http://www.fit.vutbr.cz/~imikolov/

rnnlm/word-test.v1.txt

(as used by Hamilton et al., 2016b); and (3) com-

bining continuous training and post-hoc alignment

(as in Stewart et al., 2017).

4.3 Measuring Semantic Change

We compare two measures for quantifying a

word’s semantic change between two time points.

The first is the cosine distance, a common ap-

proach in previous work (Hamilton et al., 2016b;

Stewart et al., 2017; Dubossarsky et al., 2017; Kim

et al., 2014). The second measure, introduced by

Hamilton et al. (2016a), is based on comparing

the neighbourhoods of the embeddings. For each

time-step t, we first find the ordered set of word

w’s k nearest neighbours, based on cosine simi-

larity. Following Hamilton et al. (2016a), we set

k = 25. For any two time-steps, we then take

the union S of the two nearest neighbour sets and

create a second-order vector vt where each entry

v
(i)
t contains the cosine similarity of target word

w to neighbouring word S(i) at time t. We then

measure the cosine distance between these two

second-order vectors.

4.4 Ranking Semantic Change Candidates

Our goal is not only to measure semantic changes

for pre-selected words, but to identify which

words out of the entire vocabulary have under-

gone the greatest or most significant semantic

change. We compare several approaches to gen-

erating ranked lists of the ‘most changed’ words.

The first only measures the change between two

time-steps. The remaining approaches consider

the whole time series. For the approaches that

use the whole time-series, we limit the semantic

change candidates to words that occur at least 500

times in at least 75% of the time-steps, simply con-

densing a word’s time-series if there are gaps.

Two-step approach We first measure each

word’s semantic change between just two pre-

selected time-steps (in this study, the first and final

time-steps). This simple approach has been used

in previous work, such as Kim et al. (2014).

Change-point detection Following Kulkarni

et al. (2015), we choose one time-step t0 as a refer-

ence and compute semantic change scores for each

word with respect to t0 at every other time-step

ti. Then, for each word w and each time-step ti,

we compute a mean-shift score by partitioning w’s

time series of semantic change scores at ti, and

http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/
http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/
http://www.fit.vutbr.cz/~imikolov/rnnlm/word-test.v1.txt
http://www.fit.vutbr.cz/~imikolov/rnnlm/word-test.v1.txt
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calculating the difference between the means of

the scores in the two partitions. Following Kulka-

rni et al. (2015), we use Monte Carlo permuta-

tion tests to estimate the statistical significance

of mean-shift scores, and take the time-step with

the lowest estimated p-value as the change point.

Words are first sorted in descending order of the

mean-shift scores of their estimated change points

and then in ascending order of their p-values.

Kulkarni et al. standardized each word’s cosine

score for a given time-step relative to the mean

score across all words at that time-step. This is

meant to help control for corpus artefacts, e.g.,

shifting sampling biases over time, but its impact

has not been demonstrated yet. We compare the

results of ranking words without standardization

(raw scores) and with standardization (z scores).

Global trend detection We also compare three

approaches to detect global trends in the same time

series of semantic change scores as the change

point detection methods. The first approach is fit-

ting a linear regression model di = α + βti + ǫi,

where di is semantic change distance scores, ti is

time periods {1, ..., n}, and ǫi is error. We rank the

words based on their absolute β values (slopes),

which gives the semantic change per time period

under the assumption of a linear relationship.

We also experiment with two correlation mea-

sures: Pearson’s (r) and Kendall’s rank (τ ) corre-

lation coefficients. In contrast to linear regression

and Pearson’s correlation coefficient, Kendall’s

tau is non-parametric and resistant to outliers

(Kendall, 1948). It is therefore often used for mea-

suring trends in time series and change point de-

tection (Quessy et al., 2013). We rank the words

based on the absolute values of τ and r.

5 Synthetic Evaluation

To systematically compare the different method-

ological choices we introduce a new synthetic

evaluation framework. We create seven schemas

for how a word’s distributional statistics may

change. Three of these model scenarios in which a

semantic change occurs, but crucially the remain-

ing four model scenarios that we would not wish

to classify as semantic change. Our framework

builds on previous approaches that have modelled

one type of semantic change—either a word gain-

ing an additional sense (Kulkarni et al., 2015) or

a word’s original sense being completely replaced

(Rosenfeld and Erk, 2018). Furthermore, although

most work has focused on recall, our framework

can also test precision, i.e., the ability to distin-

guish the injected changes from noise.

