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Abstract–Imagine a world in which our furniture moves 
around like legged robots, interacts with us, and changes 
shape and function during the day according to our needs. 
This is the long term vision we have in the Roombots project. 
To work towards this dream, we are developing modular 
robotic modules that have rotational degrees of freedom for 
locomotion as well as active connection mechanisms for 
runtime reconfiguration. A piece of furniture, e.g. a stool, will 
thus be composed of several modules that activate their rota-
tional joints together to implement locomotor gaits, and will 
be able to change shape, e.g. transforming into a chair, by 
sequences of attachments and detachments of modules. 

In this article, we firstly present the project and the hard-
ware we are currently developing. We explore how reconfig-
uration from a configuration A to a configuration B can be 

controlled in a distributed fashion. This is done using meta-
modules—two Roombots modules connected serially—that 
use broadcast signals and connections to a structured ground 
to collectively build desired structures without the need of a 
centralized planner. 

We then present how locomotion controllers can be 
implemented in a distributed system of coupled oscillators—
one per degree of freedom—similarly to the concept of cen-
tral pattern generators (CPGs) found in the spinal cord of 
vertebrate animals. The CPGs are based on coupled phase 
oscillators to ensure synchronized behavior and have differ-
ent output filters to allow switching between oscillations and 
rotations. A stochastic optimization algorithm is used to 
explore optimal CPG configurations for different simulated 
Roombots structures. 

I. Introduction

O
ur goal is to merge technologies from information 

technology, roomware, and robotics to design adap-

tive and intelligent furniture. We intend to design 

and control modular robots, called Roombots 

(RB), to be used as building blocks for furniture that moves, 

self-assembles, self-reconfigures, and self-repairs. Modular 

robots are robots made of multiple simple robotic modules 

that can attach and detach. Connectors 

between units allow the creation 

of arbitrary and changing 

structures depending on 

the task to be solved, 

therefore offering versatil-

ity and robustness against 

failure, as well as the possi-

bility of  self- reconfiguration. 

The type of scenario that we envi-

sion is a group of RB units that autonomously 

connect to each other to form different types of furniture, e.g. 

stools, chairs, sofas and tables, depending on user require-

ments. This furniture will change shape over time, e.g. a stool 

becoming a chair, a set of chairs becoming a sofa. Roombots 

units will move to different locations depending on the users’ 

needs. Additionally the Roombots will be capable of memo-

rizing user preferences in terms of structures and places in 

order to facilitate repetitive use of the adaptive furniture. 

Here we focus on two major, initial tasks of the RB 

modules. Firstly we investigate force-field guided reconfigu-

ration movements of RB metamodules into furniture-like 

structures. Embedded connectors in our structured environ-

ment enable the RB metamodules to grab into and use 

them as pivot points for caterpillar-like movement sequenc-

es. Secondly we apply central pattern generators (CPG) for 

controlling the locomotion of multiple-unit Roombots 

robotic structures. This allows RB units to move indepen-

dently from a structured environment. A CPG network 

produces robust, synchronized patterns for oscillatory and 

rotational joint movements, with a minimum number of 

control parameters, and is well-suited for an optimization 

algorithm. CPG networks are by definition decentralized 

and hence very well suited for controlling modular robots. 

Derived locomotion patterns are very well-performing, and 

versatile for all tested RB structures. 

We have organized the paper as follows. In Section II we 

look at applications and properties of self-reconfiguring modu-

lar robots, reconfiguration strategies for 

modular robots, and locomotion 

controllers, and we place our 

hardware and strategies 

within each of them. In 

Section III we describe the 

Roombots module concept 

and the currently existing 

hardware. Section IV shows 

setup and simulation results for the 

reconfi guration strategy we use with Roombots 

metamodules. Section V describes the applied CPG model, the 

CPG network and the optimization framework we apply to 

different Roombots robot structures. Section VI concludes our 

reconfi guration and locomotion strategies for the Roombots 

platform, and gives an outlook for future work. 

II. Related Work

With the Roombots project we wish to extend but also test 

a future scenario, where technology is being merged into 

everyday environment, ranging from tables to walls, from 

furniture like shelves to electric installations, e.g. autono-

mously moving shades [1]. This new field named roomware 

[2] searches to design and evaluate computer-augmented 

room elements with integrated information and communi-

cation technology. The idea of using technology with 

touchable, shape or surface changing interfaces and func-

tionalities is increasingly discussed in the field of tangible 

interactions [3]. Most of the work in the field of roomware is 

done on fixed topologies; here we aim towards a scenario 

where the user creates his or her own shapes of furniture. 

Ultimately adaptive Roombots furniture will be able to Digital Object Identifier 10.1109/MCI.2010.937320
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transform and merge from one shape, e.g. two chairs, into 

another, e.g. a table. 

We use the concept and the ideas of self-reconfiguration modu-

lar robots (SRMR) or Dynamically Reconfigurable Robotic Systems 

[4] as physical building blocks for our adaptive furniture. The 

field of self-reconfiguring modular robots, which are modular 

robot units that can actively attach and detach themselves with 

each other and the environment, is a robotic concept which 

was firstly implemented with CEBOT (“cell structured robot”) 

by Fukuda et. al [4] in the late 1980s. CEBOT already includ-

ed all the main properties of modular robotic systems. (i) A 

robot is made from individual “cells” or modular units. The 

task is then performed by a collective assembly of those mod-

ules. (ii) Each cell is mostly autonomous, i.e. equipped with 

processing power, actuation, battery power, communication, 

sensors and has an own hardware frame. (iii) The shape of the 

assembly is task-dependent, as for certain tasks the number of 

degrees of freedom (DOFs) or their orientation matters. The 

modular robot community has been growing ever since, we 

count about 50 different modular robotic systems up to now. 

Using self-reconfiguring modular robots has advantages, as 

opposed to monolithic robots such as humanoid or quadruped 

robots. Depending on the capabilities of a single modular unit, 

large numbers of shapes can be created by remote control [5]. 

