
20 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | AUGUST 2010 1556-603X/10/$26.00©2010IEEE

© BRAND X PICTURES & DIGITAL VISION

AUGUST 2010 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 21

Abstract–Imagine a world in which our furniture moves
around like legged robots, interacts with us, and changes
shape and function during the day according to our needs.
This is the long term vision we have in the Roombots project.
To work towards this dream, we are developing modular
robotic modules that have rotational degrees of freedom for
locomotion as well as active connection mechanisms for
runtime reconfiguration. A piece of furniture, e.g. a stool, will
thus be composed of several modules that activate their rota-
tional joints together to implement locomotor gaits, and will
be able to change shape, e.g. transforming into a chair, by
sequences of attachments and detachments of modules.

In this article, we firstly present the project and the hard-
ware we are currently developing. We explore how reconfig-
uration from a configuration A to a configuration B can be

controlled in a distributed fashion. This is done using meta-
modules—two Roombots modules connected serially—that
use broadcast signals and connections to a structured ground
to collectively build desired structures without the need of a
centralized planner.

We then present how locomotion controllers can be
implemented in a distributed system of coupled oscillators—
one per degree of freedom—similarly to the concept of cen-
tral pattern generators (CPGs) found in the spinal cord of
vertebrate animals. The CPGs are based on coupled phase
oscillators to ensure synchronized behavior and have differ-
ent output filters to allow switching between oscillations and
rotations. A stochastic optimization algorithm is used to
explore optimal CPG configurations for different simulated
Roombots structures.

I. Introduction

O
ur goal is to merge technologies from information

technology, roomware, and robotics to design adap-

tive and intelligent furniture. We intend to design

and control modular robots, called Roombots

(RB), to be used as building blocks for furniture that moves,

self-assembles, self-reconfigures, and self-repairs. Modular

robots are robots made of multiple simple robotic modules

that can attach and detach. Connectors

between units allow the creation

of arbitrary and changing

structures depending on

the task to be solved,

therefore offering versatil-

ity and robustness against

failure, as well as the possi-

bility of self- reconfiguration.

The type of scenario that we envi-

sion is a group of RB units that autonomously

connect to each other to form different types of furniture, e.g.

stools, chairs, sofas and tables, depending on user require-

ments. This furniture will change shape over time, e.g. a stool

becoming a chair, a set of chairs becoming a sofa. Roombots

units will move to different locations depending on the users’

needs. Additionally the Roombots will be capable of memo-

rizing user preferences in terms of structures and places in

order to facilitate repetitive use of the adaptive furniture.

Here we focus on two major, initial tasks of the RB

modules. Firstly we investigate force-field guided reconfigu-

ration movements of RB metamodules into furniture-like

structures. Embedded connectors in our structured environ-

ment enable the RB metamodules to grab into and use

them as pivot points for caterpillar-like movement sequenc-

es. Secondly we apply central pattern generators (CPG) for

controlling the locomotion of multiple-unit Roombots

robotic structures. This allows RB units to move indepen-

dently from a structured environment. A CPG network

produces robust, synchronized patterns for oscillatory and

rotational joint movements, with a minimum number of

control parameters, and is well-suited for an optimization

algorithm. CPG networks are by definition decentralized

and hence very well suited for controlling modular robots.

Derived locomotion patterns are very well-performing, and

versatile for all tested RB structures.

We have organized the paper as follows. In Section II we

look at applications and properties of self-reconfiguring modu-

lar robots, reconfiguration strategies for

modular robots, and locomotion

controllers, and we place our

hardware and strategies

within each of them. In

Section III we describe the

Roombots module concept

and the currently existing

hardware. Section IV shows

setup and simulation results for the

reconfi guration strategy we use with Roombots

metamodules. Section V describes the applied CPG model, the

CPG network and the optimization framework we apply to

different Roombots robot structures. Section VI concludes our

reconfi guration and locomotion strategies for the Roombots

platform, and gives an outlook for future work.

II. Related Work

With the Roombots project we wish to extend but also test

a future scenario, where technology is being merged into

everyday environment, ranging from tables to walls, from

furniture like shelves to electric installations, e.g. autono-

mously moving shades [1]. This new field named roomware

[2] searches to design and evaluate computer-augmented

room elements with integrated information and communi-

cation technology. The idea of using technology with

touchable, shape or surface changing interfaces and func-

tionalities is increasingly discussed in the field of tangible

interactions [3]. Most of the work in the field of roomware is

done on fixed topologies; here we aim towards a scenario

where the user creates his or her own shapes of furniture.

Ultimately adaptive Roombots furniture will be able to Digital Object Identifier 10.1109/MCI.2010.937320

Alexander Spröwitz, Soha Pouya,
Stéphane Bonardi, Jesse van den Kieboom,

Rico Möckel, Aude Billard, Pierre Dillenbourg,
and Auke Jan Ijspeert

École Polytechnique Fédérale de Lausanne (EPFL),

SWITZERLAND

22 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | AUGUST 2010

transform and merge from one shape, e.g. two chairs, into

another, e.g. a table.

We use the concept and the ideas of self-reconfiguration modu-

lar robots (SRMR) or Dynamically Reconfigurable Robotic Systems

[4] as physical building blocks for our adaptive furniture. The

field of self-reconfiguring modular robots, which are modular

robot units that can actively attach and detach themselves with

each other and the environment, is a robotic concept which

was firstly implemented with CEBOT (“cell structured robot”)

by Fukuda et. al [4] in the late 1980s. CEBOT already includ-

ed all the main properties of modular robotic systems. (i) A

robot is made from individual “cells” or modular units. The

task is then performed by a collective assembly of those mod-

ules. (ii) Each cell is mostly autonomous, i.e. equipped with

processing power, actuation, battery power, communication,

sensors and has an own hardware frame. (iii) The shape of the

assembly is task-dependent, as for certain tasks the number of

degrees of freedom (DOFs) or their orientation matters. The

modular robot community has been growing ever since, we

count about 50 different modular robotic systems up to now.

Using self-reconfiguring modular robots has advantages, as

opposed to monolithic robots such as humanoid or quadruped

robots. Depending on the capabilities of a single modular unit,

large numbers of shapes can be created by remote control [5].

This is especially helpful if the task is initially unknown. If a

quadruped-shaped modular robot locates a hole in the wall it

can shape-change into a caterpillar-like structure, and go

through. As many different robotic shapes can be created with

the same set of units, transport is easy and less costly, e.g. to

remote locations. Units are interchangeable such that modular

robotic cells can be replaced in case of failure, what potentially

makes these systems robust. However these advantages come

with a price. Implementing autonomy in modular robots,

equipping each of the units with a connection mechanism,

actuators, and electronics makes them heavy, expensive, and

hard to design. A robotic configuration built from modular

robots will normally perform less well compared to a mono-

lithic robot as the abilities and dynamics of a monolithic robot

can be optimized—it serves a smaller number of dedicated,

pre-known tasks.

The usefulness of a modular or monolithic approach there-

fore depends on the application. Research in modular robots

often aims towards applications at disaster sites, remote or haz-

ardous environments that are inaccessible to human operators,

where their shape changing characteristics and robustness are

crucial. A number of modular robot projects are working at

micro-scale modular robots, i.e. they aim for rapid prototyping-

like technologies [6]. For the Roombots project we chose self-

reconfiguring modular robots for their abilities in building

arbitrary, adaptive structures.

Finding and applying an automated controller to change

shape is one of the main topics in reconfigurable robotics.