5.1 Dataset Construction

We first randomly sample 10% of the tweets from

a single month from the middle of our empirical

dataset (Dec. 2014). We then draw 66 random

70% samples with replacement from this sample.

These 66 samples represent a dataset of 66 months

(5.5 years) in which no semantic changes occur,

but words’ distributional statistics still vary from

month to month due to sampling noise. This dif-

fers from, e.g., Kulkarni et al. (2015), who used a

series of exact duplicates of an initial set of docu-

ments. Finally, we inject controlled changes by in-

serting made-up ‘pseudowords’, carefully chang-

ing their frequencies and co-occurrence distribu-

tions throughout the time series.

Our procedure for inserting pseudowords is as

follows: we split the real words that occur in our

empirical data for December 2014 into five equally

sized frequency bins. For each pseudoword ρ that

we insert, we choose a frequency bin. To repre-

sent one of the senses of ρ, we sample a real word

w from the relevant frequency bin. For each syn-

thetic month m, we insert ρ replacing each token

of w with success probability p(ρ,w,m).

For example, we might insert one pseudoword

replacing the instances of the word ‘pudding’ with

a fixed probability throughout the whole time se-

ries, and then insert this same pseudoword replac-

ing the instances of the word ‘neon’ with increas-

ing probability over time. This would model a

word that initially has a meaning related to ‘pud-

ding’, but which then acquires a new sense related

to ‘neon’. We use seven different schemas: three

model different kinds of semantic change (C1–

C3), and four model ephemeral changes that we

aim to avoid (D1–D4): see Figure 1.

C1: Description: This schema models a word

that gradually acquires a new sense over

time while retaining its original sense (e.g.,

snowflake, lit). This corresponds to what

Koch (2016, 24) calls ‘innovative meaning

change’ and Tahmasebi et al. (2018, 35) calls

‘novel word sense’.

Procedure: Sample one real word w1 to rep-

resent the original pseudosense7 of the pseu-

doword ρ and another real word w2 to rep-

7A single pseudosense may in practice correspond to mul-
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Figure 1: Illustration of our seven schemas for inserting pseudowords into the synthetic dataset. Each line rep-

resents a different pseudosense. Lines chart the probability of inserting a pseudoword token replacing a token

representing the relevant pseudosense, as a function of ‘time’. We vary whether the success probabilities change

linearly or logarithmically and the time-steps at which the changes begin and end.

resent its new pseudosense. For each token

of w1 that occurs in the synthetic dataset for

month m, insert a token of ρ replacing it with

success probability p(ρ,w1,m), which remains

constant throughout the time series. Insert

ρ replacing each token of w2 with success

probability p(ρ,w2,m), which starts low and

gradually increases over time.

C2: Description: This schema models a word

that gradually acquires a new sense over

time while its original sense gradually falls

out of use (cf., silly, which originally meant

‘happy’ or ‘lucky’ and now means ‘foolish’).

This corresponds to the full cycle of genesis

and disappearance of lexical polysemy as de-

scribed by Koch (2016, 25), i.e., an ‘innova-

tive meaning change’ and a ‘reductive mean-

ing change’.

Procedure: Sample one real word w1 to rep-

resent the original sense of the pseudoword

ρ, and another real word w2 to represent its

new sense. For each token of w1 that occurs

in the synthetic dataset for month m, insert a

token of ρ replacing it with success probabil-

ity p(ρ,w1,m), which starts relatively high and

gradually decreases over time. Insert ρ re-

placing each token of w2 with success proba-

bility p(ρ,w2,m) = 1− p(ρ,w1,m).

C3: Description: This schema models a word

with many senses, different random subsets

of which are relatively frequent each month

(e.g., an acronym that can refer to many dif-

ferent entities, which may trend at different

times). Over time, the word acquires an ad-

ditional, more stable sense whose frequency

tiple real senses, since the real word we use to represent this
pseudosense may itself have multiple senses. There are few
words in our dataset with only one sense according to Word-
Net; so, we restrict our choice to words for which WordNet
lists no more than 10 senses. We also require that none of
the real words chosen to represent different pseudosenses of
a given pseudoword have any senses in common.

does not fluctuate so much from month to

month. An example is BLM, which has been

used to refer to a baseball magazine, a mar-

keting company, a music label, the US Bu-

reau of Land Management, etc., but since

2013 has been consistently associated with

the Black Lives Matter movement. This

could be considered a ‘reductive’ meaning

change-in-progress, as we start out with mul-

tiple competing senses, and one sense grad-

ually comes to dominate without the others

having yet died out (see Koch, 2016, Fig. 2).

