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Abstract

We study the connection between triangulations of a type A root polytope and
the resonance arrangement, a hyperplane arrangement that shows up in a surprising
number of contexts. Despite an elementary definition for the resonance arrangement,
the number of resonance chambers has only been computed up to the n = 8 dimen-
sional case. We focus on data structures for labeling chambers, such as sign vectors
and sets of alternating trees, with an aim at better understanding the structure of
the resonance arrangement, and, in particular, enumerating its chambers. Along
the way, we make connections with similar (and similarly difficult) enumeration
questions. With the root polytope viewpoint, we relate resonance chambers to the
chambers of polynomiality of the Kostant partition function. With the hyperplane
viewpoint, we clarify the connections between resonance chambers and threshold
functions. In particular, we show that the base-2 logarithm of the number of reso-
nance chambers is asymptotically n2.
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1 Introduction

This is a story of three counting problems:

1. the number of chambers of polynomiality of the Kostant partition function,

2. the number of threshold functions, and

3. the number of maximal unbalanced families.

All three counting problems have resisted exact enumeration beyond small cases. We
find in Sloane’s On-Line Encyclopedia of Integer Sequences [39] that problem (1) has 6
entries (A119668), problem (2) has 10 entries (A000609), and problem (3) has 8 entries
(A034997). The purpose of this article is to provide some links between these problems
and to suggest some data structures that might prove useful for either exact or asymptotic
enumeration.

1.1 Kostant chambers

Vector partition functions are fundamental in mathematics. A special vector partition
function associated to the type An root system is the Kostant partition function, which
was introduced by Bertram Kostant in 1958 in order to write down the multiplicity of a
weight of an irreducible representation of a semisimple Lie algebra, also known as the Weyl
character formula or Kostant multiplicity formula [24,25]. Kostant partition functions are
ubiquitous in mathematics, appearing not only in representation theory, but in algebraic
combinatorics, toric geometry and approximation theory, among other areas.

The Kostant partition function is a piecewise polynomial function [40] whose domains
of polynomiality are maximal convex cones in the common refinement of all triangulations
of the convex hull of the positive roots (see [12]), which we will refer to as Kostant
chambers. Let Kn denote this collection of cones, and let Kn = |Kn| denote the number
of Kostant chambers. For example, Figure 1 shows the seven chambers of K3.

The inspiration for our work stems from an open problem posed by Kirillov [23] and
its investigation by de Loera and Sturmfels in [12].

Question 1. How many chambers of polynomiality does the Kostant partition function
have?

It is an open problem to show that enumerating Kn is #P-hard [11]. The values of
Kn have been calculated up to n = 6 by de Loera and Sturmfels [12]. (It is natural to ask
about Kostant chambers for other root systems. Baldoni, Beck, Cochet, and Vergne [2]
have similar exact low-dimensional calcluations for the number of Kostant chambers in
classical root systems other than type An. We do not pursue other root systems in this
paper.) See Table 1.
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Figure 1: A two-dimensional slice of the set of cones in K3, i.e., the 7 domains of polyno-
miality for the Kostant partition function.

1.2 Threshold functions

The study of linear threshold functions has a long history of applications in a variety dis-
ciplines, including Economics, Psychology, and Computer Science [33]. These are Boolean
functions f : {−1, 1}n → {−1, 1} of the form f(x) = sgn(t + a · x) for some threshold t
and some vector a known as the weight vector.

It is well-known that threshold functions correspond to their weight vectors a only
up to the half-spaces determined by negative/nonnegative dot products with ±1 vectors
(see, e.g., [42]). That is, threshold functions are in bijection with the chambers in the
hyperplane arrangement whose normal vectors are all ±1 vectors, representing vertices
of an (n + 1)-cube. Let Tn+1 denote this arrangement of hyperplanes, which we call the
threshold arrangement, and let Tn denote the number of chambers in this arrangement, i.e.,
the number of threshold functions on n variables. See Figure 2 for the rank 3 arrangement.
More details will come in Section 5. According to [39, A000609], the largest known exact
value for Tn is T9 = 144 13053 14531 21108, computed in 2006 by work of Gruzling [19].
See Table 1. While exact values are in short supply, some asymptotic estimates for Tn
have been made. The best estimate we know of comes from work of Zuev [42], which
shows that log2 Tn ∼ n2.

1.3 Maximal unbalanced families

While perhaps less well-known, maximal unbalanced families have appeared in a surprising
number of guises. A family of subsets, which we think of as a collection of vertices of
an n-cube {0, 1}n, is balanced if the convex hull of the vertices intersects the diagonal
of the n-cube. A family is unbalanced otherwise. Shapley and others studied balanced
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Figure 2: A view of the threshold arrangement T3 of rank 3. In the image we can see
seven chambers above V∅ (the other seven are antipodal to these), thus there are T2 = 14
threshold functions on two variables.

families in the context of game theory [38]. Balanced families are closed under taking
unions, and hence some of Shapley’s results are phrased in terms of minimal balanced
families. Dually, the collection of unbalanced families is closed under taking intersections,
which inspired the investigation of maximal unbalanced families. In the work of Billera,
Tatch Moore, Dufort Moraites, Wang, and Williams [7], it is recognized that maximal
unbalanced families are in bijection with chambers of a hyperplane arrangement which
we refer to as the resonance arrangement, following [6, 9].

The resonance arrangement appears in several places: For example, Kamiya, Take-
mura, and Terao studied this arrangement with relation to “ranking patterns of unfolding
models” which have found applications in Psychometrics, Marketing, and Voting The-
ory [21, 22].1 In the case of ranking patterns of codimension one, they find the patterns
in bijection with maximal unbalanced families. In Physics, Evans encountered and enu-
merated “generalized retarded functions” when studying the analytic continuations of
thermal Green functions [16, 17] of low rank, and it happens that these functions are in
bijection with maximal unbalanced families as well. Recent mathematical work has also
connected to unbalanced families and the resonance arrangement: Cavalieri et al. show
that the chambers of the resonance arrangement correspond to domains of polynomiality
for double Hurwitz numbers [9, Theorem 1.3]; Björner used combinatorial topology to
make a connection between maximal unbalanced families and a conjecture from extremal
combinatorics [8]; and Lewis, McCammond, Petersen, and Schwer found that the local
distribution of reflection length in the affine symmetric group is generic in chambers of
the resonance arrangement [27, Proposition 3.2(ii)]. See also Early [14,15] and Proudfoot
and Ramos [36].