Centralized strategies often use a graph-based approach,

describing the combined modular robot structure using

graph theory, where actions are represented by insertion and

deletion of edges and vertices [7]. Connector actions and

joint rotations are the result of an optimization process

attempting to morph the graph representing the initial struc-

ture, into the goal configuration. This allows for a very precise

reconfiguration process, however graph methods do not scale

well with increasing numbers of joints, connectors and mod-

ules. Common approaches for decentralized reconfiguration

are “cluster flow” [8] locomotion or “water flow-like loco-

motion algorithms” [9] and describe locomotion by self-re-

configuration (or vice versa), or “dynamic reconfiguration“

[9]. They facilitate large amounts of, usually abstracted modu-

lar units moving or changing shape through the environment,

where units are simulated as cubes or spheres which slide

along planes and around edges, or rotate around edges (“slid-

ing cube”) [10]. Movements of single units can be guided by

a global gradient [11] or triggered by hormone-like messages

[12]. Cellular automata [13] oriented methods use local rules.

Those can be learned by distributed, reinforcement learning

algorithms to optimize the behavior of single units task

dependently. Varshavskaya et. al [14] present such learning

algorithms assuming only partial world-knowledge. Fitch et.

al [15] demonstrate highly scalable systems with many modu-

lar units based on the “MeltSortGrow”-algorithm. They later

extend their algorithm such that it also works in tight spaces

[16]. Using a simplifi ed modular robot unit presentation, like

the “sliding cube” model, is helpful to derive a reconfi gura-

tion strategy on an abstracted level. To implement the strategy

on a low-level, i.e. on an actual modular robotic system, the

notion of metamodules is often formulated. Metamodules are

clustered assemblies of modular robot units which are com-

bined for the purpose of moving just as their sliding-model

counterpart cubes, however by using the actual degrees of

freedom available from the hardware units. Butler and col-

leagues [9, cf. page 7] mention the usefulness of such meta-

modules (Molecule’s tile [17] and Atom’s grain [18]). Dewey

and colleagues [19] cluster the entire modular robot assembly

in equal, non-dense generalized metamodules, which enables

them to apply a very simple planner for module movement

through the structure.

In addition to reconfiguration, RB robots can move using

whole body motions, e.g. like a walking quadruped structure

or a metamodule rolling on the ground. Hence no structured

environment with connectors is needed. To control these

types of locomotion, we use a dynamical systems approach

inspired from the biological central pattern generators

(CPGs), i.e. neural circuits capable of producing coordinated

patterns of high-dimensional rhythmic output signals while

receiving only simple, low-dimensional input signals [20]. The

goal is to produce oscillations as the limit cycle behavior in a

system of coupled nonlinear oscillators. Compared to other

approaches used in modular robotics such as gait tables (Yim

[21], Bongard et al. [22]) or sine-based controllers (Stoy et al.

[23]), this approach benefits from many interesting properties

including decentralized control, synchronization between

multiple oscillators and robustness against perturbations. In

AUGUST 2010 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 23

particular, CPGs allow much more freedom in modulating

gaits than sine-based controllers since changes in the control

parameters lead to smooth changes in the produced oscilla-

tions. CPG-based control of modular robots has been used

firstly by Kamimura et al. ([24], [25]), who use two-neuron

Matsuoka oscillators as a CPG model for MTRAN. In

Kamimura et al. ([25]) the authors extend the CPG with a

drift detection mechanism and demonstrate adaptive locomo-

tion with M-TRAN in the face of external perturbations and

varying environmental conditions. In previous work, we

implemented various CPG models together with optimiza-

tion algorithms [26], [27]. Here we present a CPG imple-

mentation that allows the generation of both rotational (i.e.

with joint angles that monotonically increase) and oscillatory

(i.e. with joint angles that go periodically back and forth

around a rest position) movements. As will be shown later,

this new architecture can fully benefit from all the locomo-

tion possibilities of the Roombots modules.

III. Hardware Concept of Modules

Roombots (RB) are similar in their degrees of freedom (DOFs)

to the 3D Molecubes [28], and have inherited some of their

main movement characteristics. An RB module features three

DOF (Molecubes feature one DOF), and we combine two RB

modules serially into one RB metamodule (Fig. 1a). We want

to build furniture-shaped structures from metamodules, where-

as a single metamodule (Fig. 3a) is 44 cm (17.3 in) long. Hence

we can settle with medium-large number of modules for our

(a) (b) (c)

FIGURE 1 (a) Rendered visualization of one Roombots metamodule on the left and a single Roombots module on the right. Rectangular con-
nector plates (yellow/green) are embedded in the floor. (b) Roombots module (real picture). (c) Three DOF per Roombots module: red axes are
outer DOF, the blue DOF is rotating the two sphere-like parts of a Roombots module against each other. The ability to freely swivel the two outer
joints against each other distinguishes a single Roombots module from plugging two Molecube [28] modules together. This loosely follows the
concept of adding a center joint in Superbot [30], compared to M-TRAN II [31].

(b)(a)

FIGURE 2 Active connection mechanism (ACM) of the Roombots.
Four mechanical latching fingers grab synchronously into the neigh-
bouring module or the structured surface. The mechanism is actuat-
ed with a mini-DC motor, with the position of the grippers sensed
with a potentiometer (Fig. 2(b) at the center). The ACMs are
designed to be mechanically autonomous and any other type of con-
nector could be plugged into the corresponding Roombots sockets.

(a) (b)

FIGURE 3 Roombots metamodules–each made of two Roombots
modules–showing the four possible metamodule configurations. All
three DOF within a Roombots module can take any arbitrary value of
a full circle. However there are four distinct possibilities to connect
two modules into a single metamodule, as the Roombots connectors
[Fig. 2(a)] have a four-sided symmetry. The hemispheres connecting
to the neighbouring RB module are colored blue. We use the relative
orientation of the center axis of those hemispheres for naming: (from
left to right) shear-S SRS, shear-Z SRZ, perpendicular PER, and paral-
lel PAR. The orientation of each upper Roombots module is kept
fixed. (b) depicts the CPG topology of a metamodule, see Section V.
Each of the six oscillators is assigned to one DOF/joint of the meta-
module. All oscillators have nearest-neighbor coupling.

24 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | AUGUST 2010

reconfiguration planner, e.g. around 20-50 RB modules would

be sufficient. Also we can make use of connectors embedded in

the environment (e.g. the yellow-green rectangular plates in

Fig. 1a) and broadcast communication. Consequently we are

able to omit some of the hard constraints such as constant con-

nectivity between all modules, and local communication. We

are still interested in a distributed system with low demands on

communication bandwidth. A strong constraint of our Room-

bots system is the movement space of an RB metamodule—six

DOF connected serially are very powerful, in terms of being

able to overcome concave or convex obstacle edges. However

an RB metamodule requires a rather large space around itself,

and is not necessarily connected to another module or meta-

module when moving, which needs to be considered in

advance of the movement. Our current approach to automatic

and distributed RB reconfiguration is limited to the planning

level, assuming well-adjusted hardware. The somewhat “classi-

cal” problems of self-reconfiguring modular robot hardware,

which are related to e.g. stiffness of the connectors and reliabil-

ity of the docking procedure will be addressed on a different

level, but not within the scope of this paper.

Similar to other modular robotic systems RB modules [29]

are fitted into a regular cubic grid. We are using a grid size

with 110 mm edge length. We connect two RB modules seri-

ally into an RB metamodule (Fig. 1a), four combinations are

possible (PAR, PER, SRS and SRZ, see Fig. 3), and each

resulting metamodule has its own range of motion and move-

ment characteristic. Any of the three joints (Fig. 1c) of an RB

module delivers sufficient torque to rotate a metamodule in

the “worst case scenario situation”, i.e. out of a horizontal

stretched position. RB modules are fabricated mostly from

3D printed ABS plastic pieces and plate-elements are milled

out of glass-fibre sheet material. An RB module weights

about 1.4 kg, that includes battery power for an estimated

30 min of continuous actuation, and the

weight for electronic boards1 Joints are

equipped with high gear ratio gearbox-

es (about 360:1), actuated by strong

DC motors which results in 5 Nm and

7 Nm torques for middle and outer

joints, respectively. Any of the three

joints is continuously rotational, i.e. can

turn without mechanical stop. Electrical

power and communication are transmit-

ted with slip rings within the module.