This is especially helpful if the task is initially unknown. If a 

quadruped-shaped modular robot locates a hole in the wall it 

can shape-change into a caterpillar-like structure, and go 

through. As many different robotic shapes can be created with 

the same set of units, transport is easy and less costly, e.g. to 

remote locations. Units are interchangeable such that modular 

robotic cells can be replaced in case of failure, what potentially 

makes these systems robust. However these advantages come 

with a price. Implementing autonomy in modular robots, 

equipping each of the units with a connection mechanism, 

actuators, and electronics makes them heavy, expensive, and 

hard to design. A robotic configuration built from modular 

robots will normally perform less well compared to a mono-

lithic robot as the abilities and dynamics of a monolithic robot 

can be optimized—it serves a smaller number of dedicated, 

pre-known tasks. 

The usefulness of a modular or monolithic approach there-

fore depends on the application. Research in modular robots 

often aims towards applications at disaster sites, remote or haz-

ardous environments that are inaccessible to human operators, 

where their shape changing characteristics and robustness are 

crucial. A number of modular robot projects are working at 

micro-scale modular robots, i.e. they aim for rapid prototyping-

like technologies [6]. For the Roombots project we chose self-

reconfiguring modular robots for their abilities in building 

arbitrary, adaptive structures. 

Finding and applying an automated controller to change 

shape is one of the main topics in reconfigurable robotics. 

Centralized strategies often use a graph-based approach, 

describing the combined modular robot structure using 

graph theory, where actions are represented by insertion and 

deletion of edges and vertices [7]. Connector actions and 

joint rotations are the result of an optimization process 

attempting to morph the graph representing the initial struc-

ture, into the goal configuration. This allows for a very precise 

reconfiguration process, however graph methods do not scale 

well with increasing numbers of joints, connectors and mod-

ules. Common approaches for decentralized reconfiguration 

are “cluster flow” [8] locomotion or “water flow-like loco-

motion algorithms” [9] and describe locomotion by self-re-

configuration (or vice versa), or “dynamic reconfiguration“ 

[9]. They facilitate large amounts of, usually abstracted modu-

lar units moving or changing shape through the environment, 

where units are simulated as cubes or spheres which slide 

along planes and around edges, or rotate around edges (“slid-

ing cube”) [10]. Movements of single units can be guided by 

a global gradient [11] or triggered by hormone-like messages 

[12]. Cellular automata [13] oriented methods use local rules. 

Those can be learned by distributed, reinforcement learning 

algorithms to optimize the behavior of single units task 

dependently. Varshavskaya et. al [14] present such learning 

algorithms assuming only partial world-knowledge. Fitch et. 

al [15] demonstrate highly scalable systems with many modu-

lar units based on the “MeltSortGrow”-algorithm. They later 

extend their algorithm such that it also works in tight spaces 

[16]. Using a simplifi ed modular robot unit presentation, like 

the “sliding cube” model, is helpful to derive a reconfi gura-

tion strategy on an abstracted level. To implement the strategy 

on a low-level, i.e. on an actual modular robotic system, the 

notion of metamodules is often formulated. Metamodules are 

clustered assemblies of modular robot units which are com-

bined for the purpose of moving just as their sliding-model 

counterpart cubes, however by using the actual degrees of 

freedom available from the hardware units. Butler and col-

leagues [9, cf. page 7] mention the usefulness of such meta-

modules (Molecule’s tile [17] and Atom’s grain [18]). Dewey 

and colleagues [19] cluster the entire modular robot assembly 

in equal, non-dense generalized metamodules, which enables 

them to apply a very simple planner for module movement 

through the structure. 

In addition to reconfiguration, RB robots can move using 

whole body motions, e.g. like a walking quadruped structure 

or a metamodule rolling on the ground. Hence no structured 

environment with connectors is needed. To control these 

types of locomotion, we use a dynamical systems approach 

inspired from the biological central pattern generators 

(CPGs), i.e. neural circuits capable of producing coordinated 

patterns of high-dimensional rhythmic output signals while 

receiving only simple, low-dimensional input signals [20]. The 

goal is to produce oscillations as the limit cycle behavior in a 

system of coupled nonlinear oscillators. Compared to other 

approaches used in modular robotics such as gait tables (Yim 

[21], Bongard et al. [22]) or sine-based controllers (Stoy et al. 

[23]), this approach benefits from many interesting properties 

including decentralized control, synchronization between 

multiple oscillators and robustness against perturbations. In 
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particular, CPGs allow much more freedom in modulating 

gaits than sine-based controllers since changes in the control 

parameters lead to smooth changes in the produced oscilla-

tions. CPG-based control of modular robots has been used 

firstly by Kamimura et al. ([24], [25]), who use two-neuron 

Matsuoka oscillators as a CPG model for MTRAN. In 

Kamimura et al. ([25]) the authors extend the CPG with a 

drift detection mechanism and demonstrate adaptive locomo-

tion with M-TRAN in the face of external perturbations and 

varying environmental conditions. In previous work, we 

implemented various CPG models together with optimiza-

tion algorithms [26], [27]. Here we present a CPG imple-

mentation that allows the generation of both rotational (i.e. 

with joint angles that monotonically increase) and oscillatory 

(i.e. with joint angles that go periodically back and forth 

around a rest position) movements. As will be shown later, 

this new architecture can fully benefit from all the locomo-

tion possibilities of the Roombots modules. 

III. Hardware Concept of Modules

Roombots (RB) are similar in their degrees of freedom (DOFs) 

to the 3D Molecubes [28], and have inherited some of their 

main movement characteristics. An RB module features three 

DOF (Molecubes feature one DOF), and we combine two RB 

modules serially into one RB metamodule (Fig. 1a). We want 

to build furniture-shaped structures from metamodules, where-

as a single metamodule (Fig. 3a) is 44 cm (17.3 in) long. Hence 

we can settle with medium-large number of modules for our 

(a) (b) (c)

FIGURE 1 (a) Rendered visualization of one Roombots metamodule on the left and a single Roombots module on the right. Rectangular con-
nector plates (yellow/green) are embedded in the floor. (b) Roombots module (real picture). (c) Three DOF per Roombots module: red axes are 
outer DOF, the blue DOF is rotating the two sphere-like parts of a Roombots module against each other. The ability to freely swivel the two outer 
joints against each other distinguishes a single Roombots module from plugging two Molecube [28] modules together. This loosely follows the 
concept of adding a center joint in Superbot [30], compared to M-TRAN II [31].