1Kamiya, Takemura, and Terao call the resonance arrangement the all-subsets arrangement, and
that name is also used by Billera, Tatch Moore, Dufort Moraites, Wang, and Williams. We adopt the
nomenclature of Cavalieri et al. which is also followed in later work on Hurwitz numbers and is used
in recent work of Billera, Billey, and Tewari [6]. In Liu, Norledge, and Ocneanu [28], the resonance
arrangement is also called the adjoint braid arrangement.
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Figure 3: The rank three resonance arrangementR3 projected onto the V∅ = {(w, x, y, z) :
w+ x+ y + z = 0} hyperplane. There are 16 chambers visible, and another 16 antipodal
to these, so R3 = 32.

While it can be defined in several equivalent ways, we will see that the resonance
arrangement, denoted Rn, is isomorphic to the intersection of the threshold arrangement
with the hyperplane {x ∈ Rn+1 :

∑
xi = 0}. See Figure 3. We let Rn denote the number of

chambers of the resonance arrangement, i.e., the number of maximal unbalanced families
on {0, 1}n+1. The largest known value of Rn according to OEIS is R8 = 41 91727 56930
contributed in 2011 by Evans [39, A034997]. Kühne provides formulas for the first two
non-trivial Betti numbers of the resonance arrangement [26]. From general properties of
hyperplane arrangements it follows that the number of resonance chambers has roughly
the same asymptotic behavior as the number of threshold functions, so log2Rn ∼ n2 as
well. We make this and other claims precise in the next subsection.

1.4 Results and questions

We now state some results relating Kn, Tn, and Rn. In Table 1 we compare the sequences
in various ways.

Remark 1 (Indexing of sequences). The indexing of Kn matches the dimension of the
positive root cone, i.e., the rank of the root system An. This is in agreement with other
work, such as [12]. We caution however that we will use collections of trees on [n+ 1] to
label Kostant chambers.

The number Tn is the number of linear threshold functions on n variables, but the
threshold arrangement Tn+1 has rank n + 1. For example, there are four one-variable
threshold functions, T1 = 4, corresponding to four cones in a plane, and T2 = 14 counts the
two-variable threshold functions, corresponding to fourteen chambers in the arrangement
of planes in Figure 2. We choose to align our index with the number of variables in
the corresponding threshold function, since that convention is well-established in the
literature.
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n
⌊

(n+1)
2n+1 Tn

⌋
Rn Kn+1

1
2
Tn

Rn+1

(n+2)
2n

2

1 2 2 2 2 2 2
2 5 6 7 7 8 16
3 26 32 48 52 74 512
4 294 370 820 941 1882 65536
5 8866 11292 44288 47286 152292 33554432
6 821851 1066044 ? 7514067 43415794 68719476736
7 261814714 347326352 ? 4189035432 46574750770 562949953421312

8 308698937454 419172756930 ? 8780769776473 ? 18446744073709551616

Table 1: Comparisons between Kn (the number of Kostant chambers), Tn (the number of
threshold functions), and Rn (the number of maximal unbalanced families).

The indexing for Rn matches the rank of the resonance arrangement, with R1 = 2,
R2 = 6, R3 = 32, and so on. This indexing is chosen for our convenience; it differs with
some conventions used for counting its chambers, e.g., in [7], they use E2 = 2, E3 = 6,
and so on, En = Rn−1. In that work, the focus was on maximal unbalanced families,
and the subscript on En corresponds to the cardinality of the set from which the family
of subsets is drawn. That is, En = Rn−1 is the number of maximal unbalanced families
formed from an n-element set.

Prior work on estimating Rn and Tn shows that they are both on the order of 2n
2
. In

particular, Zuev [42] shows that for n > 2,

2n
2(1−10/ ln(n)) < Tn < 2n

2

,

which implies that
log2 Tn ∼ n2.

Similarly, Billera et al. [7] show that for n > 2

2
n(n−1)

2 < Rn < 2n
2

,

implying that log2Rn ∼ cn2 for some 1/2 6 c 6 1.
One of our results, first observed by Billera [5], is improved bounds on Rn, as given

here2.

Theorem 1. For any n > 2,
(n+ 1)

2n+1
Tn < Rn <

1

2
Tn, (1)

and therefore

n2 − 10n2/ ln(n)− n+ log2(n+ 1)− 1 < log2Rn < n2 − 1,

so log2Rn ∼ n2.

2We note that Theorem 1.4 of Deza, Pournin, and Rakotonarivo [13] gives a tighter upper bound

Rn 6 2(n + 4)2n
2−3n+2, also implying that log2 Rn < n2.
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We also record the following natural inequality relating the number of Kostant cham-
bers to the number of resonance chambers:

Observation 1. For any n > 2,

Kn 6
Rn

n+ 1
, (2)

and in particular,
log2Kn 6 n2 − 1− log2(n+ 1).

By the numerical evidence in the table we also propose the following problem:

Problem 1. Is it true that for any n > 3,

Rn < Kn+1 <
1

2
Tn, (3)

and in particular log2Kn+1 ∼ n2?

As Table 1 shows we have only five data points suggesting a positive answer to Problem
1. We will also provide combinatorial models for chambers that makes links between the
three sequences seem more plausible.

The method of proof for Theorem 1 is to carefully investigate the structure of the hy-
perplane arrangements Tn and Rn using the standard notion of a sign vector for encoding
chambers. As we will see, Observation 1 follows readily from chamber combinatorics.