The two outer DOFs of a Roombots

module (Fig. 1c, red) are of the same

type as in the Molecube modules [28],

[32]. Roombots modules have an addi-

tional actuated swivel joint (Fig. 1c, blue)

in-between. The high torque demands

and the resulting high gearbox ratio val-

ues limit Roombots’ maximum rota-

tional speed. The center joint needs 3 sec

to rotate 360° and both outer joints

roughly 2 sec. RB’s active connection mechanism (ACM) is

genderless, four-way symmetric, with four mechanical latch-

ing fingers (Fig. 2a) which are completely retractable inside

the body. ACMs fit into any of ten dedicated sockets of an

RB module. In many ways the connector design is similar to

the AMAS connection mechanism [33], although we use a

different trajectory for the movement of the latching fingers

[34]. We are in the process of finishing the Roombots hard-

ware. Hence all the experiments in this article are implement-

ed in Webots [35], a physics-based simulation environment.

IV. Distributed Reconfiguration

One of the visions of the Roombots project is to design adap-

tive furniture for home or office use. We plan to use metamod-

ules which will need to configure into different pieces of

furniture, several times during the day. This section describes

our initial, currently simulated, approach to reconfiguration by

locomotion on a structured surface, i.e. in a 3D environment

with embedded connectors to which modules or metamodules

can attach2. Four different metamodule types are the moving

units, their movements are guided towards the next active

seeding position by a virtual force field. Metamodules send and

receive broadcasts among each other to gather knowledge of

their nearest neighborhood. A set of shape-transitions and cor-

responding collision-clouds (Fig. 4b) stored in a look-up table

enables each metamodule to largely avoid collision, with itself,

other meta-modules and the environment. We finish the sec-

tion with initial results characterizing Roombots metamodules

for this type of reconfiguration by locomotion.

(a) (b)

FIGURE 4 (a) A chair-like goal structure built from eight metamodules. Blueish hemispheres
present the seeding points in the 3D regular grid. Metamodules are indicated with transparent
blocks of different colors and the structure is assembled from I-shaped, U-shaped and
L-shaped metamodules. Seeds are being iteratively activated, as soon as a previous seeding
position is filled. (b) Shape-transition of a metamodule, from I-shape configuration (bluish,
horizontal) to L-shape. Red boxes indicate the collision cloud a metamodule transition is pro-
ducing, where every touched cube in the 3D grid is being recorded. Roombots movements are
in 3D, this figure shows only a frontal projection of the cloud.

1 The electronic hardware for Roombots is under development.
2It is likely that only a small area would need to be fitted with connectors for recharg-

ing and for locomotion. The rest of the living room could be accessed with “normal”

locomotion.

AUGUST 2010 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 25

A. Strategy
We will explain the distributed reconfiguration mechanism

with Roombots metamodules on the example of building a

chair-like structure, e.g. Fig. 4a.

a) Metamodule initialization

A typical initial configuration that we would envision in a house

or an office scenario, is to have all modules forming a wall. RB

metamodules will be placed in our structured environment (see

the passive connectors in Fig. 1a). A metamodule starts by

being attached to a connector with its foot hemisphere. It then

determines its initial position and orientation (on the real mod-

ules this will be done by local communication with the connec-

tor or reading out a tag on the connector’s surface). Roombots

also have the ability to sense their own shape, by reading out

internal joint angle sensor values.

b) Seeding recipe and metamodule shapes

The metamodule now receives information about its environ-

ment, e.g. obstacles or walls, but most importantly the seeding

recipe of the goal structure. The seeding recipe is the “blue-

print” for the structure which will be assembled from all the

metamodules around, e.g. a chair-like structure (Fig. 4a). It

will be provided by a human operator. The recipe includes

the position and the order of the seeding cubes, which are

attachment points for a metamodule within the goal structure.

Metamodules are not assigned to a specific seeding cube, but

the first arriving metamodule will fill the active position, and

send a broadcast indicating the seeding cube is taken.

Remaining metamodules will switch and go towards the next

seeding cube in the seeding recipe. The recipe also includes

the information of what type of metamodule-shapes the

structure will be built from (indicated by semi-transparent,

colored boxes combining paired Roombots modules in

Fig. 4a). Metamodules can take five possible shapes: I, L, S, U

and 3D 2 S. Fig. 4b shows an I-shaped metamodule being

rotated into an L-shaped metamodule.

c) Messages and locomotion

Metamodules use shape-to-shape transition for a caterpil-

lar-like walking in 3D. Before a shape-transition, a meta-

module sends a broadcast status message which contains its

foot position and its ID. The broadcast messaging is meant

as a replacement for close-range sensing of other metamod-

ules, and serves to avoid colliding with them. This requires

the knowledge of absolute coordinate points for all meta-

modules and the goal shape, which is possible in our semi-

large environment. A module can derive its neighborhood

from those status messages by comparing the senders posi-

tion against its own. It will store this information for one

step, and only for modules in close range.

d) Force-field guidance

The metamodule now knows its own absolute position

D
S

foot 5 3Dx Dy Dz 4 in the 3D grid, the position of k number

of current seeds D
S

seed, and the positions D
S

meta of n number of

neighboring metamodules in range. It calculates a force vector

V
S

f by summing up the distance vector from the active seeds

(attracting “sinks”). Depending on the strategy, neighboring

metamodules are included in this calculation. They represent

“sources” and emit a repelling force field, with a negative sign.

At last the metamodule reaches for the next closest connector

in the direction of V
S

f. Once the metamodule head is connect-

ed to its new position, the module unlocks the foot, sends a

new status message and repeats the cycle.

V
S

f 5 a
k

i51

D
S

foot 2 D
S

seedi

0D
S

foot 2 D
S

seedi
0
2 a

n

j51

a 1D
S

foot, D
S

metaj
2

 3
D
S

foot 2 D
S

metaj

|D
S

foot 2 D
S

metaj
|

 (1)

a 2 a 1D
S

foot, D
S

metaj
2 5 0 1a 2 greedy 2

b 2 a 1D
S

foot, D
S

metaj
2 5

1

4
1|D

S

foot 2 D
S

metaj
| 2 4 2 1a 2 slope 2

c 2 a 1D
S

foot, D
S

metaj
2 5 1 1a 2 step 2 .

 (2)

e) Force vector strategies

We are interested in different strategies concerning the influence

of neighboring metamodules on the V
S

f calculation, and have

designed three modes which are switched with the a function: (i)

The a-greedy approach 1a 5 0 2 , where neighboring modules

have no influence on the force field of other metamodules. Dur-

ing reconfiguration metamodules should go as straight as possible

towards the next active seeding position. To minimize collisions,

modules pause their step as soon as they detect (via status messag-

es) another metamodule in a very close range, i.e. within four

cubes distance. The lock is released with the next status message.

(ii) An a-slope-function, where a 5 1/4 1|D
S

foot 2 D
S

metaj
| 2 4 2 .

This gradually decreases the repelling force between the distance

of four and eight cubes. (iii) An a-step-function, where a 5 1. Any

metamodule within the distance of eight cubes provides a full

force component. The hypothesis guiding this experiment is that

with an additional, repelling force component metamodules will

have a tendency to keep a minimum distance between each other.

