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Abstract

Several root anatomical phenes affect water acquisition from drying soil, and may therefore have utility in breeding 

more drought-tolerant crops. Anatomical phenes that reduce the metabolic cost of the root cortex (‘cortical burden’) 

improve soil exploration and therefore water acquisition from drying soil. The best evidence for this is for root corti-

cal aerenchyma; cortical cell file number and cortical senescence may also be useful in this context. Variation in the 

number and diameter of xylem vessels strongly affects axial water conductance. Reduced axial conductance may 

be useful in conserving soil water so that a crop may complete its life cycle under terminal drought. Variation in the 

suberization and lignification of the endodermis and exodermis affects radial water conductance, and may therefore 

be important in reducing water loss from mature roots into dry soil. Rhizosheaths may protect the water status of 

young root tissue. Root hairs and larger diameter root tips improve root penetration of hard, drying soil. Many of these 

phenes show substantial genotypic variation. The utility of these phenes for water acquisition has only rarely been 

validated, and may have strong interactions with the spatiotemporal dynamics of soil water availability, and with root 

architecture and other aspects of the root phenotype. This complexity calls for structural–functional plant modelling 

and 3D imaging methods. Root anatomical phenes represent a promising yet underexplored and untapped source of 

crop breeding targets.
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Introduction

Drought is a primary constraint to agriculture and continues 

to have signi�cant impacts in both developed and develop-

ing countries. This problem will be exacerbated by climate 

change, resulting in increased incidence and severity of 

drought in many regions, and consequently reduced food 

production (Lobell and Gourdji, 2012). The human popula-

tion is projected to reach 9.6 billion by 2050 (Lee, 2011), plac-

ing even greater pressure on world food security, especially in 

developing countries where >80% of the population increase 

is expected to occur (Roberts, 2011). The development of crop 

cultivars with enhanced drought adaptation and higher yield 

has been the focus of many crop improvement programmes. 

Roots play key roles in water acquisition and are a signi�cant 

component of plant adaptation and �tness in water-limited 

environments. New crop cultivars with improved root traits 

for water acquisition from drying soil could have a signi�cant 

impact on global food security.

Genotypic variation for root traits and their functional 

implications for water acquisition and increased yields under 

water-limited conditions have been reported for many crops. 

Such variation includes differences in anatomical phenes that 

can reduce the metabolic cost of soil exploration (Zhu et al., 

2010a; Burton et  al., 2013; Jaramillo et  al., 2013) and root 

architectural phenes capable of optimizing soil exploration in 

time and space (Lynch, 1995, 2013; Manschadi et al., 2006; 

Henry et al., 2011, 2012). In this review we concentrate on 

root anatomical traits that enhance water acquisition from 

drying soils. We will �rst discuss anatomical traits that can 
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improve water acquisition from drying soils by reducing the 

metabolic costs of soil exploration, followed by anatomical 

traits that in�uence radial and axial water transport. We then 

consider traits that improve root penetration of hard, drying 

soil. Finally, the prospects of deploying these traits in crop 

improvement will be discussed.

Traits that reduce the metabolic cost of soil 
exploration

A number of studies have shown that the metabolic costs 

of soil exploration by root systems are substantial, and can 

exceed 50% of daily photosynthesis (Lambers et al., 2002). 

Following the economic paradigm of plant resource alloca-

tion (Bloom et  al., 1985), we use the term ‘cost’ to denote 

metabolic investment, including the production and mainte-

nance of tissues, often measurable in units of carbon (Lynch 

and Ho, 2005). All else being equal, a plant that is able to 

acquire a limiting soil resource at reduced metabolic cost 

will have superior productivity, because it will have more 

metabolic resources available for further resource acquisition, 

growth, and reproduction.

The importance of root costs in soil resource acquisi-

tion is illustrated by the case of phosphorus (P) acquisition 

in common bean (Phaseolus vulgaris). In bean, low P avail-

ability increases the fraction of daily photosynthate respired 

by roots by 75% in both P-ef�cient and P-inef�cient geno-

types (Nielsen et al., 1998, 2001). However, P-ef�cient geno-

types have greater root growth per unit root respiration than 

P-inef�cient genotypes (Nielsen et al., 2001), which enables 

P-ef�cient genotypes to develop more than twice as much 

root biomass at low P than the P-inef�cient genotypes. P 

stress slightly increases the respiration per unit biomass of 

roots of the P-inef�cient genotype, but halves the respiration 

of roots of the P-ef�cient genotype (Lynch and Ho, 2005). 

Thus, adaptation to low P availability in bean is associated 

with the ability to explore the soil at minimal metabolic cost 

(Lynch and Ho, 2005; Lynch and Brown, 2006). The impor-

tance of root costs for soil resource acquisition was sup-

ported by a study with the functional–structural plant model 

SimRoot, which showed that root maintenance respiration 

accounts for a substantial portion of the effects of nitrogen 

(N), P, or potassium (K) de�ciency on the growth of maize 

plants (Postma and Lynch, 2011). The model predicts that 

under severe N or P de�ciency, root maintenance costs can 

reduce the growth of 40-day-old maize plants by almost 40%, 

and under severe K de�ciency, by >70% (Fig. 1). These stud-

ies in controlled environments and in silico underestimate 

actual root costs, which under �eld conditions include root 

loss to abiotic and biotic stress (Fisher et al., 2002).