We also put the combinatorics of root polytopes pioneered by Postnikov [35] to use. In
particular we consider chambers of Kn and Rn to be labeled by certain sets of alternating
trees. We find it useful to define a graph Γn whose vertices are all alternating trees on
[n] = {1, 2, . . . , n}. We determine the adjacency of two trees via the notion of sign compat-
ibility—a purely graph-theoretic condition that implies the corresponding root simplices
have full-dimensional intersection. The graph Γn, which we call the compatibility graph
also has a subgraph Γ+

n , with the same adjacency relation, whose vertices are positive
alternating trees, which label positive root simplices. We establish the following result.

Theorem 2. The chambers of the resonance arrangement Rn can be labeled by cliques in
the compatibility graph Γn, and the Kostant chambers Kn can be labeled by cliques in
Γ+
n . Moreover, chambers of the resonance arrangement are in bijection with a subset of

the maximal cliques in Γn.

In later sections we propose several problems and questions about characterizing pre-
cisely which cliques correspond to the various types of chambers.

Remark 2 (A note on “chambers”). This paper inherits two competing uses of the word
chamber from two strands of literature. In the literature on hyperplane arrangements
(see, e.g., the book [1]), the connected components in the complement of a collection of
hyperplanes are known as chambers. For central hyperplane arrangements, these are
polyhedral cones. The notion of a Weyl chamber of a root system is this type of chamber.
When we speak of chambers in the resonance arrangement or the threshold arrangement,
they are chambers in this sense, which we think of as chambers of a hyperplane
arrangement. See, e.g., Figures 2 and 3.
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Another use of the word chamber, which we think of as chambers of a triangulation,
refers to maximal-dimensional simplicial cones arising from a triangulation of a polytope
(see, e.g., the book [11]). The Kostant chambers are chambers in this sense, as in Figure
1.

To avoid the risk of ambiguity, we will adopt the following convention in this paper: we
mean chambers of a hyperplane arrangement when studying the resonance and threshold
arrangements, and we mean chambers of a triangulation when discussing Kostant cham-
bers. In this paper it transpires that both types of chambers are maximal-dimensional
polyhedral cones that can be realized in the same real vector space. Thus, despite their
different origins, we will be able to show, for example, that every Kostant chamber is a
union of resonance chambers.

1.5 Organization of the paper

The paper is divided into four main sections. Section 2 introduces the key data structures
that we use for labeling chambers, namely sign vectors and alternating trees. In Section
3 we introduce the key definitions for the study of the resonance arrangement and show
how to label chambers with both sign vectors and with collections of alternating trees.
Section 3.4 in particular introduces the graph discussed in Theorem 2. In Section 4 we
turn our attention onto the problem of counting Kostant chambers, and we observe that
Kostant chambers are unions of resonance chambers in the positive root cone. In Section
5, we turn our focus to the links between the resonance arrangement and the threshold
arrangement, culminating in the proof of Theorem 1.

2 Data structures for root polytopes and hyperplane arrange-
ments

In this section we establish some basic notions that will be used throughout the paper.

2.1 Sign vectors

Let V be a finite-dimensional real vector space. A hyperplane H is a subspace of codi-
mension 1. A hyperplane arrangement H = {Hi}i∈I is a collection of hyperplanes in V
indexed by the set I. To each hyperplane we associate a nonzero normal vector vi so that
Hi = {λ ∈ V : 〈λ, vi〉 = 0}. Similarly, let the positive and negative half-spaces of Hi be
defined by H+

i = {λ ∈ V : 〈λ, vi〉 > 0} and H−i = {λ ∈ V : 〈λ, vi〉 < 0}. The rank of a
hyperplane arrangement is dim(span{vi}i∈I).

Following [1], it is known that the hyperplane arrangement H partitions V into a
collection of disjoint convex cones called faces given by intersections of hyperplanes and
their half-spaces. A face F is uniquely determined by its sign vector :

σ(F ) = (σi(F ))i∈I ,
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(+, 0,−)

(−, 0,+)

(0,−,−) (0,+,+)

(−,−, 0)

(+,+, 0)
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(−,+,+)

(+,+,−)

(−,−,+)

(+,−,−)

(−,−,−)

v1

v2

v3

(0, 0, 0)

Figure 4: A line arrangement, i.e., a rank two hyperplane arrangement, with faces labeled
by sign vectors (σ1, σ2, σ3) corresponding to normal vectors v1, v2, v3.

where σi(F ) = +,−, or 0 to indicate whether, for points λ ∈ F , we have 〈λ, vi〉 > 0, < 0,
or = 0, respectively. Said another way,

F =
⋂
i∈I

H
σi(F )
i ,

where H0
i = Hi.

There is a natural partial order on faces, given by F 6 G ⇔ F ⊆ G; that is, if the
closure of F is contained in the closure of G. In terms of sign sequences, this can be stated
as: F 6 G if and only if for each i ∈ I either σi(F ) = 0 or σi(F ) = σi(G).

This partial order is ranked by dimension, and maximal faces are called chambers.
They are characterized by the fact that σi(C) 6= 0 for all i ∈ I. This also means that
chambers are the maximal connected components in V −H. Codimension one faces are
called walls. We can see that a face F is a wall whenever σi(F ) = 0 for precisely one
entry in σ(F ).

For example, in Figure 4, we see a line arrangement with three normal vectors giving
rise to six one-dimensional walls and six two-dimensional chambers.

Let C(H) denote the number of chambers in V −H. Let W (Hi) denote the number of
walls in hyperplane Hi, and let W (H) denote the total number of walls in the arrangement.
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Since each wall appears in only one hyperplane, W (H) =
∑

i∈IW (Hi). Here is an easy
observation that holds for any finite hyperplane arrangement.

Observation 2. We have the following facts in any finite hyperplane arrangement of rank
n:

1. 2W (Hi) 6 C(H), for any hyperplane Hi, and

2. nC(H) 6 2W (H).

Proof. Consider a wall F with σi(F ) = 0 and all other sign vector entries nonzero. This
face lies on the boundary of two chambers, each obtained by keeping the nonzero entries
fixed and choosing σi to be + or −. Thus there are at least two distinct chambers for
each wall of Hi. This proves the first observation.

For the second observation, we notice that in a rank n arrangement, every chamber
must have at least n walls on its boundary, while each wall is on the boundary of precisely
two chambers.