Hence less collisions should occur.

f) Look-up table and collision-cloud computation

As we do not apply sensing in the conventional sense, there is

the danger of collision within a metamodule, between meta-

modules, or with an external object. We have designed a meth-

od that calculates in advance what we call a collision cloud

(Fig. 4b) of a single metamodule for all permutations of initial

and final metamodule shapes.3 The collision cloud represents

3There are five possible metamodule shapes, and four different metamodule config-

urations. Each can be assembled with different joint values. Three positions are pos-

sible for each of the four outer RB DOF in a metamodule, and four positions for

the two inner DOF.

26 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | AUGUST 2010

the number and position of the virtual cubes being touched

during the transformation, and is stored in a lookup table in an

external device. At the beginning of each step the metamodule

will request the collision cloud corresponding to its initial and

final shape from the look-up table. It then checks, based on the

cubic grid, if the cloud intersects with any known object or meta-

module in range. The look-up table enables us to centrally store

data which would be hard to compute in real-time for a single

module, and is repeatedly requested from many metamodules.

B. Results and Discussion
We performed experiments in simulation in which four

metamodules walk approximately 20 steps Manhattan-distance

and have to assemble into a cube-like structure (Fig. 5)4. This

set of experiments tested the four different metamodule types

(PAR, PER, SRS, and SRZ, Fig. 3b), the three different

reconfiguration strategies (a-greedy, a-slope, and a-step),

with three different random initial conditions (4 3 3 3 3 =

36 experiments). In 26 of 36 experiments the final configura-

tion was reached and the shape was created, and in all cases

the area around the final configuration was reached. Hence

we assume that the seeding order, or the way seed positions

are taken, will play a large role in the future. However the

presented initial experiments were aiming at characterizing

the abilities and properties of the metamodules, and the influ-

ence of the force-field guidance. Concerning the latter, Table I

indicates that PAR-type metamodules get stuck more easily

within the last sequence of the reconfiguration, whereas the

SRZ-metamodules only collided in two experiments with

another metamodule, and never got stuck. Dead-locks are an

issue due to the seeding recipe that is currently designed by

hand. This seeding is not a trivial task to solve due to the

rather complex movement characteristics of the Roombots

DOFs. We plan to automate and opti-

mize the seeding in the future. Con-

cerning the three tested force-field

strategies: the greedy algorithm per-

formed better than expected in terms

of average number of necessary moves,

a collision occurred only once within

the valid experiments. On the other

hand there are a large number of dead-

locks (four out of twelve) with this

strategy. It should be noted that for

every of the nine experiment types at

least one valid assembly, without colli-

sion, was achieved among all four meta-

module-types. The unique design of

Roombots metamodules (due to the

high number of DOF per module) is

such that, with sufficient space around,

on-line switching from one type to

another (e.g. from PAR to SRZ) will be possible with a rela-

tively small, intermediate reconfiguration sequence. Fig. 6

shows that the force field correction does affect the trajectories of

metamodules, and metamodules tend to spread compared to

the a-greedy strategy. However this does not seem to have a

positive effect on the self-organization of collision-free recon-

figuration moves, i.e. actually more collisions occur. Collisions

can happen in this otherwise deterministic setup due to the

asynchronous steps of RB metamodules, as they are not syn-

chronized. In detail: a metamodule sends a status message,

checks its environment, finds it unoccupied and starts to

move. If another close-by metamodule starts moving with a

delay, it assumes neighborhood knowledge on an outdated

basis, and resumes movement in the shared space of another

metamodule. There are at least two solutions available: (i) one

could increase the safety distance between metamodules, e.g.

to ten cubes. It is physically impossible for two moving meta-

modules to meet within one step, assuming that both move

with about the same speed. However this requires large dis-

tances between metamodules, and is a very unattractive

approach. (ii) Another option could be consensus-based decision

making between metamodules, to agree on one’s priority. This

could require a global clock, i.e. synchronized cycles of move-

ments as described in [36]. Dead-locks at the assembly phase

of a structure happen as a result of the (currently hand-coded

and) non-optimized seeding order, and the orientation of the

foot hemispheres of metamodules within the assembled struc-

ture. Latter orientation strongly influences in which way the

final shape of a metamodule is reached, i.e. how the meta-

module is “folding” itself into that posture. We are planning

on automating the seeding recipe by taking into account both

constraints. From our initial experiment, we conclude that the

SRZ metamodule together with the greedy reconfiguration

strategy appear to be the most promising method for distrib-

uted reconfiguration. Additional tests are under way with

more initial and final configurations to confirm this.

FIGURE 5 Snapshots series of four SRZ Roombots metamodules reconfiguring into a cube-like
structure (from left to right, and from top to bottom). The applied force field strategy is
a-slope-based. Metamodules start at in a straight posture (left side). They attach and detach
at passive connectors embedded in the ground (yellow-green tiles, Fig. 1a), and use them as
pivot points for a caterpillar-like motion. Once a metamodule reaches a goal point within the
cube-like-structure, it switches off.

4Complementary reconfiguration videos are available at the Roombots webpage:

http://biorob.epfl.ch/page38279.html.

AUGUST 2010 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 27

V. Distributed Locomotion

In addition to reconfiguration, the Roombots modules will be

capable of moving around like legged robots. This section

describes the three main components of our approach to

decentralized locomotion control of modular robots in a non-

structured environment (i.e. without using the ACMs to grab

into connectors embedded in the floor): the control architec-

ture, network topology and controller parameter optimization.

The control architecture consists of a network of coupled oscil-

lators representing a Central Pattern Generator (CPG). The

control inputs for this CPG are high level parameters such as

amplitude, offset and phase lags. Each oscillator is capable of

producing either oscillatory or rotational joint angle signals.5 The

oscillators are furthermore coupled such that their phases are

synchronized. We applied an oscillator network topology which

matched the hardware topology, e.g. a quadruped structure or a

single Roombots metamodule. An evolutionary algorithm pro-

vides an automatic design of the control input parameters.

A. Controller Architecture
We designed a CPG controller which can produce two types

of basic movements for each DOF: (i) Rotational movements

that result from a continuously rotating (swivel) joint, and can

provide wheel or Whegs-like [37] propulsion, and (ii) Oscilla-

tory movements that periodically oscillate around a resting

position. Since it is important for stable, reproducible locomo-

tion to keep all DOF synchronized, independent of their

mode, we built the controller as a distributed system of cou-

pled phase oscillators, with one oscillator per DOF (joint) i:

 w
#

i 5 2 # p # ni 1 awij
rj
sin 1wj 2 wi 2 cij 2 1 fu 1 s

S 2 (3)

 r
#

i 5 ai 1Ri 2 ri 2 1 fr 1 s
S 2 (4)

a 2 ui 5 ri
sin 1wi 2 1 Xi 1Oscillation 2

b 2 ui 5 wi 1Rotation 2
c 2 ui 5 Xi 1Locked 2

sservo inputs, (5)

where ui is the servo input which can be derived with dif-

ferent functions corresponding to the desired servo move-

ment. Variables ri and wi are state variables which encode

amplitude and phase of the oscillation. The parameters ni,

FIGURE 6 Top view at the trace-patterns of four metamodules mov-
ing towards their seeding points in the left center area. The trace fol-
lows the pivot point of the foot-hemisphere of each metamodule.
Quiver plots indicate the direction of attraction at iterative steps. (a)
Due to the greedy strategy in this plot SRS metamodules aim directly
for their next seeding position. They will only be paused by a close-
by metamodule with a higher priority. (b) The same experiment but
with a strategy using a slope-like a value, and SRZ metamodule type.
Quiver plots indicate that metamodules are repelled among each
other on their way to the seeding position, however e.g. metamod-
ule 1 is initially not affected by the presence of other metamodules,
as they are sufficiently far away.