Procedure: Sample eight real words

{w1, w2, ..., w8} to represent eight different

pseudosenses for the pseudoword ρ. For

each month m, draw a multinomial dis-

tribution Dm over the first seven sampled

words, using a Dirichlet prior with uniform,

sparsity-inducing alpha. Replacing each

token of a word wi, i ∈ [1, 7], insert a token

of ρ with success probability Dm
wi

. Let w8

represent the new, more stable pseudosense,

and for each month m, insert a token of

ρ replacing each token of w8 with success

probability p(ρ,w8,m), which starts low and

gradually increases over time.

D1: Description: This schema models a word

that becomes more frequent over time, but

does not change its co-occurrence distribu-

tion.

Procedure: Sample one real word w to rep-

resent the meaning of the pseudoword ρ. For

each token of w that occurs in the synthetic

dataset for month m, insert a token of ρ re-

placing the token of w with success probabil-

ity p(ρ,w,m). p(ρ,w,m) starts relatively low and

gradually increases over time.

D2: Description: This schema models a word

with two senses. One sense is relatively infre-

quent, but suddenly spikes in frequency (e.g.,
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Figure 2: Precision–recall plots for times series approaches for k in range [0, 1000]. Left: Change point methods

with Raw and Standardized (z) scores. Right: global trend methods including linear regression (Beta), Pearson

correlation coefficient (r), and Kendall rank correlation coefficient (tau). Dashed lines use the first timestep as the

reference point for comparison while solid lines use the last timestep.

due to a trending topic), before becoming in-

frequent again.

Procedure: Sample two real words w1 and

w2 to represent the two pseudosenses. Insert

ρ replacing each token of w1 with probability

p(ρ,w1,m), which remains constant through-

out the time series, and replacing each to-

ken of w2 with probability p(ρ,w2,m), which

starts relatively low, rapidly increases and

then rapidly decreases again.

D3: Description: This schema models a word

with two senses: one is usually relatively in-

frequent, but spikes in frequency at periodic

intervals (i.e., during the same month every

year). An example is turkey, whose ‘poultry’

sense tends to be much more frequent around

American Thanksgiving and Christmas.

Procedure: Sample two real words w1 and

w2 to represent the two pseudosenses. Insert

ρ replacing each token of w1 with probability

p(ρ,w1,m), which remains constant throughout

the time series, and replace each token of w2

with probability p(ρ,w2,m), which is relatively

low for most time-steps but rapidly spikes

around the same month each year.

D4: Description: Like C3, this schema models

words that can refer to many different enti-

ties, but in this case, an additional, more sta-

ble sense does not emerge.

Procedure: Sample seven real words

{w1, w2, ..., w7} to represent different pseu-

dosenses for ρ. For each month m, draw

a multinomial distribution Dm over these

seven words, using a Dirichlet prior with

uniform, sparsity-inducing alpha. Replacing

each token of a word wi, i ∈ [1, 7], insert a

token of ρ with success probability Dm
wi

.

For each of these seven schemas, we create

thirty pseudowords (six for each of our five fre-

quency bins), and we vary whether the success

probabilities change linearly or logarithmically

and the time-steps at which the changes begin and

end. In total, we insert 90 pseudowords using

Schemas C1–C3, which model genuine seman-

tic changes that we would like to be able to de-

tect, and 120 pseudowords using Schemas D1–D4,

which model real changes in words’ use statistics

but do not reflect semantic change. The synthetic

dataset also contains 887,926 real words.

5.2 Evaluation Results

We evaluate systems by how highly they rank

pseudowords from schemas C1–C3 using the Av-

erage Precision @ K, which approximates the area

under a precision–recall curve over the interval

from 0 to K. It is defined as the sum, over ev-

ery rank r in the top-K list of semantic change
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candidates, of the precision at rank r multiplied

by the change in recall between ranks r − 1 and

r: AP@K =
∑K

r=1 P (r)∆R(r), where P (r)
is the percentage of top-r candidates which are

pseudowords belonging to Schemas C1–C3, and

R(r) is the percentage of all C1–C3 pseudowords

that appear in the top-r. The results are shown

in Table 1 (two-step approach, comparing the first

and last time steps) and Table 2 (whole time se-

ries). Precision–recall curves for the time series

approaches are shown in Figure 2.

Continuous training does not ensure that em-

beddings are comparable. We experiment with

three configurations for training the embeddings

for the two-step approach: 1) training the embed-

dings for each time-step independently (ind.); 2)

initializing the embeddings for the final time-step

with those trained on the first time-step (cont.);

and 3) continuous training throughout the whole

series, so that the final time-step’s embeddings are

initialized with the data from all preceding time-

steps (cont. whole series).