In Section 5 we will exploit Observation 2 to prove Theorem 1: Observation 2 will allow
us to lowerbound Rn in terms of Tn by relating the walls of the threshold arrangement to
the chambers of the resonance arrangement.

2.2 Alternating trees

Here we discuss a combinatorial data structure arising in Postnikov’s work on root poly-
topes, which we will use in labeling both Kostant chambers and resonance chambers. Re-
call that the type An−1 root system is the set of vectors Φ = {ei−ej : 1 6 i, j 6 n, i 6= j},
with positive roots Φ+ = {ei − ej : 1 6 i < j 6 n}. The linear span of the roots will
be denoted by V∅ = {x ∈ Rn :

∑
xi = 0}, which is a hyperplane of Rn that will be of

interest to us later.

Definition 1 (Root polytope). Given a directed graph G on the vertex set [n], with arc
set E(G), we associate to it the root polytope

P(G) = conv{0, ei − ej : (i, j) ∈ E(G)}. (4)

Two special cases of (4) are as follows. If we take G to be the complete graph Kn (we
use boldface to distinguish from the number of Kostant chambers Kn), then the polytope
P(Kn) is the convex hull of all roots, which we refer to as the full root polytope. If we
let K+

n denote the complete graph on [n] with edges only directed from smaller vertices
to larger, then P(K+

n ) is the convex hull of the positive roots, which we call the positive
root polytope. Note that since roots live in the hyperplane V∅, the polytopes P(Kn) and
P(K+

n ) are (n− 1)-dimensional. We see these polytopes for n = 3 in Figure 5.
Triangulations of P(K+

n ) were studied in [18, Section 6], where the following lemma
was utilized:
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e1 − e3

e2 − e3

e1 − e2

e2 − e1e3 − e1

e3 − e2
0

e1 − e3

e2 − e3

e1 − e2

0

P(K3) P(K+
3 )

Figure 5: Central triangulations of the full root polytope P(K3) and the positive root
polytope P(K+

3 ), drawn in the plane x1 + x2 + x3 = 0.

Lemma 1. ( [18], cf. [35, Lemma 12.5]) Given a directed graph G, the root polytope P(G)
is a simplex with the origin as one of the vertices if and only if G is acyclic. When G is
acyclic, the dimension of P(G) is the number of edges of G.

A proof of Lemma 1 follows readily from the argument of [35, Lemma 12.5]. We will
use Lemma 1 when we connect root cones to the resonance arrangement in Proposition
1.

Given an acyclic graph F , let ∆F := P(F ) to emphasize that P(F ) is a simplex. (We
remark that this notation differs from Postnikov, who uses ∆̃F for our ∆F .) As maximal
acyclic graphs, trees will be of particular interest.

Definition 2 (Alternating graph). A directed graph G is alternating if each vertex is
either a source (all outgoing arcs) or a sink (all incoming arcs). A directed graph G on
[n] is positive alternating if it is alternating and all arcs are of the form (i, j) for some
i < j.

For example, in Figure 6 we see a tree T that is alternating but not positive alternating
and another tree T ′ that is positive alternating. In examples such as these we label the
sources with white nodes and the sinks with black nodes for easy identification.

For any undirected tree on [n], the identification of node 1 as a source or sink de-
termines the direction of all arcs in an alternating tree. Thus there are precisely two
alternating trees with the same undirected tree structure. As there are nn−2 undirected
trees by Cayley’s Theorem, there are 2nn−2 alternating trees on [n]. The number of
positive alternating trees on [n] is:

1

n2n−1

n∑
k=1

(
n

k

)
kn−1,

the electronic journal of combinatorics 28(1) (2021), #P1.12 11



1 4 6 72 3 5 1 2 4 53 6 7
T T ′

Figure 6: Two alternating trees on 7 nodes. Tree T is alternating but not positive
alternating, while T ′ is positive alternating.

though the formula is not as simple to explain. See [10,18,34].
For the purposes of this paper, a triangulation of a polytope P = conv{0, v1, . . . , vn}

with vertices {v1, . . . , vn} is a simplicial complex such that the union of the top dimensional
simplices of the simplicial complex is the polytope P and so that the simplices only
use the vectors in {0, v1, . . . , vn} as vertices. A triangulation is called central if every
top dimensional simplex contains the origin, and we call a top dimensional simplex in
such a triangulation a central simplex. In what follows we are only concerned with top
dimensional simplices.

Lemma 2. (cf. [35, Lemma 13.2]) Every top dimensional simplex in a central triangulation
of P(Kn) is of the form ∆T for some alternating tree T on the vertex set [n]. Every top
dimensional simplex in a central triangulation of P(K+

n ) is of the form ∆T for some
positive alternating tree T on the vertex set [n].

We note that while [35, Lemma 13.2] only proves the latter statement of Lemma 2,
namely, that every top dimensional simplex in a central triangulation of P(K+

n ) is of the
form ∆T for some positive alternating tree T on the vertex set [n], its proof works for the
above lemma as well if we simply drop the condition i < j < k from the mentioned proof
and instead consider the edges (i, j), (j, k) and (i, k) directed.

In Figure 5 we see the alternating trees that label the central triangulations of P(K3)
and P(K+

3 ).
We remark that Definition 2 generalizes the notion of alternating introduced by Post-

nikov [35, Definition 13.1], which was only defined for graphs where all the edges are
directed from smaller to larger vertices. Lemma 1 and Lemma 2 generalize Lemmas
12.5 and 13.2 from Postnikov’s beautiful paper [35]. We invite the interested reader to
check that Postnikov’s proofs of the aforementioned lemmas readily lend themselves to
generalization to our case of arbitrarily directed edges.

2.3 Flows and root cones

While alternating trees were designed to capture the geometry of triangulations of root
polytopes, we can use the same data structure to study chamber geometry, by taking the
cone over a root polytope.

the electronic journal of combinatorics 28(1) (2021), #P1.12 12



Definition 3 (Flows and root cones (see, e.g., [37])). Suppose G is a directed graph on
vertex set [n]. A nonnegative flow on G is a nonnegative labeling of the arcs of G,
f : E(G)→ R>0. Any such flow induces a point x = x(G; f) = (x1, . . . , xn) ∈ Rn by

xi =
∑

(i,j)∈E(G)

f(i, j)−
∑

(k,i)∈E(G)

f(k, i).