M−Module 1 M−Module 2

M−Module 3 M−Module 4

M−Module 1 M−Module 2

M−Module 3 M−Module 4

5In the remaining part of the paper we will use oscillator to refer to pattern generators

capable of producing both oscillatory and rotational output.

TABLE 1 Table indicating the resulting number of average moves per experiment, collisions, and dead-lock situations for the
cube-experiment (see Fig. 5). Table columns indicate three different strategies: greedy, based on a slope-a and based on a step
function for the force vector estimation. Table rows show the four different metamodule configurations. Nine experiments (exp1–exp9)
per metamodule type are implemented, the first column of each experiment indicates the average number of moves for four moving
metamodules. Three experiments per configuration are shown, with the initial position of the metamodules shifted by a small number
of steps. ! in the second column indicates a successful assembly of the cube structure, * shows that no solution was found
(dead-lock). In case of collisions between metamodules, but a successful assembly the number of collisions is indicated instead
in each second column.

a-GREEDY a-SLOPE a-STEP

EXP1 EXP2 EXP3 EXP4 EXP5 EXP6 EXP7 EXP8 EXP9

PAR 33 * 27 " 44 * 66 * 38 2 31 * 61 * 37 2 47 *

PER 31 * 23 " 25 * 39 * 24 1 26 " 29 " 27 1 20 "
SRS 18 " 22 " 22 " 38 * 26 3 28 5 26 " 27 " 27 1

SRZ 24 " 23 1 22 " 23 " 24 " 26 " 34 1 23 " 25 "

28 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | AUGUST 2010

wij and cij are respectively the frequency, coupling weight

and phase bias of the coupling between oscillators i and j.

ai is a positive constant which determines the rise time of

the amplitude to the desired value Ri. The parameters Ri,

Xi, and cij are open parameters of which a subset (depend-

ing on the selected mode) is subject to optimization. Fur-

thermore, this structure is capable of including sensory

feedback. For this purpose the state variables can be influ-

enced by sensory feedback signals through the functions fu

and fr, s
S

 being a vector of sensor states. Note that sensory

feedback is not applied in this article.

Equation 5 shows three possible modes which result

in oscillations, rotations or a locked condition. In the os-

cillation mode, the output exhibits limit cycle behavior,

thus producing a stable periodic trajectory. For rotation a

constant-speed profi le is generated leading to a monotonic

increase of the joint angle. We also include a third mode

which allows the controller to lock

some joints.

One strength of this framework is

that with the right parameters, rota-

tional and oscillatory DOF will rapidly

converge to a phase-locked regime, i.e.

a regime with a constant phase differ-

ence between phase oscillators that

are in different modes. This is highly

desirable for the implementation of

stable, coordinated gaits. It will also en-

sure that several joints remain phased-

locked, even if they are controlled by

oscillators implemented on different

micro-controllers with slightly differ-

ent clocks. Fig. 7 shows this synchro-

nization behavior between three DOFs,

with two activated in oscillation mode

and one in rotation mode.

B. CPG Topology
When designing CPGs, the network

coupling parameters wij and cij between different oscillators

are important. For known types of locomotion gait patterns,

such as quadrupedal or snake gaits, the coupling architecture

can be specified based on biological observations. Here the

goal is to find different and unexpected gaits, which an arbi-

trarily shaped modular robot could potentially create. Hence

we do not specify a pre-defined oscillator network topology.

We let the coupling structure of the CPG correspond to the

robot’s morphology, i.e. phase oscillators of neighbor DOF

are coupled together. We use one common frequency for all

oscillators (ni 5 0.26 Hz), bi-directional couplings follow the

rule such that cij 5 2 cji (Fig. 8b). All coupling weights are set

to 2, phase differences cij are open parameters and subject

to optimization.

We do not induce symmetry artificially, i.e. we do not apply

any mirroring of parameter sets along our network. Applying

symmetry is usually a good strategy to reduce the number of

open parameters. However it might also

limit the resulting gaits, as it restricts the

possible variety of parameters.

C. Optimal Gait Generation
We are interested in the generation of

optimal gaits for arbitrary robot mor-

phologies. In particular, we want to

evolve the assignment of different

movement types (such as rotation and

oscillation) for each degree of freedom,

as well as the control parameters for

each of these movement types. The

optimization algorithm can then be

described by two layers. The outer layer

performs structural optimization

(a) (b) (c)

FIGURE 8 (a)–(c) Quad: Quadruped Roombots structure with six units. (c) shows the central
pattern generator topology for this Roombots robot. One oscillator is assigned to each Room-
bots module, the network mimics the physical topology. Six oscillator units are depicted for
this quadruped (c), one joint per Roombots unit is actuated.

−2

0

2

θ
 (

ra
d
)

Osc.1
Osc.2

0

2

4

6

θ
 (

ra
d
)

Rot.1

0 5 10 15 20 25 30 35 40 45 50

0

1

2

3

Frequency of Osc.2

Amplitude of Osc.1

Time (s)

M
o
d
u
la

ti
o
n

FIGURE 7 Synchronization behavior of three coupled oscillators: two in oscillatory mode
(upper plot) and one in rotational mode (middle plot). All oscillators are coupled, hence they
synchronize within the first seconds. Frequency modulation from t = 10 to 20 sec, amplitude
modulation from t = 30 to 40 sec of the simulation.

AUGUST 2010 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 29

(selecting movement types for each DOF). The inner layer

on the other hand performs parametric optimization on

continuous valued parameters corresponding to the selected

movement types by the outer layer.

In this paper, a modified version of the standard Particle

Swarm Optimization with a constriction factor [38],[39] is used

to perform the optimization process. PSO is a stochastic, popula-

tion based optimization method using principles of collaboration

rather than competition to evolve individuals. Compared to

other stochastic algorithms (e.g. genetic algorithms, simulated

annealing, genetic programming or evolution strategies), we pre-

ferred PSO because of its superior performance on parametric

simulation (see for instance [40] for a comparative study).

In PSO, each individual is represented by a position and

velocity vector, representing respectively the particle’s parameter

values and search direction. The evolution of each particle in

the swarm is then governed by equation 6.

v
S

i 1 t 1 1 2 5 K # 3 v
S

i 1 t 2 1 c1r1 1 p
S

i 2 x
S

i 1 t 2 2 1 c2r2 1 p
S

g 2 x
S

i 1 t 2 2 4 (6)

x
S

i 1 t 2 5 x
S

i 1 t 2 1 2 1 v
S

i 1 t 2 ,

where v
S

i 1 t 2 is the velocity vector, x
S 1 t 2 is the position vector, K

is a constriction factor, c1 and c2 are two constants, r1 and r2 are

two pseudo-random numbers in the range [0, 1], pi is the best

known solution vector of particle i and pg is the global best

known solution vector. Constants c1 and c2 were set to ensure

convergence (see for more detail, [41]).

The PSO algorithm described thus far is used for the inner

layer optimization of the continuous parameters of a specific

selection of movement types. Particles are initially uniformly

distributed over the possible combinations of movement types.

In each such combination, particles share the same parameters,

and an independent PSO optimizes their respective solutions.

The task of the outer layer is then to do the structural optimiza-

tion and to move particles from one combination of movement

types to another.