(b)(a)

FIGURE 2 Active connection mechanism (ACM) of the Roombots. 
Four mechanical latching fingers grab synchronously into the neigh-
bouring module or the structured surface. The mechanism is actuat-
ed with a mini-DC motor, with the position of the grippers sensed 
with a potentiometer (Fig. 2(b) at the center). The ACMs are 
designed to be mechanically autonomous and any other type of con-
nector could be plugged into the corresponding Roombots sockets.

(a) (b)

FIGURE 3 Roombots metamodules–each made of two Roombots 
modules–showing the four possible metamodule configurations. All 
three DOF within a Roombots module can take any arbitrary value of 
a full circle. However there are four distinct possibilities to connect 
two modules into a single metamodule, as the Roombots connectors 
[Fig. 2(a)] have a four-sided symmetry. The hemispheres connecting 
to the neighbouring RB module are colored blue. We use the relative 
orientation of the center axis of those hemispheres for naming: (from 
left to right) shear-S SRS, shear-Z SRZ, perpendicular PER, and paral-
lel PAR. The orientation of each upper Roombots module is kept 
fixed. (b) depicts the CPG topology of a metamodule, see Section V. 
Each of the six oscillators is assigned to one DOF/joint of the meta-
module. All oscillators have nearest-neighbor coupling.
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reconfiguration planner, e.g. around 20-50 RB modules would 

be sufficient. Also we can make use of connectors embedded in 

the environment (e.g. the yellow-green rectangular plates in 

Fig. 1a) and broadcast communication. Consequently we are 

able to omit some of the hard constraints such as constant con-

nectivity between all modules, and local communication. We 

are still interested in a distributed system with low demands on 

communication bandwidth. A strong constraint of our Room-

bots system is the movement space of an RB metamodule—six 

DOF connected serially are very powerful, in terms of being 

able to overcome concave or convex obstacle edges. However 

an RB metamodule requires a rather large space around itself, 

and is not necessarily connected to another module or meta-

module when moving, which needs to be considered in 

advance of the movement. Our current approach to automatic 

and distributed RB reconfiguration is limited to the planning 

level, assuming well-adjusted hardware. The somewhat “classi-

cal” problems of self-reconfiguring modular robot hardware, 

which are related to e.g. stiffness of the connectors and reliabil-

ity of the docking procedure will be addressed on a different 

level, but not within the scope of this paper. 

Similar to other modular robotic systems RB modules [29] 

are fitted into a regular cubic grid. We are using a grid size 

with 110 mm edge length. We connect two RB modules seri-

ally into an RB metamodule (Fig. 1a), four combinations are 

possible (PAR, PER, SRS and SRZ, see Fig. 3), and each 

resulting metamodule has its own range of motion and move-

ment characteristic. Any of the three joints (Fig. 1c) of an RB 

module delivers sufficient torque to rotate a metamodule in 

the “worst case scenario situation”, i.e. out of a horizontal 

stretched position. RB modules are fabricated mostly from 

3D printed ABS plastic pieces and plate-elements are milled 

out of glass-fibre sheet material. An RB module weights 

about 1.4 kg, that includes battery power for an estimated 

30 min of continuous actuation, and the 

weight for electronic boards1 Joints are 

equipped with high gear ratio gearbox-

es (about 360:1), actuated by strong 

DC motors which results in 5 Nm and 

7 Nm torques for middle and outer 

joints, respectively. Any of the three 

joints is continuously rotational, i.e. can 

turn without mechanical stop. Electrical 

power and communication are transmit-

ted with slip rings within the module. 

The two outer DOFs of a Roombots 

module (Fig. 1c, red) are of the same 

type as in the Molecube modules [28], 

[32]. Roombots modules have an addi-

tional actuated swivel joint (Fig. 1c, blue) 

in-between. The high torque demands 

and the resulting high gearbox ratio val-

ues limit Roombots’ maximum rota-

tional speed. The center joint needs 3 sec 

to rotate 360° and both outer joints 

roughly 2 sec. RB’s active connection mechanism (ACM) is 

genderless, four-way symmetric, with four mechanical latch-

ing fingers (Fig. 2a) which are completely retractable inside 

the body. ACMs fit into any of ten dedicated sockets of an 

RB module. In many ways the connector design is similar to 

the AMAS connection mechanism [33], although we use a 

different trajectory for the movement of the latching fingers 

[34]. We are in the process of finishing the Roombots hard-

ware. Hence all the experiments in this article are implement-

ed in Webots [35], a physics-based simulation environment. 

IV. Distributed Reconfiguration

One of the visions of the Roombots project is to design adap-

tive furniture for home or office use. We plan to use metamod-

ules which will need to configure into different pieces of 

furniture, several times during the day. This section describes 

our initial, currently simulated, approach to reconfiguration by 

locomotion on a structured surface, i.e. in a 3D environment 

with embedded connectors to which modules or metamodules 

can attach2. Four different metamodule types are the moving 

units, their movements are guided towards the next active 

seeding position by a virtual force field. Metamodules send and 

receive broadcasts among each other to gather knowledge of 

their nearest neighborhood. A set of shape-transitions and cor-

responding collision-clouds (Fig. 4b) stored in a look-up table 

enables each metamodule to largely avoid collision, with itself, 

other meta-modules and the environment. We finish the sec-

tion with initial results characterizing Roombots metamodules 

for this type of reconfiguration by locomotion. 

(a) (b)

FIGURE 4 (a) A chair-like goal structure built from eight metamodules. Blueish hemispheres 
present the seeding points in the 3D regular grid. Metamodules are indicated with transparent 
blocks of different colors and the structure is assembled from I-shaped, U-shaped and 
L-shaped metamodules. Seeds are being iteratively activated, as soon as a previous seeding 
position is filled. (b) Shape-transition of a metamodule, from I-shape configuration (bluish, 
horizontal) to L-shape. Red boxes indicate the collision cloud a metamodule transition is pro-
ducing, where every touched cube in the 3D grid is being recorded. Roombots movements are 
in 3D, this figure shows only a frontal projection of the cloud. 