Less is known about the root costs of crops under water 

stress, but it is known that water stress substantially increases 

root growth relative to shoot growth (Eghball and Maranville, 

1993; Palta and Gregory, 1997). A greater root to shoot ratio 

means that each unit of leaf area has more non-photosynthetic 

tissue to sustain, which reduces the overall plant growth rate 

(Hunt, 1982; Poorter and Remkes, 1990). As demonstrated 

by the case of P ef�ciency in beans, genotypes with less costly 

root tissue can maintain a larger total root biomass capable 

of acquiring more soil resources. This is important since even 

vigorous crops such as maize are unable to grow enough roots 

to explore the soil volume fully, especially during vegetative 

growth (Liedgens and Richner, 2001). In many drought envi-

ronments, the topsoil dries before the subsoil, and, as drought 

progresses, roots must exploit increasingly deeper soil strata 

to acquire water. Genotypes capable of supporting greater 

root biomass would be better able to develop the extensive, 

deep root systems required to utilize soil water resources fully 

(Sponchiado et al., 1989; White and Castillo, 1989). In maize, 

however, simple selection for root system size without regard 

for root costs actually decreases drought tolerance, by divert-

ing assimilates from grain (Bruce et al., 2002). Excessive root 

growth early in the growing season may also be counterpro-

ductive by exhausting soil water reserves before the plant is 

able to complete its life cycle (Richards and Passioura, 1989). 

Traits that affect the metabolic ef�ciency of root growth and 

soil exploration should therefore be important components 

of drought tolerance.

The importance of ‘cortical burden’

The metabolic cost of constructing root tissue is related to its 

biochemical composition, and the metabolic cost of sustain-

ing root tissue is a function of the amount of protoplasm in 

that tissue and its metabolic activity, as affected by protein 

turnover, ion uptake, temperature, etc. (Amthor, 2000). Root 

anatomy is an important determinant of both tissue compo-

sition and the proportion of root tissue that is metabolically 

Fig. 1. Growth reduction [percentage plant dry weight (d.w.)] due to root 
maintenance respiration in 40-day-old maize plants subject to varying 
degrees of deficiency of N, P, and K. From Postma JA, Lynch JP. 2011. 
Root cortical aerenchyma enhances the growth of maize on soils with 
suboptimal availability of nitrogen, phosphorus, and potassium. Plant 

Physiology 156, 1190–1201. www.plantphysiol.org. Copyright American 
Society of Plant Biologists.
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active. In the majority of plant species, the greatest propor-

tion of protoplasm in primary root tissue is typically found in 

parenchyma cells of the root cortex (Fig. 2a). Other metaboli-

cally active cells in the epidermis, endodermis, and living cells 

of the xylem and phloem are generally a small proportion of 

root volume, except in highly aerenchymatous plants such as 

rice, in which proportionately more protoplasm is in the stele 

pith, epidermis, and endodermis (Fig. 2b). Mature xylem and 

sclerenchyma are dead and therefore do not incur mainte-

nance costs. Variation in the proportion of root tissue repre-

sented by cortical parenchyma, the metabolic costs of which 

we term ‘cortical burden’ (Jaramillo et al., 2013), can therefore 

in�uence root costs. We have proposed that a simple measure 

of this is ‘living cortical area’ (LCA), measured in images of 

root cross-sections as total cortical area minus the area of 

root cortical aerenchyma (RCA), intercellular air space, and 

cell wall area (Jaramillo et al., 2013). A recent study supports 

a role for cortical burden in root costs and water acquisition 

under drought stress (Jaramillo et al., 2013). In this study of 

contrasting maize lines grown under well-watered or water 

stress conditions in soil mesocosms, LCA was correlated with 

root segment respiration, axial root growth, and plant growth 

under drought stress (Fig. 3). Several root anatomical phenes 

comprise LCA, including the number of cell �les across the 

cortex (cortical cell �le number or CCFN), the size of cortical 

cells (cortical cell size or CCS), and RCA.

Root cortical aerenchyma

There is increasing evidence that RCA can improve the acqui-

sition of water and nutrients by reducing the metabolic costs 

of soil exploration. Although the majority of research on RCA 

relates to its role under hypoxia (Jackson and Armstrong, 

1999; Drew et al., 2000), RCA is induced by a range of abi-

otic stresses under normoxic conditions, including low N, P, 

and sulphur (S), high temperature, and drought (Drew et al., 

1989; Przywara and Stepniewski, 2000; Bouranis et al., 2003; 