The outer layer consists of a set of mutation operators

inspired by Genetic Algorithms. Similar to the velocity update

of the PSO, the probability of mutation of each actuated degree

of freedom is composed of:

Pe: ❏ exploration probability of mutation to a movement type

(oscillation, rotation or locked) other than the current one

Pl: ❏ local probability of mutation to the movement type

which is part of the selection with the best results in the

particle’s history

Pg: ❏ global probability of mutation similar to Pl but taken

from the best results taken over all the particles

Governed by these three probabilities, particles will be

mutated to different combinations of movement types during

the optimization process. Once a particle moves to a different

parameter space it is incorporated in the PSO running locally

in that space.

A main challenge is to choose appropriate values for the

different probabilities Pe, Pl and Pg. In general, we want to

stimulate exploration in the early phases of the optimization,

visiting many possible combinations of movement types. Then,

as the optimization progresses, particles should start exploring

their local known best solutions in more detail. Finally we want

the particles to converge in the best known space, as if selecting

the best configuration of movement types. The system then

starts behaving as a standard PSO with a fixed configuration of

movement types as more and more particles are attracted.

The desired behavior can be designed by varying the proba-

bilities Pe, Pl and Pg as the optimization progresses. In this

paper, the exploration and global probability were modeled

using a sigmoid function. The local probability was modeled

using a gaussian function. Fig. 9 shows the probability charac-

teristics used in all the experiments.

D. Experimental Setup
We performed several experiments applying our CPG and

optimization framework. Firstly we were interested in explor-

ing the locomotion abilities of the four types of metamodules

configurations (PAR, PER, SRS, and SRZ, Fig. 3). Our

motivation for testing metamodules is that they represent the

simplest possible robot shape built from two Roombots mod-

ules (six DOF). In addition, one quadruped shape was

designed by using six modules featuring symmetry. Three

DOFs inside the spine and four DOFs in the hip joints are

used allowing quadruped locomotion (Quad6 robot, Fig. 8).

The latter structure was used to verify our approach on more

complex shapes.

We are also interested to explore which type of movement,

oscillatory or rotational, would lead to the highest locomotion

speed. We conducted the following optimization experiments

with different possible combinations of the four joint modes:

(1) pure rotation, all DOF are in the rotation mode, (2) hybrid

rotation with DOF either in rotation or locked mode, (3) pure

oscillation, all DOF are in oscillation mode, and (4) fully hybrid,

DOF are in oscillation, rotation, or locked mode, whereas dif-

ferent modes can coexist within the robot.

0 50 100 150 200

0.5

0.4

0.3

0.2

0.1

0

Iteration

P
ro

b
a
b
ili

ty

Pe

Pl

Pg

FIGURE 9 Mutation probability characteristics for the exploration
probability Pe, local probability Pl and global probability Pg, emphasiz-
ing early exploration and late convergence.

30 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | AUGUST 2010

Each solution, generated by the evolutionary algorithm, is

evaluated in Webots [35], a simulation tool based on ODE pro-

viding collision detection, rigid body dynamics and actuator

properties. The average locomotion speed determines the fitness

value of a particular solution, which is sent back to the optimiz-

er. An RB module–module collision detection penalizes unre-

alistic solutions with a zero fitness value.

E. Results and Discussion
Fig. 10 shows the average and standard deviation of the robots’

speed over ten optimizations with different initial conditions.

Each optimization process uses 50 particles and 100 iterations

to find the optimal solution. The results illustrate three interest-

ing properties of this framework. (i) The capability of combin-

ing different modes in the fully hybrid setting results in finding

solutions with higher values for both average speed and vari-

ance in all the robots. This results in faster and more diverse

solutions in the same number of simulations. (ii) Results from

pure rotation show a drastic reduction in the robot perfor-

mance. Allowing the robot to lock some of its degrees of free-

dom, when the others are in rotational mode, helps to avoid

self-collision during robot locomotion. The performance of this

mode is comparable in terms of characteristics with the oscilla-

tion mode since both include locked joints (defined implicitly

in oscillation mode due to zero amplitudes). (iii) The results

indicate that the performance of oscillation and rotation modes

are strongly dependent on the robot shape. In the case of PAR

and Quad6, oscillation largely outperforms hybrid rotation. For

PER, SRS and SRZ however, similar performance for both

modes is observed. This shows that for a given robot shape, it is

not trivial to select either oscillation or rotation. The complex

interaction of the different DOF of a robot shape and the envi-

ronment determine whether rotation, oscillation or combina-

tion of them will provide the best performance. In almost all

experiments, having a mixture of both movement types (fully

hybrid) yields better results.

Fig. 11 and Fig. 12 show two examples of arbitrary gait pat-

terns, for a PER-metamodule and the quadruped robot from

Fig. 8, respectively6. The joint movements of the PER-meta-

module in Fig. 11 are purely oscillatory, but the robot rolls over

itself from cycle to cycle. This is possible in a metamodule-

robot because six joints are connected serially—amplitude and

velocity are adding up in those structures. The gait for the

quadruped robot in Fig. 8 was derived in the hybrid optimiza-

tion mode, and achieves oscillatory and rotational joint move-

ments: both spine joints are in oscillatory mode, one of the

outer joints is blocked, one is in rotational mode, and the

remaining two leg joints oscillate. This setting results in a wind-

up like gait which propels the robot with 33 cm/s, while the

walking gait—the first solution that comes to mind when

designing a gait for this robot—only results in a maximum

speed of 21 cm/s (Fig. 10).

The CPG model has several interesting features that make

it well suited for modular robotics. (i) Our model can pro-

duce stable rhythmic patterns such that the dynamical system

rapidly returns to its rhythmic behavior after perturbations of

the state variables. (ii) The applied CPG model only needs a

few control parameters, in our case amplitudes, offsets and

phase lags. Hence it can reduce the dimensionality of the

control problem such that the optimization algorithm only

needs to modulate a small number of control signals. (iii)

Another useful CPG property is its ability to generate differ-

ent gaits, which one can achieve by setting the network cou-

pling weights and topology. In this way we can reproduce

animal-like gaits. This has been done in several works for

legged and modular robots ([42], [25], [27]). Yet one has the

option to keep the network topology open, and to let new

and unexpected gaits emerge. The latter approach is even

more appealing for modular robots, where ideal gaits are ini-

tially unknown due to new robot topologies. Hand coding

and editing the gaits is tiring and time-consuming, whereas

the proposed framework can reproduce animal-like gaits or

find alternative solutions. (iv) This CPG model can be used to

generate different types of locomotion patterns. Our control

architecture offers a high variety of basic locomotion patterns

e.g. it can generate any combination of oscillatory and rota-

tional movements. This allows us to apply those movements

to the robot while ensuring that they are in their phase-

locked regimes. We observed interesting and unexpected

locomotion gaits being derived by our combined architecture.

In this work we used specific patterns, such as sine-waves for

oscillation, and constant speed for rotation. However the

framework is kept open and more complex patterns can be

6Locomotion videos are available at the Roombots webpage: http://biorob.epfl.ch/

page38279.html.

PAR PER SRS SRZ Quad 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Robot Morphology

B
e
s
t
F

it
n
e
s
s
 V

a
lu

e
 (

A
ve

ra
g
e
 S

p
e
e
d
 m

/s
)

Pure Rotation
Hybrid Rotation

Pure Oscillation
Fully Hybrid

FIGURE 10 The optimization results from five different robot struc-
tures such as metamodules in PAR, PER, SRS and SRZ configuration,
and a six-unit quadruped structure (Fig. 8) are shown. Every experi-
ment was repeated 10 times, with different initial conditions. Fitness
evaluation is based on traveled distance over time. The hybrid opti-
mization mode is in all cases at least as good as any other optimiza-
tion mode. When checking resulting gaits we find that it includes
results both with rotating and oscillating joint patterns within one
robot structure.