1 The electronic hardware for Roombots is under development.
2It is likely that only a small area would need to be fitted with connectors for recharg-

ing and for locomotion. The rest of the living room could be accessed with “normal” 

locomotion. 
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A. Strategy
We will explain the distributed reconfiguration mechanism 

with Roombots metamodules on the example of building a 

chair-like structure, e.g. Fig. 4a. 

a) Metamodule initialization

A typical initial configuration that we would envision in a house 

or an office scenario, is to have all modules forming a wall. RB 

metamodules will be placed in our structured  environment (see 

the passive connectors in Fig. 1a). A metamodule starts by 

being attached to a connector with its foot hemisphere. It then 

determines its initial position and orientation (on the real mod-

ules this will be done by local communication with the connec-

tor or reading out a tag on the connector’s surface). Roombots 

also have the ability to sense their own shape, by reading out 

internal joint angle sensor values. 

b) Seeding recipe and metamodule shapes

The metamodule now receives information about its environ-

ment, e.g. obstacles or walls, but most importantly the seeding 

recipe of the goal structure. The seeding recipe is the “blue-

print” for the structure which will be assembled from all the 

metamodules around, e.g. a chair-like structure (Fig. 4a). It 

will be provided by a human operator. The recipe includes 

the position and the order of the seeding cubes, which are 

attachment points for a metamodule within the goal structure. 

Metamodules are not assigned to a specific seeding cube, but 

the first arriving metamodule will fill the active position, and 

send a broadcast indicating the seeding cube is taken. 

Remaining metamodules will switch and go towards the next 

seeding cube in the seeding recipe. The recipe also includes 

the information of what type of metamodule-shapes the 

structure will be built from (indicated by semi-transparent, 

colored boxes combining paired Roombots modules in 

Fig. 4a). Metamodules can take five possible shapes: I, L, S, U  

and 3D 2 S. Fig. 4b shows an I-shaped metamodule being 

rotated into an L-shaped metamodule. 

c) Messages and locomotion

Metamodules use shape-to-shape transition for a caterpil-

lar-like walking in 3D. Before a shape-transition, a meta-

module sends a broadcast status message which contains its 

foot position and its ID. The broadcast messaging is meant 

as a replacement for close-range sensing of other metamod-

ules, and serves to avoid colliding with them. This requires 

the knowledge of absolute coordinate points for all meta-

modules and the goal shape, which is possible in our semi-

large environment. A module can derive its neighborhood 

from those status messages by comparing the senders posi-

tion against its own. It will store this information for one 

step, and only for modules in close range. 

d) Force-field guidance

The metamodule now knows its own absolute position 

D
S

foot 5 3Dx Dy Dz 4 in the 3D grid, the position of k number 

of current seeds D
S

seed, and the positions D
S

meta of n number of 

neighboring metamodules in range. It calculates a force vector 

V
S

f  by summing up the distance vector from the active seeds 
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“sources” and emit a repelling force field, with a negative sign. 
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e) Force vector strategies

We are interested in different strategies concerning the influence 

of neighboring metamodules on the V
S

f  calculation, and have 

designed three modes which are switched with the a function: (i) 

The a-greedy approach 1a 5 0 2 , where neighboring modules 

have no influence on the force field of other metamodules. Dur-

ing reconfiguration metamodules should go as straight as possible 

towards the next active seeding position. To minimize collisions, 

modules pause their step as soon as they detect (via status messag-

es) another metamodule in a very close range, i.e. within four 

cubes distance. The lock is released with the next status message. 

(ii) An a-slope-function, where a 5 1/4 1|D
S

foot 2 D
S

metaj
| 2 4 2 . 

This gradually decreases the repelling force between the distance 

of four and eight cubes. (iii) An a-step-function, where a 5 1. Any 

metamodule within the distance of eight cubes provides a full 

force component. The hypothesis guiding this experiment is that 

with an additional, repelling force component metamodules will 

have a tendency to keep a minimum distance between each other. 

Hence less collisions should occur. 

f) Look-up table and collision-cloud computation

As we do not apply sensing in the conventional sense, there is 

the danger of collision within a metamodule, between meta-

modules, or with an external object. We have designed a meth-

od that calculates in advance what we call a collision cloud 

(Fig. 4b) of a single metamodule for all permutations of initial 

and final metamodule shapes.3 The collision cloud represents 

3There are five possible metamodule shapes, and four different metamodule config-

urations. Each can be assembled with different joint values. Three positions are pos-

sible for each of the four outer RB DOF in a metamodule, and four positions for 

the two inner DOF.
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the number and position of the virtual cubes being touched 

during the transformation, and is stored in a lookup table in an 

external device. At the beginning of each step the metamodule 

will request the collision cloud corresponding to its initial and 

final shape from the look-up table. It then checks, based on the 

cubic grid, if the cloud intersects with any known object or meta-

module in range. The look-up table enables us to centrally store 

data which would be hard to compute in real-time for a single 

module, and is repeatedly requested from many metamodules. 