The collection of all points induced by flows in this way make up the root cone for G:

C(G) =

 ∑
(i,j)∈E(G)

f(i, j)(ei − ej) : f(i, j) > 0

 . (5)

It is easy to verify that the combinatorial structure of the faces of the root simplices
which contain the origin is the same as the combinatorial structure of the faces of the of
root cones. We now state a few properties about the geometry of root cones.

For any alternating graph G, the point induced by the flow satisfies

xi =

{∑
(i,j)∈E(G) f(i, j) if i is a source,

−
∑

(k,i)∈E(G) f(k, i) if i is a sink.

In particular, the coordinates corresponding to sources are always nonnegative and the
coordinates of sinks are always nonpositive. For example, below is a flow on the tree T
from Figure 6:

1 4 6 72 3 5

a
b

c d e

f

It induces the point

x = (a+ b,−a− f,−b− c, c+ d,−d− e, e, f).

Let T and T ′ be two alternating trees on [n]. We will be immensely interested in how
the root cones C(T ) and C(T ′) intersect. Adapting an idea of Postnikov [35, Section 12]
helps us give a simple graph-theoretic criterion for when the interiors of two root cones
overlap, which we now explain.

Let
C(T, T ′) := {(i, j) : (i, j) ∈ E(T )} ∪ {(i, j) : (j, i) ∈ E(T ′)},

following Postnikov [35, Section 12].3 See Figure 7, where we draw the arcs of T above
the nodes and the reverse of the arcs of T ′ below.

3This notation diverges slightly from Postnikov, who uses the notation U(T, T ′) for this graph. We
use C to connote the word “circulation” as well as to avoid conflict with later notation.
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T :

1 4 6 72 3 5

T ′ :

1 4 6 72 3 5

C(T, T ′) :

Figure 7: The graphs T , T ′, and C(T, T ′). A directed 4-cycle of C(T, T ′) is highlighted
in bold.

One way to explain when two cones overlap involves the notion of a special kind of
flow known as a circulation of a directed graph G, i.e., a nonnegative flow that satisfies
conservation of flow at each vertex i:∑

(i,j)∈E(G)

f(i, j) =
∑

(k,i)∈E(G)

f(k, i).

Note that a flow is a circulation if and only if it induces the point (0, 0, . . . , 0).
Circulation on an alternating graph is trivial, since all vertices are either sources or

sinks, and hence the only flow to satisfy conservation of flow is the zero flow. But by
considering circulation on C(T, T ′), we can study flows for pairs of alternating trees that
induce the same point.

That is, suppose f is a flow on the arcs of T that induces a point x and g is another
flow, this time on the arcs of T ′, that also induces x. Then the flow h : E(C(T, T ′))→ R>0

defined by
h(i, j) = f(i, j) + g(j, i),

with flows f(i, j) = 0 if (i, j) /∈ T and g(j, i) = 0 if (j, i) /∈ T ′, induces the point x−x = 0
and hence h is a circulation.

Conversely, any circulation on C(T, T ′) decomposes into a flow on the arcs of T that
induces x and a flow on the arcs of T ′ that also induces x. With this observation we have
already proved the first part of the following lemma. In Section 3.2, we will use Lemma
3 and circulations on C(T, T ′) to characterize when C(T ) ∩ C(T ′) is full-dimensional in
terms of the sign compatibility of T and T ′.

the electronic journal of combinatorics 28(1) (2021), #P1.12 14



Lemma 3. Let T and T ′ be alternating trees on [n]. Every nonnegative circulation on
C(T, T ′) induces a point x ∈ C(T )∩ C(T ′). Furthermore, C(T )∩ C(T ′) is full-dimensional
if and only if there is a strictly positive circulation on C(T, T ′).

Proof. To prove the second assertion, we remark that a point x is in the interior of a root
cone if and only if it is induced by a strictly positive flow. Thus a point in the interior of
both C(T ) and C(T ′) has the form

x =
∑

(i,j)∈T

f(i, j)(ei − ej) =
∑

(k,l)∈T ′
g(k, l)(ek − el),

for a strictly positive flow f on T and a strictly positive flow g on T ′. Notice this can
happen if and only if at each vertex i, i is a source in both T and T ′ or i is a sink in both
T and T ′. Otherwise, if, say, i was a source in T and a sink in T ′, then positivity of flow
would imply xi > 0 for T and xi < 0 for T ′.

We can now combine these flows to form a new flow h on C(T, T ′) via

h(i, j) =

{
f(i, j) if (i, j) ∈ E(T )

g(i, j) if (j, i) ∈ E(T ′).

As these cases are disjoint, we know h is well-defined on C(T, T ′). Moreover this flow
induces x(C(T, T ′);h) = x(T ; f)− x(T ′; g) = x− x = 0, so h is clearly a strictly positive
circulation.

The converse is straightforward. A strictly positive circulation on C(T, T ′) yields two
strictly positive flows: one on the arcs of T and another on the arcs of T ′ (after reversing
the arcs), and by conservation of flow in C(T, T ′), both these flows induce the same point
in the interior of C(T ) ∩ C(T ′).

Remark 3 (Long cycles in C(T, T ′)). We remark that there is a simple sufficient condi-
tion for a nontrivial circulation given in [35, Lemma 12.6]. We review the idea here for
convenience. If, as in the Figure 7, there is a directed k-cycle in C(T, T ′) with k > 4 (and
k necessarily even and all edges distinct), then the arcs of the cycle above the nodes give
rise to a matching M on T , while the arcs of the cycle below the nodes give rise to a
matching M ′ on T ′. By construction, the nodes in M are the same as the nodes in M ′,
and so the point

x =
∑

(i,j)∈E(M)

(ei − ej) =
∑

(j,i)∈E(M ′)

(ei − ej)

is an element of C(T ) ∩ C(T ′). The smallest face of C(T ) in which x lives is C(M),
while the smallest face of C(T ′) in which x lives is C(M ′). But since M 6= M ′, we know
C(M) 6= C(M ′) and the intersection C(T )∩C(T ′) is not a common face. Hence, [35, Lemma
12.6] concludes that alternating trees on [n], such that C(T, T ′) has no cycles of length 4
or greater, are those whose root simplices can both appear in a central triangulation of
P(Kn).
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3 The resonance arrangement

In this section we present the resonance arrangement and show how certain sets of trees
can be used to label chambers. First, we must properly define the resonance arrangement.