AUGUST 2010 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 31

implemented easily, which eventually could lead to an even

higher versatility of derived gaits.

The proposed framework provides an important feature:

the optimization algorithm can choose and switch between

oscillatory and rotational joint movements, for any joint, at

any time during the optimization process, and is fully auto-

mated. The user is not required to, but can pre-assign a move-

ment-type to a joint type. This feature gives the possibility to

explore which kind of joint movements can result in more

efficient gaits for a newly designed robot. To our best knowl-

edge this is the first work in the field where a modular robot

controller-optimizer framework can derive such a wide vari-

ety of locomotion patterns. The result for five different robots

shows that the hybrid mode systematically leads to the best

solutions. In other words it is better to let the optimization

algorithm find suitable modes for each joint rather than fixing

them by hand.

VI. Conclusion

In this paper we have presented our approaches for reconfigu-

ration and locomotion for Roombots self reconfiguring modu-

lar robots, on structured and non-structured environments. This

is part of our long term vision for the Roombots project fea-

turing adaptive and self-assembling furniture made from mod-

ular robots. Reconfiguration through locomotion uses

Roombots metamodules applying caterpillar-like movements

attaching at embedded connectors in the environment to move

and shape change. Metamodules are attracted and guided by a

virtual force-field, they use broadcast signals, look-up tables of

collision clouds and simple assumptions about their near envi-

ronment to reach their seeding positions, which are currently

hand coded. We presented results from simulation tests with

four different metamodule configurations and three force-field

models. We have derived a framework for locomotion control

of modular robots in un-structured environments, where a

central pattern generator (CPG) as the motion controller and

the optimization algorithm are tightly connected. The CPG is

implemented as a system of coupled oscillators, different output

filters can be applied to derive the desired joint behavior such

as synchronized oscillation, rotation or stop control. Open con-

trol parameters are amplitude, offset and phase lag, and the

three joint modes. They are automatically selected, assigned and

optimized by the optimization framework. This enables us to

derive gait patterns for traditional robots like quadrupeds

(oscillatory and stop joint control) but also for robots featuring

the more capable, continuous rotational joints, e.g. Whegs-like

robots or in our case the Roombots modules. Extensive exper-

iments are performed in simulation for four metamodule types

(the same ones as used above for reconfiguration, but now in a

non-structured environment), and quadruped robots made

from multiple Roombots units. We have presented results of

our optimization framework deriving pure oscillatory or rota-

tional joint controllers based on CPGs, as well as hybrid con-

trollers. Optimized robot gaits for the latter type result often in

mixed-mode joint controllers with surprising characteristics

and very competitive performance.

Research on locomotion control will be pursued in order

to address the problems of (i) how to properly include sensory

feedback for improving the efficiency and robustness of loco-

motion patterns, and (ii) of navigation, i.e. how to modulate

speed and direction to reach a specific location in a room.

Research on reconfiguration will explore how to include pas-

sive elements in the reconfiguration and how to create intui-

tive user interfaces. We plan to extend the hardware by passive,

(a) (b) (c) (d) (e) (f)

FIGURE 11 Snapshots for an evolved gait with a Roombots PER-metamodule, the module “rolls” from (a)–(f), about one cycle is shown. It starts
in a folded posture and rotates while unfolding towards the right. When folding again, top and bottom Roombots module are switched. This
speeds the robot up to 11 cm/s in an overall rather straight gait.

(a) (b) (c) (d) (e) (f)

FIGURE 12 (a)–(f) The robot moves from left to the right, half a cycle is shown and markers are placed on the ground for reference. This quad-
ruped robot structure shows one of the fastest “gaits”, however does not behave like a typical quadruped. Rather it propels with a winding-like
mechanism: by leaving two extremities on the ground, it winds the remaining two of them around the body stem and vice versa in the next
cycle. The overall direction of movement is sideways regarding the body stem with about 33 cm/s.

32 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | AUGUST 2010

light-weight elements like carbon-fiber plates to built more

complex, and a larger variety of furniture shapes. For design-

ing these furniture shapes, we are implementing a graphical

user interface that will allow lay users to enter desired shapes

in an intuitive way and then automatically generate the seed-

ing recipe for our reconfiguration algorithm. The GUI will

also be used to specify desired locations of the furniture in

their environment that will be provided to the navigation

controller. It is still a long road, but we hope to make steady

progress towards our long term vision of adaptive furniture in

our day-to-day environment.

VII. Acknowledgments

This project has received funding from the EPFL and from

the European Community’s Seventh Framework Pro-

gramme FP7/2007–2013—Future Emerging Technologies,

Embodied Intelligence, under the grant agreements no.

231688 (Locomorph) and no. 231451 (EVRYON). We

gratefully acknowledge the technical support of André

Guignard, André Badertscher, Peter Brühlmeier, Philippe

Voessler, and Manuel Leitos in the design and construction

of the robot modules.

We also thank Philippe Laprade and Mikaël Mayer for their

participation to the Roombots software design.

References
[1] M. Vona, C. Detweiler, and D. Rus, “Shady: Robust truss climbing with mechanical

compliances,” in Proc. Int. Symp. Experimental Robotics, 2008, pp. 431–440.

[2] N. A. Streitz, J. Geißler, and T. Holmer, “Roomware for cooperative buildings: In-

tegrated design of architectural spaces and information spaces,” in Proc. 1st Int. Workshop

Cooperative Buildings. Integrating Information, Organization, and Architecture, CoBuild’98,

Darmstadt, Germany, Feb. 1998, p. 4.

[3] E. Hornecker and J. Buur, “Getting a grip on tangible interaction: A framework on

physical space and social interaction,” in Proc. SIGCHI Conf. Human Factors in Computing

Systems, Apr. 2006.

[4] T. Fukuda, S. Nakagawa, Y. Kawauchi, and M. Buss, “Self organizing robots based

on cell structures—CEBOT,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems,

1988, pp. 145–150.

[5] H. Kurokawa, A. Kamimura, E. Yoshida, K. Tomita, S. Kokaji, and S. Murata, “M-

TRAN II: Metamorphosis from a four-legged walker to a caterpillar,” in Proc. IEEE/

RSJ Int. Conf. Intelligent Robots and Systems, 2003 (IROS’03), Oct. 2003, vol. 3, pp. 2454–

2459.

[6] P. Pillai, J. Campbell, G. Kedia, S. Moudgal, and K. Sheth, “A 3D fax machine based

on claytronics,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, 2006, pp.

4728–4735.

[7] M. Asadpour, M. H. Z. Ashtiani, A. Sproewitz, and A. Ijspeert, “Graph signature for

self-reconfiguration planning of modules with symmetry,” in Proc. IEEE/RSJ Int. Conf.

Intelligent Robots and Systems, 2009 (IROS’09), St. Louis, 2009.

[8] E. Yoshida, S. Murata, A. Kamimura, K. Tomita, H. Kurokawa, and S. Kokaji, “A

motion planning method for a self-reconfigurable modular robot,” in Proc. 2001 IEEE/

RSJ Int. Conf. Intelligent Robots and Systems, 2001, vol. 1, pp. 590–597.

[9] Z. Butler, K. Kotay, D. Rus, and K. Tomita, “Generic decentralized control for lat-

tice-based self-reconfigurable robots,” Int. J. Robot. Res., vol. 23, no. 9, pp. 919–937,

Sept. 2004.

[10] P. White and M. Yim, “Scalable modular self-reconfigurable robots using exter-

nal actuation,” in Proc. 2007 IEEE/RSJ Int. Conf. Intelligent Robots and System, 2007, pp.

2773–2778.