B. Results and Discussion
We performed experiments in simulation in which four 

metamodules walk approximately 20 steps Manhattan-distance 

and have to assemble into a cube-like structure (Fig. 5)4. This 

set of experiments tested the four different metamodule types 

(PAR, PER, SRS, and SRZ, Fig. 3b), the three different 

reconfiguration strategies (a-greedy, a-slope, and a-step), 

with three different random initial conditions (4 3 3 3 3 = 

36 experiments). In 26 of 36 experiments the final configura-

tion was reached and the shape was created, and in all cases 

the area around the final configuration was reached. Hence 

we assume that the seeding order, or the way seed positions 

are taken, will play a large role in the future. However the 

presented initial experiments were aiming at characterizing 

the abilities and properties of the metamodules, and the influ-

ence of the force-field guidance.  Concerning the latter, Table I 

indicates that PAR-type metamodules get stuck more easily 

within the last sequence of the reconfiguration, whereas the 

SRZ-metamodules only collided in two experiments with 

another metamodule, and never got stuck. Dead-locks are an 

issue due to the seeding recipe that is currently designed by 

hand. This seeding is not a trivial task to solve due to the 

rather complex movement characteristics of the Roombots 

DOFs. We plan to automate and opti-

mize the seeding in the future. Con-

cerning the three tested force-field 

strategies: the greedy algorithm per-

formed better than expected in terms 

of average number of necessary moves, 

a collision occurred only once within 

the valid experiments. On the other 

hand there are a large number of dead-

locks (four out of twelve) with this 

strategy. It should be noted that for 

every of the nine experiment types at 

least one valid assembly, without colli-

sion, was achieved among all four meta-

module-types. The unique design of 

Roombots metamodules (due to the 

high number of DOF per module) is 

such that, with sufficient space around, 

on-line switching from one type to 

another (e.g. from PAR to SRZ) will be possible with a rela-

tively small, intermediate reconfiguration sequence. Fig. 6 

shows that the force field correction does affect the trajectories of 

metamodules, and metamodules tend to spread compared to 

the a-greedy strategy. However this does not seem to have a 

positive effect on the self-organization of collision-free recon-

figuration moves, i.e. actually more collisions occur. Collisions 

can happen in this otherwise deterministic setup due to the 

asynchronous steps of RB metamodules, as they are not syn-

chronized. In detail: a metamodule sends a status message, 

checks its environment, finds it unoccupied and starts to 

move. If another close-by metamodule starts moving with a 

delay, it assumes neighborhood knowledge on an outdated 

basis, and resumes movement in the shared space of another 

metamodule. There are at least two solutions available: (i) one 

could increase the safety distance between metamodules, e.g. 

to ten cubes. It is physically impossible for two moving meta-

modules to meet within one step, assuming that both move 

with about the same speed. However this requires large dis-

tances between metamodules, and is a very unattractive 

approach. (ii) Another option could be consensus-based decision 

making between metamodules, to agree on one’s priority. This 

could require a global clock, i.e. synchronized cycles of move-

ments as described in [36]. Dead-locks at the assembly phase 

of a structure happen as a result of the (currently hand-coded 

and) non-optimized seeding order, and the orientation of the 

foot hemispheres of metamodules within the assembled struc-

ture. Latter orientation strongly influences in which way the 

final shape of a metamodule is reached, i.e. how the meta-

module is “folding” itself into that posture. We are  planning 

on automating the seeding recipe by taking into account both 

constraints. From our initial experiment, we conclude that the 

SRZ metamodule together with the greedy reconfiguration 

strategy appear to be the most promising method for distrib-

uted reconfiguration. Additional tests are under way with 

more initial and final configurations to confirm this. 

FIGURE 5 Snapshots series of four SRZ Roombots metamodules reconfiguring into a cube-like 
structure (from left to right, and from top to bottom). The applied force field strategy is 
a-slope-based. Metamodules start at in a straight posture (left side). They attach and detach 
at passive connectors embedded in the ground (yellow-green tiles, Fig. 1a), and use them as 
pivot points for a caterpillar-like motion. Once a metamodule reaches a goal point within the 
cube-like-structure, it switches off. 

4Complementary reconfiguration videos are available at the Roombots webpage: 

http://biorob.epfl.ch/page38279.html. 



AUGUST 2010 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE    27

V. Distributed Locomotion

In addition to reconfiguration, the Roombots modules will be 

capable of moving around like legged robots. This section 

describes the three main components of our approach to 

decentralized locomotion control of modular robots in a non-

structured environment (i.e. without using the ACMs to grab 

into connectors embedded in the floor): the control architec-

ture, network topology and controller parameter optimization. 

The control architecture consists of a network of coupled oscil-

lators representing a Central Pattern Generator (CPG). The 

control inputs for this CPG are high level parameters such as 

amplitude, offset and phase lags. Each oscillator is capable of 

producing either oscillatory or rotational joint angle signals.5 The 

oscillators are furthermore coupled such that their phases are 

synchronized. We applied an oscillator network topology which 

matched the hardware topology, e.g. a quadruped structure or a 

single Roombots metamodule. An evolutionary algorithm pro-

vides an automatic design of the control input parameters. 

A. Controller Architecture
We designed a CPG controller which can produce two types 

of basic movements for each DOF: (i) Rotational movements 

that result from a continuously rotating (swivel) joint, and can 

provide wheel or Whegs-like [37] propulsion, and (ii) Oscilla-

tory movements that periodically oscillate around a resting 

position. Since it is important for stable, reproducible locomo-

tion to keep all DOF synchronized, independent of their 

mode, we built the controller as a distributed system of cou-

pled phase oscillators, with one oscillator per DOF (joint) i: 

 w
#

i 5 2 # p # ni 1 awij
# rj
# sin 1wj 2 wi 2 cij 2 1 fu 1 s

S 2  (3)

 r
#

i 5 ai 1Ri 2 ri 2 1 fr 1 s
S 2  (4)

a 2 ui 5 ri
# sin 1wi 2 1 Xi 1Oscillation 2

b 2 ui 5 wi 1Rotation 2
c 2 ui 5 Xi 1Locked 2

sservo inputs, (5)

where ui is the servo input which can be derived with dif-

ferent functions corresponding to the desired servo move-

ment. Variables ri and wi are state variables which encode 

amplitude and phase of the oscillation. The parameters ni, 

FIGURE 6 Top view at the trace-patterns of four metamodules mov-
ing towards their seeding points in the left center area. The trace fol-
lows the pivot point of the foot-hemisphere of each metamodule. 
Quiver plots indicate the direction of attraction at iterative steps. (a) 
Due to the greedy strategy in this plot SRS metamodules aim directly 
for their next seeding position. They will only be paused by a close-
by metamodule with a higher priority. (b) The same experiment but 
with a strategy using a slope-like a value, and SRZ metamodule type. 
Quiver plots indicate that metamodules are repelled among each 
other on their way to the seeding position, however e.g. metamod-
ule 1 is initially not affected by the presence of other metamodules, 
as they are sufficiently far away. 

M−Module 1 M−Module 2

M−Module 3 M−Module 4

M−Module 1 M−Module 2

M−Module 3 M−Module 4

5In the remaining part of the paper we will use oscillator to refer to pattern generators 

capable of producing both oscillatory and rotational output.