For any subset S ⊆ [n], let uS denote the 0/1 vector of length n in which the elements
of S denote the entries that are 1. For example, if n = 8,

u{1,3,4,6} = (1, 0, 1, 1, 0, 1, 0, 0).

If S 6= ∅, let US = {x ∈ Rn : 〈x, uS〉 = 0} denote the hyperplane normal to uS. The
resonance arrangement Rn−1 is the rank n − 1 hyperplane arrangement given by the
intersection of the hyperplanes US, S 6= [n], with the hyperplane V∅ = U[n] = {x ∈ Rn :
〈x,1〉 =

∑
xi = 0}. That is, the ambient vector space forRn−1 is V∅, and the hyperplanes

in Rn−1 are given by U ′S = US ∩ V∅. The number of chambers in Rn−1 is Rn−1.
For example, in Figure 8 we see the resonance arrangement of rank two. Here we

obtain three distinct hyperplanes (lines):

U ′1 = {(x, y, z) ∈ Rn : x = 0 = y + z},
U ′2 = {(x, y, z) ∈ Rn : y = 0 = x+ z},
U ′12 = {(x, y, z) ∈ Rn : x+ y = 0 = z}.,

corresponding to intersecting each of the following hyperplanes (planes in R3) with V∅:

U1 = {(x, y, z) ∈ Rn : x = 0},
U2 = {(x, y, z) ∈ Rn : y = 0},
U12 = {(x, y, z) ∈ Rn : x+ y = 0}.

These hyperplanes have normal vectors u1 = (1, 0, 0), u2 = (0, 1, 0), and u12 = (1, 1, 0).
In Figure 3 we see an image of the rank 3 resonance arrangement.

3.1 Sign vectors for the resonance arrangement

It turns out that while there are 2n vectors uS, more than half of them are not important
for characterizing chambers. We can immediately discard u∅, since it is the zero vector,
and u[n] = (1, 1, . . . , 1) is normal to all of V∅. Of the remaining 2n − 2 hyperplanes, we
note that U ′S = U ′[n]−S for any S ⊆ [n], so we can discard proper, nonempty subsets with

n ∈ S. This yields (2n − 2)/2 = 2n−1 − 1 entries that determine a sign vector for a point
in Rn−1, indexed by nonempty subsets of [n− 1].

Definition 4 (Resonance sign vectors). Given a point x ∈ V∅ = {x ∈ Rn :
∑
xi = 0},

the resonance sign vector is given by

σ(x) = (σS(x))∅(S⊆[n−1],

where

σS(x) =


+ if 〈x, uS〉 > 0,

− if 〈x, uS〉 < 0,

0 if 〈x, uS〉 = 0.
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U1 U12

U2

V∅ U ′2

U ′1

U ′12

(a) (b)

Figure 8: The rank two resonance arrangement, R2, drawn (a) in R3, and (b) in the plane
V∅ = {(x, y, z) : x+ y + z = 0}.
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2
1

1

1 2 3 4

1
1

2

T x(T ; f) = (2, 2,−3,−1) x(T ; f ′) = (1, 3,−2,−2)

Figure 9: Two points in the same root cone with different sign vectors.

For example, the point x = (1,−2, 0, 1) ∈ V∅ has σ(x) given by

(σ1, σ2, σ3, σ12, σ13, σ23, σ123) = (+,−, 0,−,+,−,−).

Remark 4 (Subset sums). The inner product 〈x, uS〉 =
∑

s∈S xs records the sign of the sum
of the entries indexed by S. Determining whether a point lies in the interior of a chamber
of the resonance arrangement then amounts to the NP-complete problem SubsetSum,
which asks “given a multiset of integers, does it have a subset with sum 0?” However,
the complexity of this problem in general is not a hindrance for computing sign vectors
in relatively small examples. A similar observation was made in Appendix A of [27].

3.2 Sign vectors for trees

Not all points in the interior of a root cone—even the root cone of a tree—have the
same sign vector. For example, both the points (2, 2,−3,−1) and (1, 3,−2,−2) lie in
the root cone for the same tree, induced by the flows shown in Figure 9. However,
σ23((2, 2,−3,−1)) = − while σ23((1, 3,−2,−2)) = + and so these two points are separated
by the hyperplane U ′23. Incidentally, this means we can construct a third point in this
root cone, on the line between these two, with σ23 = 0. While we have an entry of the
sign vectors that disagree, one can check that all other entries are the same.
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The first result in this section is a lemma that tells us something about the extent to
which the sign vector of a point in a root cone is determined by the graph itself, rather
than a particular flow on the graph.

For any directed graph G on [n], let GI denote the subgraph restricted to the vertices
in I ⊂ [n]. We let in(GI) denote the set of arcs entering GI , and we say | in(GI)| is the
indegree of subset I. Similarly we let out(GI) denote the set of arcs leaving GI , and we
call | out(GI)| the outdegree of subset I. To be clear,

in(GI) = {(j, i) : i ∈ I, j /∈ I},

and
out(GI) = {(i, j) : i ∈ I, j /∈ I}.

The following lemma shows that sometimes the indegree and outdegree are sufficient to
determine entries in the sign vector of a point in C(G).

Lemma 4. Let G be an alternating acyclic graph on [n]. Let I be any nonempty subset
of [n− 1], i.e., ∅ 6= I ⊆ [n− 1]. Then, for any point x ∈ C(G):

• if | in(GI)| = 0, then σI(x) ∈ {+, 0}, or

• if | out(GI)| = 0, then σI(x) ∈ {−, 0}.

In particular if GI is not connected to G[n]−I then σI(x) = 0.