Evans, 2003; Zhu et  al., 2010a). The induction of RCA by 

nutrient stress led to the hypothesis that it was adaptive in 

infertile soils by reducing the metabolic cost of soil explora-

tion (Lynch and Brown, 2008). This proposal was supported 

by a study in which RCA formation resulting from P stress, 

ethylene treatment, and natural genotypic variation in maize 

and bean was associated with substantial reductions in the 

respiration of root segments and whole-root systems, as well 

as substantial reductions in root P content (Fan et al., 2003), 

and greater root growth in low-P soil (Lynch, 2007). A study 

with the functional–structural plant model SimRoot (Lynch 

et al., 1997) indicated that RCA could substantially improve 

the vegetative growth of plants under P stress (Postma and 

Lynch, 2010). After 40 d of simulated growth under P stress, 

RCA improved the growth of common bean (P.  vulgaris) 

plants by 14% and improved the growth of maize (Zea mays) 

plants by 70%, by reducing the P content and respiration of 

root tissue. In a subsequent SimRoot study, RCA increased the 

growth of 40-day-old maize plants up to 55% under N stress, 

up to 54% under P stress, and up to 72% under K stress. The 

inclusion of N in the second study is noteworthy in the present 

context since nitrate leaching results in the accumulation of 

N in deep soil strata over time. In this study, RCA increased 

rooting depth and therefore the capture of N as a leaching 

resource (indeed, the bene�t of RCA was greater when soil 

texture or precipitation accelerated nitrate leaching). This 

is relevant to water capture as in many environments water 

is concentrated in deep soil strata as drought develops. The 

prediction by SimRoot that RCA can improve rooting depth 

and N capture under N limitation has recently been supported 

in studies of maize lines with contrasting RCA phenotypes 

grown under low N conditions in soil mesocosms and �eld 

environments (Saengwilai, 2013). In these studies, differential 

RCA expression among maize recombinant inbred lines was 

associated with deeper rooting, better plant growth, and 60% 

better yield under N stress. The utility of RCA for improved 

water acquisition under drought was demonstrated by a study 

which compared maize recombinant inbred lines contrasting 

for RCA formation under water stress in soil mesocosms and 

a �eld rainout shelter (Fig. 4; Zhu et al., 2010a). In this study, 

RCA formation was associated with reduced root segment 

respiration, deeper rooting, especially under water stress, and 

epidermis

aerenchyma

cortex

endodermis

xylem

exodermis

a) maize b) rice

Fig. 2. Cross-section of maize (a) and rice (b) nodal roots showing 
anatomical features of each. Note the paucity of cortical cells in rice 
compared with maize, due to extensive aerenchyma development.

Fig. 3. Relative shoot biomass (ratio of drought to control) as a function of 
living cortical area of crown roots of maize grown in the greenhouse. Four 
recombinant inbred lines (RILs) were grown in 2007 (P = 0.058, R2 = 0.34) 
and nine RILs in 2011 (P = 0.008, R2 = 0.20). From Jaramillo RE, Nord 
EA, Chimungu JG, Brown KM, Lynch Jp. 2013. Root cortical burden 
influences drought tolerance in maize. Annals of Botany 112, 1–9.
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better leaf water status, plant growth, and yield under water 

stress. On average, high RCA genotypes had 8-fold greater 

yield than low RCA genotypes under water stress.

Taken together, these studies provide strong evidence that 

RCA improves soil resource acquisition by reducing the met-

abolic cost of soil exploration. The combination of results 

from SimRoot, greenhouse mesocosms, and �eld environ-

ments in South Africa and the USA is less vulnerable to mis-

interpretation than would be results from any one of these 

environments in isolation. Field studies can be in�uenced 

by complex environmental interactions of root phenes with 

soil properties (including soil biota), which are simpli�ed or 

absent in greenhouse mesocosms. The agreement of results 

from SimRoot modelling and empirical studies is notewor-

thy as SimRoot is a greatly simpli�ed ‘environment’ focusing 

primarily on soil resource acquisition as in�uenced by plant 

resource allocation and root structure. The fact that SimRoot 

correctly predicted the value of RCA for soil resource acqui-

sition by considering root metabolic costs is a rigorous dem-

onstration that the quantitative logic of this hypothesis is 

valid, considering root growth dynamics and �uctuating soil 

resource availability in time and space. Although RCA forma-

tion was bene�cial in unstressed plants in the SimRoot stud-

ies, both SimRoot and empirical studies show that the bene�t 

of RCA increased with greater water or nutrient stress. This 

is because a relatively small increase in the acquisition of a 

limiting resource can have relatively large effects on plant 

growth, because of the autocatalytic interaction of greater 

soil resource capture with greater photosynthesis and there-

fore greater root growth (Wissuwa, 2003).

A recent study reported substantial genetic variation for 

RCA formation and other root traits among 256 Zea acces-

sions spanning a range of wild species and landraces from 

diverse provenances, emphasizing stressful soil environ-

ments (Burton et  al., 2013). Quantitative trait loci (QTLs) 

have been identi�ed for RCA abundance in maize using a 

Z. mays×Z. nicaraguensis backcross population (Mano and 

Omori, 2008, 2009), and more recently in several Z.  mays 

recombinant inbred populations (Burton, 2010), and in asso-

ciation studies (Saengwilai, 2013) using a diversity panel 

developed for use in temperate climates (Hansey et al., 2011).