TABLE 1 Table indicating the resulting number of average moves per experiment, collisions, and dead-lock situations for the 
cube-experiment (see Fig. 5). Table columns indicate three different strategies: greedy, based on a slope-a and based on a step 
function for the force vector estimation. Table rows show the four different metamodule configurations. Nine experiments (exp1–exp9) 
per metamodule type are implemented, the first column of each experiment indicates the average number of moves for four moving 
metamodules. Three experiments per configuration are shown, with the initial position of the metamodules shifted by a small number 
of steps. !  in the second column indicates a successful assembly of the cube structure, * shows that no solution was found 
(dead-lock). In case of collisions between metamodules, but a successful assembly the number of collisions is indicated instead 
in each second column.  

a-GREEDY a-SLOPE a-STEP

EXP1 EXP2 EXP3 EXP4 EXP5 EXP6 EXP7 EXP8 EXP9

PAR 33 * 27 " 44 *  66 * 38 2 31 * 61 * 37 2 47 * 

PER 31 *  23 " 25 *  39 * 24 1 26 " 29 " 27 1 20 "
SRS 18 " 22 " 22 " 38 * 26 3 28 5 26 " 27 " 27 1

SRZ 24 " 23 1 22 " 23 " 24 " 26 " 34 1 23 " 25 "
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wij and cij are respectively the frequency, coupling weight 

and phase bias of the coupling between oscillators i and j. 

ai is a positive constant which determines the rise time of 

the amplitude to the desired value Ri. The parameters Ri, 

Xi, and cij are open parameters of which a subset (depend-

ing on the selected mode) is subject to optimization. Fur-

thermore, this structure is capable of including sensory 

feedback. For this purpose the state variables can be influ-

enced by sensory feedback signals through the functions fu 

and fr, s
S

 being a vector of sensor states. Note that sensory 

feedback is not applied in this article. 

Equation 5 shows three possible modes which result 

in oscillations, rotations or a locked condition. In the os-

cillation mode, the output exhibits limit cycle behavior, 

thus producing a stable periodic trajectory. For rotation a 

constant-speed profi le is generated leading to a monotonic 

increase of the joint angle. We also include a third mode 

which allows the controller to lock 

some joints. 

One strength of this framework is 

that with the right parameters, rota-

tional and oscillatory DOF will rapidly 

converge to a phase-locked regime, i.e. 

a regime with a constant phase differ-

ence between phase oscillators that 

are in different modes. This is highly 

desirable for the implementation of 

stable, coordinated gaits. It will also en-

sure that several joints remain phased-

locked, even if they are controlled by 

oscillators implemented on different 

micro-controllers with slightly differ-

ent clocks. Fig. 7 shows this synchro-

nization behavior between three DOFs, 

with two activated in oscillation mode 

and one in rotation mode. 

B. CPG Topology
When designing CPGs, the network 

coupling parameters wij and cij between different oscillators 

are important. For known types of locomotion gait patterns, 

such as quadrupedal or snake gaits, the coupling architecture 

can be specified based on biological observations. Here the 

goal is to find different and unexpected gaits, which an arbi-

trarily shaped modular robot could potentially create. Hence 

we do not specify a pre-defined oscillator network topology. 

We let the coupling structure of the CPG correspond to the 

robot’s morphology, i.e. phase oscillators of neighbor DOF 

are coupled together. We use one common frequency for all 

oscillators (ni 5 0.26 Hz), bi-directional couplings follow the 

rule such that cij 5 2 cji (Fig. 8b). All coupling weights are set 

to 2, phase differences cij are open parameters and subject 

to optimization. 

We do not induce symmetry artificially, i.e. we do not apply 

any mirroring of parameter sets along our network. Applying 

symmetry is usually a good strategy to reduce the number of 

open parameters. However it might also 

limit the resulting gaits, as it restricts the 

possible variety of parameters. 

C. Optimal Gait Generation
We are interested in the generation of 

optimal gaits for arbitrary robot mor-

phologies. In particular, we want to 

evolve the assignment of different 

movement types (such as rotation and 

oscillation) for each degree of freedom, 

as well as the control parameters for 

each of these movement types. The 

optimization algorithm can then be 

described by two layers. The outer layer 

performs structural  optimization 

(a) (b) (c)

FIGURE 8 (a)–(c) Quad: Quadruped Roombots structure with six units. (c) shows the central 
pattern generator topology for this Roombots robot. One oscillator is assigned to each Room-
bots module, the network mimics the physical topology. Six oscillator units are depicted for 
this quadruped (c), one joint per Roombots unit is actuated. 
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modulation from t = 30 to 40 sec of the simulation. 
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(selecting movement types for each DOF). The inner layer 

on the other hand performs parametric optimization on 

continuous valued parameters corresponding to the selected 

movement types by the outer layer. 

In this paper, a modified version of the standard Particle 

Swarm Optimization with a constriction factor [38],[39] is used 

to perform the optimization process. PSO is a stochastic, popula-

tion based optimization method using principles of collaboration 

rather than competition to evolve individuals. Compared to 

other stochastic algorithms (e.g. genetic algorithms, simulated 

annealing, genetic programming or evolution strategies), we pre-

ferred PSO because of its superior performance on parametric 

simulation (see for instance [40] for a comparative study). 

In PSO, each individual is represented by a position and 

velocity vector, representing respectively the particle’s parameter 

values and search direction. The evolution of each particle in 

the swarm is then governed by equation 6. 

v
S

i 1 t 1 1 2 5 K # 3 v
S

i 1 t 2 1 c1r1 1 p
S

i 2 x
S

i 1 t 2 2  1 c2r2 1 p
S

g 2 x
S

i 1 t 2 2 4 (6)

x
S

i 1 t 2 5 x
S

i 1 t 2 1 2 1 v
S

i 1 t 2 ,

where v
S

i 1 t 2  is the velocity vector, x
S 1 t 2  is the position vector, K  

is a constriction factor, c1 and c2 are two constants, r1 and r2 are 

two pseudo-random numbers in the range [0, 1], pi is the best 

known solution vector of particle i and pg is the global best 

known solution vector. Constants c1 and c2 were set to ensure 

convergence (see for more detail, [41]). 

The PSO algorithm described thus far is used for the inner 

layer optimization of the continuous parameters of a specific 

selection of movement types. Particles are initially uniformly 

distributed over the possible combinations of movement types. 