Proof. The two cases are identical up to reversal of the arcs of G, so without loss of
generality, suppose in(GI) = ∅. We will show σI(x) = + or 0.

We can partition the arcs of G into three sets EI = {(i, j) : i, j ∈ I}, E[n]−I = {(k, l) :
k, l ∈ [n]− I}, and out(GI) = {(i, l) : i ∈ I, l ∈ [n]− I}.

Let f be a nonnegative flow on G, and let x = x(G; f) be the point induced by this
flow. We have

〈x, uI〉 =
∑
i∈I

xi =
∑

(i,k)∈out(GI)

f(i, k),

since for every arc (i, j) with both i, j ∈ I, we have f(i, j) contributing to xi and −f(i, j)
contributing to xj. Since f is a nonnegative flow, we have σI(x) = + if any of the
flows f(i, k) ∈ out(GI) are positive and σI(x) = 0 if all the flows are zero (or out(GI) is
empty).

We use the idea of Lemma 4 to define a coarse sort of sign vector for root cones
themselves, i.e., for alternating trees.

Definition 5 (Tree sign vector). Let T be an alternating tree on [n]. The tree sign
vector is given by

σ(T ) = (σS(T ))∅(S⊆[n−1],

where

σS(T ) =


+ if | in(TS)| = 0,

− if | out(TS)| = 0,

? otherwise.
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In particular, we have σI(T ) = + for any subset of sources I and σJ(T ) = − for any
subset of sinks J . (The “interesting” entries are those σS(T ) for which S contains both
sources and sinks.) For example, the tree in Figure 9 has σ(T ) given by

(σ1, σ2, σ3, σ12, σ13, σ23, σ123) = (+,+,−,+,−, ?,+).

It will be good to know when two trees have nearly the same sign vectors.

Definition 6 (Sign compatible trees). Let T and T ′ be two alternating trees on [n]. We
say the trees are sign incompatible if they disagree on a known entry in their sign
vectors, i.e., if for some I, {σI(T ), σI(T

′)} = {−,+}. Otherwise, we say T and T ′ are
sign compatible.

In other words, two trees are sign compatible if for all I, either σI(T ) = σI(T
′), or if

not equal, one of the entries is a “?”.
While it is rather obvious that two root cones with full dimensional intersection must

be sign compatible, it turns out that the converse is true as well. To prove this result, we
invoke Hoffman’s circulation theorem, as stated here.

Theorem 3 (Hoffman’s circulation theorem [20,37]). Let G = (V,E) be a directed graph,
and suppose there exist flows l and u on G, with 0 6 l(i, j) 6 u(i, j) for each (i, j) ∈ E.
Then there exists a circulation f on G with l(i, j) 6 f(i, j) 6 u(i, j) for all (i, j) ∈ E if
and only if ∑

(i,j)∈in(GI)

l(i, j) 6
∑

(k,l)∈out(GI)

u(i, j)

for all ∅ 6= I ( V .

We will also have use for the following lemma.

Lemma 5. Suppose T and T ′ are alternating trees on [n], and let C = C(T, T ′). If T and
T ′ are sign compatible, then for all ∅ 6= I ( [n], we have in(CI) 6= ∅ and out(CI) 6= ∅.

Proof. We will prove the contrapositive. Suppose out(CI) = ∅ for some I. (The argument
for in(CI) = ∅ is similar.) Then by construction of C = C(T, T ′), we would have
out(TI) = ∅ and in(T ′I) = ∅. By definition of the tree sign vector, this means σI(T ) = −
and σI(T

′) = + and T and T ′ are sign incompatible.

The following result uses Hoffman’s circulation theorem to show that sign compatibility
for a pair of trees is equivalent to full-dimensional intersection of root cones.

Corollary 1. Let T and T ′ be two alternating trees on [n]. Then the intersection of C(T )
and C(T ′) is full-dimensional, i.e., dim(C(T ) ∩ C(T ′)) = n− 1, if and only if T and T ′ are
sign compatible.

Proof. If the intersection of C(T ) and C(T ′) is full-dimensional, then the sign-compatibility
of T and T ′ is obvious, since there exists a point in the interior of both cones.
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Now suppose T and T ′ are sign compatible. Then we claim Hoffman’s circulation
theorem is satisfied by letting l(i, j) = 1 and u(i, j) = 2n for all arcs (i, j) in C = C(T, T ′).
Indeed, by Lemma 5, we know out(CI) 6= ∅ for any proper nonempty subset I. Thus,∑
(i,j)∈in(CI)

l(i, j) = | in(CI)| 6 |E(C)| = 2(n− 1) < 2n 6 2n| out(CI)| =
∑

(i,j)∈out(CI)

u(i, j).

Hence, there exists a circulation f : E(C) → R where f(i, j) > l(i, j) = 1 on every arc
(i, j) ∈ E(C). That is, f is strictly positive. Lemma 3 now implies that C(T ) ∩ C(T ′) is
full dimensional.

3.3 Resonance chambers as intersections of cones

In this section we justify the fundamental connection between root cones and the resonance
arrangement. Given a collection of cones with full-dimensional intersection, we call the
interior of their intersection a refined chamber. Refined chambers are ordered by reverse
inclusion, and a maximally refined chamber is a refined chamber that does not contain
any other refined chambers.

Proposition 1. The chambers of the resonance arrangement are the maximally refined
chambers obtained by intersections of root cones.

Proof. It will suffice to argue the complement: that the union of the walls of the root
cones is precisely the resonance hyperplane arrangement.

We first show that any wall of a root cone lies in a hyperplane of the resonance
arrangement. By Lemma 1, a wall in a root cone C(T ) is itself a root cone for an acyclic
graph with n − 2 edges, i.e., a disjoint union of two trees TI ∪ T[n]−I , with no edges
connecting a vertex in I with a vertex in [n] − I. Thus by Lemma 4, we have that if
x ∈ C(TI ∪ T[n]−I), σI(x) = 0. Therefore,

C(TI ∪ T[n]−I) ⊂ U ′I .