Considering the substantial bene�ts of  RCA for soil 

resource capture, the large genetic variation for RCA 

formation in maize suggests that RCA formation entails 

trade-offs for plant �tness. Most obviously, the conversion 

of  living cortical tissue to air space will result in the loss 

of  normal cortical functions, including radial transport 

of  water and nutrients to the stele, buffering of  toxic ions 

(notably Na and Cl under salinity stress), and mycorrhizal 

habitat. The loss of  cortical cells may also affect the bio-

physical properties of  the root, which could be important 

in the penetration of  hard, dry soil. Aerenchyma lacunae 

may create low resistance pathways for the spread of  root 

pathogens once they enter the cortex. There is very little 

Fig. 4. Root length at a depth of 40–50 cm, mid-day leaf relative water content, and seed yield of maize plants with high or low root cortical aerenchyma 
(RCA) formation under well-watered (WW) or water-stressed (WS) conditions in the field. Bars having different letters within a panel are different at P≤0.05. 
From Zhu JM, Brown KM, Lynch Jp. 2010. Root cortical aerenchyma improves the drought tolerance of maize (Zea mays L.). Plant, Cell and Environment 
33, 740–749. (This figure is available in colour at JXB online.)
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information about potential RCA trade-offs in the lit-

erature. One study investigating the relationship between 

RCA and resistance to radial compression, such as could 

occur with trampling in pastures, showed that RCA did 

not reduce mechanical strength in the presence of  multi-

seriate layers in the outer cortex, a characteristic found in 

the graminaceous and cyperaceous species tested (Striker 

et al., 2007). RCA formation reduces radial hydraulic con-

ductance (Fan et al., 2007) and can reduce the radial move-

ment of  nutrients in maize roots (Hu et al., 2014). In this 

regard it is important to consider the spatial distribution 

of  RCA formation (Fig.  5). RCA forms in mature root 

tissue behind the zone of  active root elongation and root 

hair formation. As such the region of  RCA formation is 

behind the region where most of  the acquisition of  immo-

bile resources such as P, K, and ammonium occurs. Nitrate 

and water are more mobile soil resources, and RCA forma-

tion may interfere with the mass �ow of  these resources to 

mature roots, although, under conditions of  low water or 

nitrate availability, the capture of  these resources may also 

be localized largely to the root tips. Therefore, even though 

RCA formation reduces the radial transport of  water and 

nutrients in mature root tissue, the effects this may have 

on soil resource acquisition by the whole root system are 

unclear and merit investigation. Information about other 

potential trade-offs for RCA formation, including biotic 

interactions, is lacking.

Root cortical senescence

Root cortical senescence (RCS; sometimes called root cortical 

death) is a phenomenon widely reported in cereals, particularly 

wheat and barley. This phenomenon has been characterized 

using various staining techniques and by DNA fragmenta-

tion (Lascaris and Deacon, 1991a; Wenzel and McCully, 1991; 

Liljeroth and Bryngelsson, 2001). Careful examination of the 

vitality of cortical cells in wheat and barley showed that RCS 

resulted in sloughing of most cortical cells in older roots, but that 

the root cortex of younger roots did not senesce (Wenzel and 

McCully, 1991), contradicting numerous early reports of corti-

cal senescence of very young plants, assessed by acridine orange 

staining (Henry and Deacon, 1981; Kirk and Deacon, 1987). In 

later work, a pressure probe was used to test cortical cell turgor, 

revealing a progressive decline in turgor with distance from the 

root apex and the association of signi�cant turgor loss with loss 

of visible nuclei and reduced root diameter (Bingham, 2007).

RCS has several similarities to formation of lysigenous 

RCA. Both phenomena involve lysis of cortical cells preceded 

by molecular changes characteristic of programmed cell death, 

such as DNA fragmentation and autophagy (Lingua et  al., 

1999; Gunawardena et al., 2001; Liljeroth and Bryngelsson, 

2001; Jiang et al., 2010). Both processes are accelerated when 

mineral nutrients are insuf�cient (Gillespie and Deacon, 

1988; Drew et al., 1989). However, RCS and RCA formation 

have distinct characteristics; for example, nuclei persist in the 

innermost cortical layer during RCS, while these are the �rst 

to be lost during RCA formation (Henry and Deacon, 1981; 

Deacon et  al., 1986), and silver ions, which inhibit ethylene 

action, reduce RCA but not RCS formation (Drew et al., 1981; 

Lascaris and Deacon, 1991a). In addition to loss of the cortex, 

RCS involves sloughing of the outer layers of the root, remov-

ing the barriers of the epidermis and exodermis; these remain 

intact during RCA formation. RCA formation in maize is not 

followed by RCS (Wenzel and McCully, 1991) and it appears 

that species differ in their propensity to one or the other.

Presumably RCS formation would produce metabolic sav-

ings similar to those discussed for RCA, since living cortical 

cells are lost, allowing their contents to be redistributed and 

eliminating their respiratory maintenance costs. It has been 

proposed that formation of RCS, like RCA, would reduce the 

P cost of the roots, and therefore bene�t the plants by permit-

ting recycling of P from the senesced cortical cells (Robinson, 

1990), but this hypothesis has not been tested. Unlike RCA, 

RCS would increase the radial conductivity of water and 

nutrients, since the layers outside the endodermis have now 

been lost. Of these, the epidermis/exodermis is most limiting 

for radial conductivity, but the cortex imposes some additional 

limitation (North and Nobel, 1995, 1996). The RCS progres-

sion rate has been associated with increased susceptibility to 

diseases, though diseases have not been shown to increase the 

rate of RCS (Yeates and Parker, 1986; Kirk and Deacon, 1987; 

Lascaris and Deacon, 1991b). On the other hand, coloniza-

tion of leek roots with the mycorrhizal fungus Glomus mos-

seae slowed the progression of RCS (Lingua et al., 1999).