[11] K. Stoy, “Using cellular automata and gradients to control self-reconfiguration,”

Robot. Auton. Syst., vol. 54, no. 2, pp. 135–141, Feb. 2006.

[12] W. Shen, P. Will, A. Galstyan, and C. Chuong, “Hormone-inspired self-organization

and distributed control of robotic swarms,” Auton. Robots, vol. 17, no. 1, pp. 93–105,

2004.

[13] J. V. Neumann, Theory of Self-Reproducing Automata, A. W. Burks, Ed. Urbana, IL:

Univ. Illinois Press, 1966.

[14] P. Varshavskaya, L. P. Kaelbling, and D. Rus, “Automated design of adaptive control-

lers for modular robots using reinforcement learning,” Int. J. Robot. Res., vol. 27, no. 3–4,

pp. 505–526, Mar. 2008.

[15] R. Fitch, Z. Butler, and D. Rus, “Reconfiguration planning for heterogeneous self-

reconfiguring robots,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, 2003

(IROS’03), 2003, vol. 3, pp. 2460–2467.

[16] R. Fitch and Z. Butler, “Mil l ion module march: Scalable locomotion for

large self-reconf iguring robots,” Int. J. Robot. Res., vol. 27, no. 3–4, pp. 331–343,

Mar. 2008.

[17] K. D. Kotay and D. L. Rus, “Scalable parallel algorithm for configuration planning

for self-reconfiguring robots,” in Sensor Fusion and Decentralized Control in Robotic Systems

III, vol. 4196, G. T. McKee and P. S. Schenker, Eds. Boston, MA: SPIE, Oct. 2000, pp.

377–387.

[18] D. Rus and M. Vona, “Crystalline robots: Self-reconfiguration with compressible

unit modules,” Auton. Robots, vol. 10, no. 1, pp. 107–124, 2001.

[19] D. Dewey, M. Ashley-Rollman, M. D. Rosa, S. Goldstein, T. Mowry, S. Srini-

vasa, P. Pillai, and J. Campbell, “Generalizing metamodules to simplify planning in

modular robotic systems,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, 2008

(IROS’08), 2008, pp. 1338–1345.

[20] A. J. Ijspeert, “Central pattern generators for locomotion control in animals and

robots: A review,” Neural Netw., vol. 21, no. 4, pp. 642–653, May 2008.

[21] M. Yim, “Locomotion with a unit modular reconfigurable robot,” Ph.D. disserta-

tion, Mech. Eng. Dept., Stanford Univ., 1994.

[22] J. Bongard, V. Zykov, and H. Lipson, “Resilient machines through continuous self-

modeling,” Science, vol. 314, no. 5802, pp. 1118–1121, 2006.

[23] K. Stoy, W. Shen, and P. Will, “Implementing configuration dependent gaits in a

self-reconfigurable robot,” in Proc. IEEE Int. Conf. Robotics and Automation (ICRA2003),

2003.

[24] A. Kamimura, H. Kurokawa, E. Toshida, K. Tomita, S. Murata, and S. Kokaji, “Au-

tomatic locomotion pattern generation for modular robots,” in Proc. IEEE Int. Conf. Ro-

botics and Automation (ICRA2003), 2003.

[25] A. Kamimura, H. Kurokawa, E. Yoshida, S. Murata, K. Tomita, and S. Kokaji, “Dis-

tributed adaptive locomotion by a modular robotic system, M-TRAN II,” in Proc. IEEE/

RSJ Int. Conf. Intelligent Robots and Systems (IROS2004), 2004, pp. 2370–2377.

[26] D. Marbach and A. J. Ijspeert, “Online optimization of modular robot locomotion,”

in Proc. IEEE Int. Conf. Mechatronics and Automation (ICMA 2005), 2005, pp. 248–253.

[27] A. Sproewitz, R. Moeckel, J. Maye, and A. J. Ijspeert, “Learning to move in modular

robots using central pattern generators and online optimization,” Int. J. Robot. Res., vol.

27, no. 3–4, pp. 423–443, Mar. 2008.

[28] E. Mytilinaios, M. Desnoyer, D. Marcus, and H. Lipson, “Designed and evolved

blueprints for physical self-replicating machines,” in Proc. 9th Int. Conf. the Simulation and

Synthesis of Living Systems (Artificial Life IX), vol. 2004. MIT, 2004, pp. 15–20.

[29] A. Sproewitz, A. Billard, P. Dillenbourg, and A. J. Ijspeert, “Roombots-mechanical

design of self-reconfiguring modular robots for adaptive furniture,” in Proc. 2009 IEEE

Int. Conf. Robotics and Automation, Kobe, Japan, 2009, pp. 4259–4264.

[30] W.-M. Shen, M. Krivokon, H. Chiu, J. Everist, M. Rubenstein, and J. Venkatesh,

“Multimode locomotion via SuperBot reconfigurable robots,” Auton. Robots, vol. 20, no.

2, pp. 165–177, Mar. 2006.

[31] S. Murata, E. Yoshida, A. Kamimura, H. Kurokawa, K. Tomita, and S. Kokaji,

“M-TRAN: Self-reconfigurable modular robotic system,” IEEE/ASME Trans. Mecha-

tronics, vol. 7, no. 4, pp. 431–441, 2002.

[32] V. Zykov, E. Mytilinaios, B. Adams, and H. Lipson, “Self-reproducing machines,”

Nature, vol. 435, p. 163, 2005.

[33] Y. Terada and S. Murata, “Automatic modular assembly system and its distributed

control,” Int. J. Robot. Res., vol. 27, no. 3–4, pp. 445–462, Mar. 2008.

[34] A. Sproewitz, M. Asadpour, Y. Bourquin, and A. Ijspeert, “An active connec-

tion mechanism for modular self-reconf igurable robotic systems based on physical

latching,” in Proc. IEEE Int. Conf. Robotics and Automation, 2008 (ICRA’08), 2008,

pp. 3508–3513.

[35] O. Michel, “Webots: Professional mobile robot simulation,” Int. J. Adv. Robot. Syst.,

vol. 1, no. 1, pp. 39–42, 2004.

[36] P. Mudry, J. Ruffin, M. Ganguin, and G. Tempesti, “A hardware-software design

framework for distributed cellular computing,” in Proc. 8th Int. Conf. Evolvable Systems:

From Biology to Hardware. Springer, 2008, p. 82.

[37] R. T. Schroer, M. J. Boggess, R. J. Bachmann, R. D. Quinn, and R. E. Ritzmann,

“Comparing cockroach and whegs robot body motion,” in Proc. IEEE Int. Conf. Robotics

and Automation 2004, Apr. 2004, pp. 3288—3293.

[38] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc. IEEE Int. Conf.

Neural Networks, 1995, vol. 4, pp. 1942–1948.

[39] R. Eberhart and Y. Shi, “Comparing inertia weights and constriction factors in par-

ticle swarm optimization,” in Proc. 2000 Congr. Evolutionary Computation, 2000, vol. 1,

pp. 84–88.

[40] Y. Bourquin, “Self-organization of locomotion in modular robots,” Ph.D. disserta-

tion, Bioinspired Robotics Group (BIRG), Ecole Polytechnique Fédérale de Lausanne

(EPFL), 2003.

[41] M. Clerc and J. Kennedy, “The particle swarm—Explosion, stability, and conver-

gence in a multidimensional complex space,” IEEE Trans. Evol. Comput., vol. 6, no. 1,

pp. 58–73, 2002.

[42] H. Kimura, Y. Fukuoka, and A. H. Cohen, “Adaptive dynamic walking of a quadru-

ped robot on natural ground based on biological concepts,” Int. J. Robot. Res., vol. 26, no.

5, pp. 475–490, May 2007.