Continuous training has been used without sep-

arate alignment (e.g., Kim et al., 2014) as each

time period is a continuation of the embeddings

from the previous period. Table 1 shows, how-

ever, that alignment is necessary for continuously

trained embeddings using the whole series as well

as for independent ones when using the cosine dis-

tance measure. It is likely that the huge number

of training updates in the entire time series causes

the embeddings to drift considerably. For the time

series approaches, we therefore did not apply the

cosine measure without first aligning embeddings.

Using the whole time series is more effective

than comparing the first and the last time steps.

Overall, the approaches using the whole time se-

ries (Table 2) are more effective than the two-step

approaches; particularly with regard to finding C1

pseudowords and avoiding D4 pseudowords.

Continuous training provides no benefit for

time series approaches. For the time series ap-

proaches, independent training tends to perform

better than continuous training (Table 2). The lack

of improvement with continuous training is partic-

ularly noteworthy as independent training is more

computationally efficient than continuous training,

since different time periods can be trained in paral-

lel. We did not explore the impact of different hy-

perparameter choices on continuous training, but

ind. cont. cont. (whole series)

cosine (unaligned) 0.00 0.32 0.00
cosine (aligned) 0.25 0.32 0.27
neighbourhood 0.28 0.34 0.30

Table 1: Average Precision @ 50 on the synthetic

dataset of the two-step approach with CBOW

note this would introduce another level of com-

plexity in tuning model parameters.

Different time series approaches are best paired

with different similarity measures. Hamilton

et al. (2016a) found that the neighbourhood-based

measure tends to assign higher rates of semantic

change to nouns, while the cosine measure tends to

assign higher rates to verbs. However, they did not

compare the overall effectiveness of these methods

for semantic change detection.

We find that the neighbourhood-based measure8

tends to outperform the cosine measure for the

change point detection approaches; however, co-

sine tends to outperform the neighbourhood mea-

sure for correlation approaches (see Table 2). For

change point detection, standardization of the time

series does not have a consistent effect.

The reference point for comparison matters.

For almost all configurations in Table 2, the AP

@ 50 is better when the reference point is the last

time-step. Figure 3 shows Recall@K broken down

by pseudoword type. For types C1–C3, higher re-

call is better. Conversely, lower recall is better for

types D1–D4, since these model changes that we

do not consider to be lasting semantic changes.

Recall is consistently low for types D1–D4, but

strikingly, recall is also low for type C3 when

we compare to the first-step. Schema C3 mod-

els words whose distributions change drastically

from time-step to time-step, but which gradually

become more stable as a new, consistently occur-

ring sense emerges. The representation for the first

time-step will thus be very different from subse-

quent representations, such that comparing to the

first step is not effective. In contrast, comparing to

the first time-step is expected to be more effective

in finding words that become less stable over time.

Correlation-based approaches perform worse

than regression or change point detection ap-

proaches. Pearson’s correlation coefficient is

8We apply this to unaligned embeddings; alignment with
orthogonal Procrustes has no effect on this measure.
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Comparing to the first time-step Comparing to the last time-step

Measure Training raw z β r τ raw z β r τ

cosine independent 0.37 0.36 0.51 0.52 0.47 0.54 0.56 0.56 0.48 0.49
cosine continuous 0.17 0.18 0.34 0.40 0.02 0.13 0.15 0.45 0.34 0.00
neighbourhood independent 0.47 0.50 0.48 0.23 0.35 0.53 0.56 0.56 0.20 0.30
neighbourhood continuous 0.35 0.32 0.37 0.05 0.05 0.34 0.42 0.54 0.05 0.00

Table 2: Average Precision @ 50 on the synthetic dataset using time series approaches with CBOW. Change point

methods are raw scores (raw) and standardized scores (z). Global trend methods are linear regression (β), Pearson

correlation coefficient (r), and Kendall rank correlation coefficient (τ ).

maximized when the magnitude of the change be-

tween consecutive time periods is consistent over

all time periods whereas maximizing Kendall’s τ

simply requires the change between consecutive

time periods to be of a consistent sign. Both cor-

relation measures therefore have particularly poor

recall of words that have time periods without a

consistent meaning as in the early time periods for

pseudowords of type C3.