Genetic variation has been observed for RCS formation 

in wheat and barley (Henry and Deacon, 1981; Deacon and 

Fig. 5. Spatial distribution of root cortical aerenchyma in simulated maize 
plant 40 d after planting, with hotter colours representing more aerenchyma. 
From Postma JA, Lynch JP. 2011. Root cortical aerenchyma enhances the 
growth of maize on soils with suboptimal availability of nitrogen, phosphorus, 
and potassium. Plant  Physiology 156, 1190–1201. www.plantphysiol.org. 
Copyright American Society of Plant Biologists.
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Lewis, 1982; Liljeroth, 1995), indicating that it could serve as 

a breeding target if the utility of this trait is demonstrated. 

However, much more research is needed before this trait could 

be deployed. It may be possible to phenotype large populations 

using RootScan (Burton et al., 2012b) or similar programs, but 

this has not been attempted. The value of the trait, its trade-offs, 

and the optimal expression of RCS in various environments are 

unknown. In terms of genetics, nothing is known of the genes 

controlling the process and there have been no genetic maps 

generated or identi�cation of genes likely to be responsible.

Cortical cell file number

By analogy with RCA, variation in CCFN should also be 

expected to reduce the metabolic costs of soil exploration, 

and thereby in�uence water acquisition from drying soil. 

CCFN ranged from 6 to 16 in a wide survey of the genus Zea 

(Burton et al., 2013). Such variation should be closely related 

to root segment respiration, and therefore rooting depth, and 

water acquisition, as observed for variation in RCA. A poten-

tial trade-off  of this phene for water acquisition is that it 

would reduce root diameter, which is related to the ability to 

penetrate hardening, drying soil (Clark et al., 2003, 2008).

Synergism with architectural traits

The utility of RCA and probably other root anatomical 

phenes for soil resource acquisition will be affected by the 

external environment as well as the plant phenotype in which 

it is expressed. In the SimRoot studies of RCA (Postma and 

Lynch, 2010, 2011), both types of interactions were observed. 

RCA was generally more useful for N capture in environments 

with greater leaching, caused by changes in soil texture or pre-

cipitation, since the bene�t of RCA for the rapid development 

of deep roots had greater effects on N capture when N leach-

ing was more rapid. This is probably similar for water capture 

under drought. RCA may be more advantageous for water 

capture in drought environments in which water is more avail-

able at depth because of the rate of surface soil dehydration or 

soil textural strati�cation, compared with soils in which water 

availability is less strati�ed by depth. RCA was more bene�cial 

for soil resource capture in maize phenotypes with abundant 

root branching (Postma and Lynch, 2011) or a greater number 

of nodal roots (York et al., 2013), since in such phenotypes 

root metabolic costs are relatively more important than in 

phenotypes with less branching. Such phene interactions are 

probably common, and important for plant �tness, although 

they are poorly understood (York et al., 2013). The number of 

potential phene interactions and phene×phene×environment 

interactions of interest in this context is quite large, which 

calls for in silico optimization approaches (York et al., 2013).

Traits that influence water transport

Xylem vessel diameter

Xylem vessel traits are important because of their direct 

effect on axial water conductance. A  breeding programme 

conducted in Australia for dryland spring wheat production 

targeted seminal root xylem vessel diameter as a method for 

improving water use ef�ciency (Passioura, 1983; Richards 

and Passioura, 1989). In the targeted agroecosystem, the 

spring wheat crop relies on stored water, and there is a risk 

of stored water depletion before grain �ll is complete. The 

concept was that reduced xylem vessel diameter in the semi-

nal (seedling) roots would reduce water use early in the sea-

son, conserving available water to support grain set and yield 

(Richards and Passioura, 1981a, b). Since water transport in 

xylem vessels is proportional to the fourth power of the ves-

sel radius (Hagen–Poiseuille law), reducing the diameter of 

the largest xylem vessels would have a strong effect on water 

�ow through the root system by reducing axial conduct-

ance. Under ample water availability, the development of the 

nodal root system would greatly increase axial conductance 

and support the evapotranspiration needs of larger shoots 

(Richards and Passioura, 1981a; Passioura, 1983). Genetic 

variation for xylem vessel diameter and number was dem-

onstrated in wheat, and heritability of xylem vessel diameter 

was high (72%) (Richards and Passioura, 1981a, b). Selection 

for smaller xylem vessel diameter resulted in a small improve-

ment of wheat yield under drought without a yield penalty 

in wetter seasons (Richards and Passioura, 1989; Watt et al., 

2013). This approach was later superseded by alternate meth-

ods of selecting for effective use of water (Blum, 2009).