In each such combination, particles share the same parameters, 

and an independent PSO optimizes their respective solutions. 

The task of the outer layer is then to do the structural optimiza-

tion and to move particles from one combination of movement 

types to another. 

The outer layer consists of a set of mutation operators 

inspired by Genetic Algorithms. Similar to the velocity update 

of the PSO, the probability of mutation of each actuated degree 

of freedom is composed of: 

Pe: ❏  exploration probability of mutation to a movement type 

(oscillation, rotation or locked) other than the current one 

Pl: ❏  local probability of mutation to the movement type 

which is part of the selection with the best results in the 

particle’s history 

Pg: ❏  global probability of mutation similar to Pl but taken 

from the best results taken over all the particles

Governed by these three probabilities, particles will be 

mutated to different combinations of movement types during 

the optimization process. Once a particle moves to a different 

parameter space it is incorporated in the PSO running locally 

in that space. 

A main challenge is to choose appropriate values for the 

different probabilities Pe, Pl and Pg. In general, we want to 

stimulate exploration in the early phases of the optimization, 

visiting many possible combinations of movement types. Then, 

as the optimization progresses, particles should start exploring 

their local known best solutions in more detail. Finally we want 

the particles to converge in the best known space, as if selecting 

the best configuration of movement types. The system then 

starts behaving as a standard PSO with a fixed configuration of 

movement types as more and more particles are attracted. 

The desired behavior can be designed by varying the proba-

bilities Pe, Pl and Pg as the optimization progresses. In this 

paper, the exploration and global probability were modeled 

using a sigmoid function. The local probability was modeled 

using a gaussian function. Fig. 9 shows the probability charac-

teristics used in all the experiments. 

D. Experimental Setup
We performed several experiments applying our CPG and 

optimization framework. Firstly we were interested in explor-

ing the locomotion abilities of the four types of metamodules 

configurations (PAR, PER, SRS, and SRZ, Fig. 3). Our 

motivation for testing metamodules is that they represent the 

simplest possible robot shape built from two Roombots mod-

ules (six DOF). In addition, one quadruped shape was 

designed by using six modules featuring symmetry. Three 

DOFs inside the spine and four DOFs in the hip joints are 

used allowing quadruped locomotion (Quad6 robot, Fig. 8). 

The latter structure was used to verify our approach on more 

complex shapes. 

We are also interested to explore which type of movement, 

oscillatory or rotational, would lead to the highest locomotion 

speed. We conducted the following optimization experiments 

with different possible combinations of the four joint modes: 

(1) pure rotation, all DOF are in the rotation mode, (2) hybrid 

rotation with DOF either in rotation or locked mode, (3) pure 

oscillation, all DOF are in oscillation mode, and (4) fully hybrid, 

DOF are in oscillation, rotation, or locked mode, whereas dif-

ferent modes can coexist within the robot. 
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FIGURE 9 Mutation probability characteristics for the exploration 
probability Pe, local probability Pl and global probability Pg, emphasiz-
ing early exploration and late convergence.
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Each solution, generated by the evolutionary algorithm, is 

evaluated in Webots [35], a simulation tool based on ODE pro-

viding collision detection, rigid body dynamics and actuator 

properties. The average locomotion speed determines the fitness 

value of a particular solution, which is sent back to the optimiz-

er. An RB module–module collision detection penalizes unre-

alistic solutions with a zero fitness value. 

E. Results and Discussion
Fig. 10 shows the average and standard deviation of the robots’ 

speed over ten optimizations with different initial conditions. 

Each optimization process uses 50 particles and 100 iterations 

to find the optimal solution. The results illustrate three interest-

ing properties of this framework. (i) The capability of combin-

ing different modes in the fully hybrid setting results in finding 

solutions with higher values for both average speed and vari-

ance in all the robots. This results in faster and more diverse 

solutions in the same number of simulations. (ii) Results from 

pure rotation show a drastic reduction in the robot perfor-

mance. Allowing the robot to lock some of its degrees of free-

dom, when the others are in rotational mode, helps to avoid 

self-collision during robot locomotion. The performance of this 

mode is comparable in terms of characteristics with the oscilla-

tion mode since both include locked joints (defined implicitly 

in oscillation mode due to zero amplitudes). (iii) The results 

indicate that the performance of oscillation and rotation modes 

are strongly dependent on the robot shape. In the case of PAR 

and Quad6, oscillation largely outperforms hybrid rotation. For 

PER, SRS and SRZ however, similar performance for both 

modes is observed. This shows that for a given robot shape, it is 

not trivial to select either oscillation or rotation. The complex 

interaction of the different DOF of a robot shape and the envi-

ronment determine whether rotation, oscillation or combina-

tion of them will provide the best performance. In almost all 

experiments, having a mixture of both movement types (fully 

hybrid) yields better results. 

Fig. 11 and Fig. 12 show two examples of arbitrary gait pat-

terns, for a PER-metamodule and the quadruped robot from 

Fig. 8, respectively6. The joint movements of the PER-meta-

module in Fig. 11 are purely oscillatory, but the robot rolls over 

itself from cycle to cycle. This is possible in a metamodule-

robot because six joints are connected serially—amplitude and 

velocity are adding up in those structures. The gait for the 

quadruped robot in Fig. 8 was derived in the hybrid optimiza-

tion mode, and achieves oscillatory and rotational joint move-

ments: both spine joints are in oscillatory mode, one of the 

outer joints is blocked, one is in rotational mode, and the 

remaining two leg joints oscillate. This setting results in a wind-

up like gait which propels the robot with 33 cm/s, while the 

walking gait—the first solution that comes to mind when 

designing a gait for this robot—only results in a maximum 

speed of 21 cm/s (Fig. 10). 