The β value of the linear regression assumes

a linear relationship, but is unfortunately sensi-

tive to outliers (Chatterjee and Hadi, 1986), which

likely explains why the regression approach has

higher recall than change point approaches for

schema D4 (Figure 3), in which a stable sense

does not emerge. In general, however, the β

values produced for D4 pseudowords appear to

be smaller in magnitude than genuine semantic

changes (C1–C3) resulting in average precision

measures that generally match or exceed change

point approaches (Table 2). Regression is also

more straightforward and computationally effi-

cient to calculate than change point measures.

6 Results on Empirical Twitter Data

We now apply the approaches on our full empirical

Twitter dataset. Table 3 shows the top 10 seman-

tic change candidates using independent, aligned

CBOW embeddings. When using continuously

trained embeddings, the top-10 lists are similar.

In line with our synthetic results, we find differ-

ent candidates when comparing to the first time-

step or the last, but they appear to represent sim-

ilar kinds of semantic change. Most have shifted

due to associations with named entities. For ex-

ample, vine (Figure 4a) acquired a new sense in

January 2013 when the popular short-form video

hosting service Vine was launched. Similarly, ig,

initially shorthand for ‘i guess’, became shorthand

for the social network Instagram as it gained pop-

ularity. The embedding for shawn shifted signif-

Figure 3: Recall@K of each schema, using inde-

pendently trained embeddings and the neighbourhood-

based measure. ‘first’/ ‘last’ denotes the reference

time-step, ‘cp’ the unstandardized change-point ap-

proach, and ‘beta’ the linear regression approach. C1–

C3: higher recall is better, D1–D4: lower is better.

icantly around the beginning of 2014, when the

singer Shawn Mendes signed a record deal.

There are also words whose embeddings have

shifted due to waning associations with prominent

named entities, e.g., vow was initially associated

with The Vow, a high grossing movie released in

Feb. 2012, but by the end of the time series it had

shifted back towards synonyms like ‘pledge’ and

‘urge’. Likewise the embedding for temple ini-

tially reflected the popularity of the video game

Temple Run but gradually shifted to the word’s

canonical meaning, and the embedding for bcs ini-

tially reflected its usage as an acronym for Bowl

Championship Series (a selection system in Amer-

ican college football), but then shifted towards
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Comparing to first
time-step

vine, temple, unfollowers, fa-
vorited, mcm, glo, #ipadgames,
shawn, retweeted, vow

Comparing to last
time-step

isis, yasss, bcs, temple, ,

mcm, , ig, mila, glo

Table 3: Top 10 semantic change candidates of the

change-point detection approach without standardiza-

tion, using independently trained and aligned CBOW

embeddings and the cosine distance measure.

‘bcoz’, ‘bec’, and other forms of ‘because’ after

the selection system was ended in 2013.

There are also examples of neologisms: mcm

is a lexicalized acronym for ‘Man Crush Mon-

day’. This initially referred to the meme of posting

about a man one finds attractive each Monday, but

then by metonymic extension came to be used to

refer to the subject of the post himself. Another

example is glo, which in the beginning of our data

(Figure 4b) occurs mainly in reference to a Nige-

rian telecommunication company. A shift in its

embedding is driven by the sudden emergence of

the expression ‘glo up’, which was coined in Au-

gust 2013 by rapper Chief Keef in the song “Gotta

Glo Up One Day”, and later gained traction as

an expression to describe an impressive personal

transformation.

Finally, there are words whose detected change-

points reflect changes in automated activity. For

example, the embedding for yasss shifts in early

2017 due to a sudden proliferation of tweets au-

tomatically posted to users’ Twitter accounts by

the live video streaming app LiveMe, which all

begin with the text ‘YASSS It’s time for a great

show’ followed by the title and link to the video

stream. Conversely, the detected change for fa-

vorited (Figure 4c) coincides with a sudden disap-

pearance of automatically generated tweets about

favorited YouTube videos.

7 Conclusion

In this paper, we presented a new evaluation

framework and systematically compared the var-

ious choices involved in using word embeddings

for semantic change detection. We then applied

the approaches to a Twitter dataset spanning 5.5

years. Qualitative analysis found that the top

ranked words have undergone genuine semantic

change although some of the changes are restricted

to social media or to Twitter specifically.

Figure 4: Neighbourhood-based distance (solid blue

lines) and frequency (dotted red lines) over time, for

three semantic change candidates. Vertical green lines

indicate the automatically estimated change-points.

Our framework and dataset can also be used to

evaluate approaches not considered in this paper.

Moreover, our framework models different seman-

tic change scenarios, and future work could focus

on approaches that are able to distinguish between

these different scenarios.
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