In most agroecosystems, where water is available at depth 

throughout the season, improving water acquisition may 

require increases in axial conductivity. Larger xylem vessel 

diameter has been used as a selection criterion for breeding 

rice in Asia, where the goal is improved water acquisition and 

transport rather than conservation. It was proposed that larger 

xylem vessels could improve water uptake and yield, especially 

if  combined with deep roots (Yambao et  al., 1992; Kondo 

et al., 2000). Root diameter, which has repeatedly been posi-

tively associated with drought avoidance in rice (Gowda et al., 

2011), is positively correlated with the size of late metaxylem 

in rice (Yambao et al., 1992). As in wheat, xylem vessel diam-

eter was shown to be highly heritable and genetically variable, 

and QTLs regulating the size and number of late metaxylem 

have been identi�ed using a biparental population derived 

from indica and tropical japonica parents (Uga et al., 2008). 

A study of aus and hill cultivars showed a positive relationship 

between xylem vessel diameter and drought resistance (Haque 

et al., 1989), while another study using �ve rice cultivars failed 

to show a relationship between xylem vessel diameter and 

response to drought (Kondo et al., 2000). However, given the 

number of other important factors for drought response, the 

possible contribution of xylem vessel diameter to improv-

ing water acquisition and utilization, and its interaction with 

other traits, such as deep roots, deserves additional research.

Xylem vessel number and diameter are affected by the 

environment as well as by genetics. Late metaxylem vessel 

diameter in rice declines with the imposition of drought, a 

change that was suggested to reduce the risk of cavitation 

(Henry et al., 2012). Likewise drought causes reduction in late 

metaxylem vessel diameter in the grass Paspalum dilatatum 

(Vasellati et al., 2001) and grapevines (Mapfumo et al., 1994). 
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Deep roots of trees had larger late metaxylem vessel diameter 

than shallow roots (McElrone et al., 1999).

Given the fact that radial water conductance is considered 

to be more limiting for water movement than axial conduct-

ance, is metaxylem vessel diameter a reasonable target for 

improving water acquisition; that is, drought avoidance? For 

water conservation in cereals, early work showed that drought 

can reduce nodal root development, and, since monocots lack 

secondary growth, axial water transport depends on the few 

late metaxylem vessels of the seminal roots (Passioura, 1983). 

Restricting their size would then restrict overall hydraulic 

conductance and therefore water usage. Whether increas-

ing the size of late metaxylem vessels in other plants would 

improve water uptake depends on other root traits and the 

agroecosystem in question.

Cell wall modifications: suberization and lignification

Suberization and ligni�cation of root cell layers can restrict 

the movement of water, nutrients, microorganisms, and even 

gases into and within the root. The endodermal and exoder-

mal layers, which are, respectively, the innermost and outer-

most layers of the cortex, contain Casparian bands that are 

suberized and ligni�ed, and may additionally develop suberin 

lamellae (Ma and Peterson, 2003). These cell wall modi�ca-

tions regulate the movement of water and ions, mainly by 

reducing apoplastic transport (Steudle, 2000; Enstone et al., 

2003; Ranathunge et al., 2005). Many wetland plants, includ-

ing rice, develop a barrier to radial oxygen loss through 

suberization of the hypodermis (Colmer, 2003; Garthwaite 

et al., 2008).

Suberization and ligni�cation of the endodermis have 

often been observed to increase in stressed roots (Hose et al., 

2001); for example, in drought-stressed rice, suberization of 

the endodermis increased and that of the sclerenchyma layer 

decreased (Henry et  al., 2012). Rice cultivars varied in the 

amount of endodermal suberization under drought, with 

more drought-tolerant lines having a stronger response (Henry 

et al., 2012). Water retention under drought may be improved 

by increased suberization of the endodermis (Henry et  al., 

2012), while Na+ uptake was negatively associated with endo-

dermal and exodermal suberization in rice (Krishnamurthy 

et al., 2011). The endodermis was an important regulator of 

hydraulic conductance in a comparison of several soybean 

varieties, though this relationship was based on dimensions 

and not directly on suberization (Rincon et  al., 2003). An 

examination of �ve Arabidopsis accessions with different 

root hydraulic conductivities did not show any relationship 

between suberization patterns and hydraulic pro�les (Sutka 

et al., 2011). Another study using Arabidopsis mutants with 

altered suberin composition showed that reduced tissue con-

tent of certain polymers was associated with increased radial 

conductivity (Ranathunge and Schreiber, 2011), suggesting 

a potential for genetic variation in this trait. Clearly more 

research is needed on the role of suberization in controlling 

hydraulic conductivity and the movement of ions.

In order for suberization and ligni�cation to become 

selection targets in plant breeding, much more needs to 

be learned about the environmental and genetic control of 

development of  apoplastic barriers in various root tissues. 

For example, what are the advantages and disadvantages 

of  earlier and/or more intense suberization of  root endo-

dermal, exodermal, and sclerenchyma layers under stressed 

and unstressed conditions? Would plasticity of  these traits 

be advantageous or not? How do they interact with other, 

non-anatomical traits affecting radial conductivity, such as 

aquaporin expression? What types of  genetic factors con-

trol these processes and how could they be manipulated in a 

breeding programme?