The CPG model has several interesting features that make 

it well suited for modular robotics. (i) Our model can pro-

duce stable rhythmic patterns such that the dynamical system 

rapidly returns to its rhythmic behavior after perturbations of 

the state variables. (ii) The applied CPG model only needs a 

few control parameters, in our case amplitudes, offsets and 

phase lags. Hence it can reduce the dimensionality of the 

control problem such that the optimization algorithm only 

needs to modulate a small number of control signals. (iii) 

Another useful CPG property is its ability to generate differ-

ent gaits, which one can achieve by setting the network cou-

pling weights and topology. In this way we can reproduce 

animal-like gaits. This has been done in several works for 

legged and modular robots ([42], [25], [27]). Yet one has the 

option to keep the network topology open, and to let new 

and unexpected gaits emerge. The latter approach is even 

more appealing for modular robots, where ideal gaits are ini-

tially unknown due to new robot topologies. Hand coding 

and editing the gaits is tiring and time-consuming, whereas 

the proposed framework can reproduce animal-like gaits or 

find alternative solutions. (iv) This CPG model can be used to 

generate different types of locomotion patterns. Our control 

architecture offers a high variety of basic locomotion patterns 

e.g. it can generate any combination of oscillatory and rota-

tional movements. This allows us to apply those movements 

to the robot while ensuring that they are in their phase-

locked regimes. We observed interesting and unexpected 

locomotion gaits being derived by our combined architecture. 

In this work we used specific patterns, such as sine-waves for 

oscillation, and constant speed for rotation. However the 

framework is kept open and more complex patterns can be 

6Locomotion videos are available at the Roombots webpage: http://biorob.epfl.ch/

page38279.html.
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FIGURE 10 The optimization results from five different robot struc-
tures such as metamodules in PAR, PER, SRS and SRZ configuration, 
and a six-unit quadruped structure (Fig. 8) are shown. Every experi-
ment was repeated 10 times, with different initial conditions. Fitness 
evaluation is based on traveled distance over time. The hybrid opti-
mization mode is in all cases at least as good as any other optimiza-
tion mode. When checking resulting gaits we find that it includes 
results both with rotating and oscillating joint patterns within one 
robot structure. 
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implemented easily, which eventually could lead to an even 

higher versatility of derived gaits. 

The proposed framework provides an important feature: 

the optimization algorithm can choose and switch between 

oscillatory and rotational joint movements, for any joint, at 

any time during the optimization process, and is fully auto-

mated. The user is not required to, but can pre-assign a move-

ment-type to a joint type. This feature gives the possibility to 

explore which kind of joint movements can result in more 

efficient gaits for a newly designed robot. To our best knowl-

edge this is the first work in the field where a modular robot 

controller-optimizer framework can derive such a wide vari-

ety of locomotion patterns. The result for five different robots 

shows that the hybrid mode systematically leads to the best 

solutions. In other words it is better to let the optimization 

algorithm find suitable modes for each joint rather than fixing 

them by hand. 

VI. Conclusion

In this paper we have presented our approaches for reconfigu-

ration and locomotion for Roombots self reconfiguring modu-

lar robots, on structured and non-structured environments. This 

is part of our long term vision for the Roombots project fea-

turing adaptive and self-assembling furniture made from mod-

ular robots. Reconfiguration through locomotion uses 

Roombots metamodules applying caterpillar-like movements 

attaching at embedded connectors in the environment to move 

and shape change. Metamodules are attracted and guided by a 

virtual force-field, they use broadcast signals, look-up tables of 

collision clouds and simple assumptions about their near envi-

ronment to reach their seeding positions, which are currently 

hand coded. We presented results from simulation tests with 

four different metamodule configurations and three force-field 

models. We have derived a framework for locomotion control 

of modular robots in un-structured environments, where a 

central pattern generator (CPG) as the motion controller and 

the optimization algorithm are tightly connected. The CPG is 

implemented as a system of coupled oscillators, different output 

filters can be applied to derive the desired joint behavior such 

as synchronized oscillation, rotation or stop control. Open con-

trol parameters are amplitude, offset and phase lag, and the 

three joint modes. They are automatically selected, assigned and 

optimized by the optimization framework. This enables us to 

derive gait patterns for traditional robots like quadrupeds 

(oscillatory and stop joint control) but also for robots featuring 

the more capable, continuous rotational joints, e.g. Whegs-like 

robots or in our case the Roombots modules. Extensive exper-

iments are performed in simulation for four metamodule types 

(the same ones as used above for reconfiguration, but now in a 

non-structured environment), and quadruped robots made 

from multiple Roombots units. We have presented results of 

our optimization framework deriving pure oscillatory or rota-

tional joint controllers based on CPGs, as well as hybrid con-

trollers. Optimized robot gaits for the latter type result often in 

mixed-mode joint controllers with surprising characteristics 

and very competitive performance. 

Research on locomotion control will be pursued in order 

to address the problems of (i) how to properly include sensory 

feedback for improving the efficiency and robustness of loco-

motion patterns, and (ii) of navigation, i.e. how to modulate 

speed and direction to reach a specific location in a room. 

Research on reconfiguration will explore how to include pas-

sive elements in the reconfiguration and how to create intui-

tive user interfaces. We plan to extend the hardware by passive, 

(a) (b) (c) (d) (e) (f)

FIGURE 11 Snapshots for an evolved gait with a Roombots PER-metamodule, the module “rolls” from (a)–(f), about one cycle is shown. It starts 
in a folded posture and rotates while unfolding towards the right. When folding again, top and bottom Roombots module are switched. This 
speeds the robot up to 11 cm/s in an overall rather straight gait. 

(a) (b) (c) (d) (e) (f)

FIGURE 12 (a)–(f) The robot moves from left to the right, half a cycle is shown and markers are placed on the ground for reference. This quad-
ruped robot structure shows one of the fastest “gaits”, however does not behave like a typical quadruped. Rather it propels with a winding-like 
mechanism: by leaving two extremities on the ground, it winds the remaining two of them around the body stem and vice versa in the next 
cycle. The overall direction of movement is sideways regarding the body stem with about 33 cm/s. 
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light-weight elements like carbon-fiber plates to built more 

complex, and a larger variety of furniture shapes. For design-

ing these furniture shapes, we are implementing a graphical 

user interface that will allow lay users to enter desired shapes 

in an intuitive way and then automatically generate the seed-

ing recipe for our reconfiguration algorithm. The GUI will 

also be used to specify desired locations of the furniture in 

their environment that will be provided to the navigation 

controller. It is still a long road, but we hope to make steady 

progress towards our long term vision of adaptive furniture in 

our day-to-day environment. 
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