Rhizosheaths

Rhizosheaths are composed of soil particles bound to the 

root by root hairs, microorganisms, and mucilages to form a 

distinct soil domain around the roots of grasses and certain 

other plants (McCully, 1999). They form on young, active 

regions of the root where the epidermis is still intact, though 

not at the growing root tip. They are lost from the more mature 

portions of the root, and their presence is indicative of imma-

ture, non-conducting late metaxylem vessels (McCully, 1995). 

Rhizosheaths are thought to improve the hydration of roots 

in dry sandy soils (North and Nobel, 1997), but mesophytic 

plants as well as xeric plants form rhizosheaths (Watt et al., 

1994; McCully, 1999; Haling et al., 2010a). The mucilage in 

the rhizosheath help this domain to hold more water than the 

bulk soil (Young, 1995), and, even under drought, the dis-

crete structure of the rhizosheath prevents an air gap from 

forming when the soil shrinks from dehydration (McCully, 

1995; Walker et al., 2003). These features may assist in nutri-

ent uptake; however, this possibility has received little atten-

tion, apart from work by Nambiar (1976) suggesting that 

the rhizosheath improved zinc uptake in several grasses. In 

addition, the fact that the underlying root tissue lacks sig-

ni�cant hydraulic conductivity casts doubt on the role of the 

rhizosheath for plant water relations (Guinel and McCully, 

1986), although hydraulic isolation of the root tips may have 

survival value in dry soil. Another suggested function for 

the rhizosheath is management of microbial populations via 

the activity of border cells, which remain alive in this region 

(Hawes et al., 1998).

The main plant features that have been demonstrated to 

affect formation of the rhizosheath are root hairs and muci-

lage production. Mucilage is produced by border cells and 

persists in the rhizosphere as the growing tip moves beyond 

the zone of production; it is this mucilage that binds the 

rhizosheath together (Vermeer and McCully, 1982; McCully, 

1995). Very little is known about the genetics of mucilage pro-

duction, and mucilages from the root cap and border cells are 

distinct from those of the epidermis (Vermeer and McCully, 

1982), making investigation of this phene more complex.

Root hairs are particularly important in determining the 

size of rhizosheaths, and root hair length was directly related 

to rhizosheath mass in wheat and barley (Haling et  al., 

2010b; Brown et al., 2012b). Substantial research supports an 

important role for root hairs in P acquisition (Gahoonia and 
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Nielsen, 1997, 1998, 2004; Bates and Lynch, 2001; Zhu et al., 

2010b; Brown et  al., 2012a, b), and additional work shows 

their importance under combined stresses of low P plus 

drought (Brown et al., 2012b) and low P plus soil compaction 

(Haling et al., 2013). Genetic variation in rhizosheath forma-

tion on acid soil in wheat and barley (Haling et al., 2010b) 

was associated with the aluminium tolerance of the root hairs 

(Delhaize et al., 2012), demonstrating the importance of root 

hairs for rhizosheath formation. Selecting for longer root 

hairs with greater persistence would be expected to increase 

the size of the rhizosheath.

Another possible anatomical feature that could affect abi-

otic stress tolerance via rhizosheath processes is the position 

of xylem vessel maturation along the root axis. Since rhizos-

heaths develop only over zones of immature xylem vessels 

and are lost after the xylem matures (McCully, 1999), alter-

ing the length of the immature xylem vessel zone should also 

alter the length of the rhizosheath. We are not aware of any 

research showing genetic variation for this trait.

Traits that improve penetration of hard soil

Mechanical impedance to root growth is one of the most 

important factors determining root elongation and prolif-

eration within a soil pro�le. Genetic variation within and 

between species has been reported for the capacity of roots 

to penetrate hard soil (Materechera et  al., 1991; Bengough 

et al., 2006) and access water in deep soil layers. For example, 

rice cultivars that were able to penetrate hardpans had better 

access to water and better drought avoidance (Clark et  al., 

2002), indicating that the mechanical impedance experienced 

by roots is a major limitation to root growth in drying soil. 

There is a strong relationship between root diameter and the 

ability of the root to penetrate hard soil (Materechera et al., 

1991). Thicker roots are more resistant to buckling and de�ec-

tion when encountering hard soil (Whiteley et al., 1982; Clark 

et al., 2008), explaining why thicker roots penetrate better in 

strong soils. In addition, thick roots may relieve the axial 

stress to the growing root tip when the root encounters hard 

soil (Abdalla et al., 1969; Hettiaratchi, 1990). The reduction 

of axial stress results from soil loosening at the root tip due 

to radial expansion of a cavity. The relief  of axial stress by 

thick roots depends on the level of soil–root friction, which is 

in�uenced by the presence of a slippery coating of detached 

border cells and mucilage (Kirby and Bengough, 2002).

In addition to root diameter, root hairs also play a role in root 

penetration of hard soils. Haling et al. (2013) proposed that root 

hairs improve root penetration in mechanically impeded soil. 

Studies involving barley lines with and without root hairs show 

that lines with root hairs were able to penetrate the mechani-

cally impeded soil. Root hairs appear to help roots to penetrate 

into mechanically impeded soil layers by providing anchor-

age to the growing root tip, but do not necessarily increase the 

root elongation rate within the layer. One potentially relevant 

trait, hardly ever considered in relation to root penetration, is 

the genotypic variation in ability of roots to locate cracks and 

channels in the soil, a characteristic potentially very relevant to 

the penetration of structured subsoil (McKenzie et al., 2009).

Root architecture phenes may also play a role in root pen-

etrance of hard soils. Steep root angles are associated with 

deep rooting and offer advantages in drying soils by enhanc-

ing water acquisition in deep soil layers, while shallow root 

angles are associated with improved acquisition of less mobile 

soil resources such as P (Lynch, 2013). The angle of incidence 

of a root at a strong layer in�uences root penetration (Dexter 

and Hewitt, 1978). Thus, steep roots have a high likelihood 

of penetrating horizontal strong soil layers (Whalley et  al., 

2012). As noted above, synergisms between root growth angle 

and anatomical phenes affecting the penetration of hard soil 

should be expected, but are poorly understood.

Optimal versus maximal water acquisition 
from drying soil

Maintenance of soil exploration is an imperative for annual 

plants in drying soils. In many environments, drying soil 

marks the beginning of an extended dry season, in which an 

annual plant must maintain soil exploration to capture water 

that is receding to deeper soil strata. Several of the anatomi-

cal phenes discussed above directly sustain soil exploration, 

such as phenes that reduce root metabolic cost, and phenes 

that improve penetration of hard soil. In the context of the 

maintenance of soil exploration by individual root axes, opti-

mal water acquisition is likely to be signi�cantly less than 

maximal water acquisition. Most directly this is because 

of the need for the growing root axes to maintain internal 

water availability suf�cient for turgor and elongation into 

hardening soil. A  bene�t related to reduced water acquisi-

tion is that moisture remaining in the soil surrounding the 

root will facilitate soil penetration by the root axes and lateral 

roots. The hydraulic isolation of rhizosheaths, delayed xylem 

maturation, and increased suberization of the endodermis 

may be viewed as mechanisms to reduce the desiccation of 

growing root tips and their surrounding rhizosphere, which 

is needed for sustained soil exploration and water acquisi-

tion. Reduced water supply to shoots under drought also has 

additional bene�ts under terminal drought, in the short term 

reducing leaf water status and stomatal conductance during 

periods of peak evaporative demand, thereby improving the 

integrated daily water use ef�ciency of photosynthesis, and in 

longer time scales by reducing shoot growth and therefore the 

demand for water as well as shoot/root biomass partitioning. 

Anatomical phenes that reduce the hydraulic conductance 

of root systems under drought may therefore be important 

both for sustaining soil exploration and water capture and for 

improving the economy of water use by shoots by improving 

water use ef�ciency and reducing overall water demand.

Breeding prospects/research needs

Almost all of the traits discussed above show genetic varia-

tion among crop genotypes, and thus could be deployed in 

crop breeding programmes if  their utility can be established 

for drought tolerance. The utility of several traits is fairly well 

established and they can be deployed at least in pilot efforts. 
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The slowing of crop water use by selecting for reduced xylem 

vessel diameter is an early example of the deployment of root 

traits in crop breeding (Richards and Passioura, 1989). Root 

hair length (and root hair density, which is usually correlated 

with root hair length) has clear value for the acquisition of 

P and probably other diffusion-limited nutrients such as K 

and ammonium, and may improve root penetration of hard, 

drying soil. RCA appears to be a useful adaptation to subop-

timal availability of both nutrients and water in maize. The 

utility of the other traits discussed above is more speculative 

and would require validation before deployment in breeding 

programmes.

An obstacle to the deployment of root phenes in crop 

breeding, especially anatomical root phenes, is the dif�culty 

in evaluating root phenotypes of a large number of individual 

plants. Field excavation of root systems can be conducted on 

a fairly large scale (Trachsel et al., 2011), but this must be fol-

lowed by anatomical analysis, which, despite the availability 

of image analysis tools, remains tedious. Several anatomical 

phenes may be amenable to phenotypic evaluation in young 

plants grown under controlled conditions (Burton et  al., 

2012a, b). Identi�cation of genetic markers for anatomical 

phenes would greatly facilitate their use in breeding pro-

grammes (Uga et al., 2008; Lynch, 2011; Henry et al., 2012; 

Henry, 2013; York et al., 2013).

A more challenging obstacle is the need to understand the 

utility of speci�c root phenes in the context of speci�c agro-

ecosystems and speci�c phenotypic backgrounds, namely the 

�tness landscape (Lynch and Brown, 2012). As noted above, 

there are important �tness trade-offs for many root phenes, 

and important environmental and phenotypic interactions 

that affect the utility of any given root phene for drought toler-

ance. These are very poorly understood at present. The utility 

of anatomical phenes for water acquisition will depend on the 

spatiotemporal dynamics of soil water availability. Because of 

the complexity of the soil environment and the large number 

of potential interactions and scenarios, in silico approaches, 

for example via functional–structural plant models such as 

SimRoot, will be important tools in concert with empirical 

studies. This challenge will require expertise in plant biology, 

rhizosphere microbiology, and soil science that span traditional 

funding and training foci. Most importantly, this challenge calls 

for renewed emphasis on understanding the plant phenome.
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