Now we wish to show that for any point x in a resonance hyperplane U ′I , there is a
tree T for which x is on the boundary of C(T ). But this is just to say that x is in a root
cone C(G) for some acyclic alternating graph with at most n− 2 edges. Such a graph is
easily constructed.

Since x ∈ U ′I , we know in that both
∑

i∈I xi = 0 and
∑

j∈[n]−I xj = 0. Consider the

orthogonal pair of points xI =
∑

i∈I xiei, and x[n]−I =
∑

j∈[n]−I xjej. We see xI lives in

an (|I| − 1)-dimensional subspace, and hence it is in the cone of some acyclic graph GI .
Likewise x[n]−I is induced by a graph G[n]−I , and their sum, x, is induced by their disjoint
union:

x ∈ C(GI ∪G[n]−I) .

Definition 7 (Indexable collections). Let T = {T1, . . . , Tk} be a set of pairwise sign
compatible alternating trees on [n]. If the set of points simultaneously induced by each
tree in the collection is full-dimensional, i.e., if dim(C(T1) ∩ · · · ∩ C(Tk)) = n− 1, we say
T is indexable.
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In other words, an indexable collection of trees corresponds to a collection of root
cones whose intersection is a refined chamber. Since Proposition 1 says that resonance
chambers are maximally refined chambers, we let In denote the set of maximal (under
inclusion) indexable collections of alternating trees on [n].

By Proposition 1, then, the number of chambers in the resonance arrangement is the
same as the number of maximal indexable collections.

Corollary 2. The number of maximal indexable collections of trees on [n + 1] equals the
number of chambers in the n-dimensional resonance arrangement, i.e.,

Rn = |In+1|.

There is a rather nice symmetry of the resonance arrangement Rn given by cyclic
permutation of coordinates, which we now discuss. Let ω : Rn+1 → Rn+1 be the cyclic
permutation of the standard basis given by

ωx = (x2, . . . , xn+1, x1).

Now consider the action of ω on the full positive root cone:

C = C(K+
n+1) =

{ ∑
16i<j6n+1

f(i, j)(ei − ej) : f(i, j) > 0

}
.

The following lemma is well known and we leave the proof of it as an exercise for the
reader.

Lemma 6. The cones C, ωC, ω2C, . . . , ωnC have pairwise disjoint interiors and their union
is all of V∅.

Each of the cones in Lemma 6 contains the same number of chambers as the resonance
arrangement. We record this observation as follows, where we let R+

n denote the number
of resonance chambers in the positive root cone C(K+

n+1).

Corollary 3. The number of resonance chambers in Rn is equal to (n + 1) times the
number of resonance chambers in the positive root cone C(K+

n+1): Rn = (n + 1)R+
n . In

particular,

R+
n =

|In+1|
(n+ 1)

.

In Figure 5 we see R2 (actually the polytope P(K3)) labeled by alternating trees, and
in Figure 10, we see 32/4 = 8 chambers of R3 that lie in the positive root cone C(K+

4 ),
labeled by indexable collections on [4].

As discussed in the introduction, resonance chambers correspond to “maximal un-
balanced families,” and here we have a maximal collection of trees satisfying a certain
geometric condition. One may wonder whether there is a simple, direct link between
maximal indexable collections and maximal unbalanced families. We do not know of such
a link, but it seems worthy of investigation.

Problem 2. Find a direct bijection between maximal unbalanced families and maximal
indexable collections of alternating trees.
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e2 − e3

e3 − e4e1 − e2

e2 − e4e1 − e3

e1 − e4

Figure 10: The 8 chambers of the resonance arrangement that lie in the positive root cone,
labeled by indexable collections of alternating trees on [4]. Labelings of all 32 chambers
appear in four such groups of 8 obtained by cyclic permutation of coordinates, i.e., cyclic
permutation of the nodes in the trees.

3.4 The compatibility graph for alternating trees

We now use sign compatibility to define a graph whose vertices are alternating trees, with
two trees adjacent if and only if they are sign compatible.

Definition 8 (Compatibility graph). Define the compatibility graph Γn = (Vn, En) for
alternating trees on [n] by

Vn = { alternating trees T on [n] },

and
En = {(T, T ′) : T and T ′ are sign compatible }.

Any indexable collection is a clique in Γn, but the converse is not generally true.
That is, there exist pairwise sign compatible trees (i.e., with pairwise full-dimensional
intersection) whose intersection is not full-dimensional, as the next example shows.

the electronic journal of combinatorics 28(1) (2021), #P1.12 22



1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
T1 T2 T3

Figure 11: Pairwise compatible alternating trees whose intersection C(T1)∩C(T2)∩C(T3)
is not full-dimensional.

Example 1. The trees shown in Figure 11 are pairwise sign compatible, but their mutual
intersection is not full-dimensional. To see this, let f1, f2, and f3 denote nonnegative
flows on T1, T2, and T3 respectively, such that

x(T1; f1) = x(T2; f2) = x(T3; f3).

This gives a system of linear equations for the flows f∗(i, j), which includes the following
relations

f1(1, 4) = −f1(1, 5) + f2(1, 6)

f2(2, 6) + f2(3, 6) = f1(3, 6)− f2(1, 6)

0 = −f1(3, 6)− f1(3, 5) + f3(3, 5)

f3(1, 5) = f1(1, 5) + f1(3, 5)− f3(3, 5)

and summing, we find

f1(1, 4) + f2(2, 6) + f2(3, 6) + f3(1, 5) = 0.

Since the flows f1, f2, and f3 are nonnegative, this implies that f1(1, 4) = f2(2, 6) =
f2(3, 6) = f3(1, 5) = 0. In particular x is not induced by a positive flow on any of the
trees and C(T1)∩ C(T2)∩ C(T3) is not full-dimensional. In fact, having flow 0 on two arcs
of T2 implies this intersection is at most 3-dimensional.

We can also see that the mutual intersection of all three trees is not full dimensional
through considering sign vectors. In particular

σ{2,3,4,5}(T2) = +

so that for any x ∈ C(T2), the resonance sign vector σ{2,3,4,5}(x) ∈ {0,+}. However,

σ{2,4}(T1) = σ{3,5}(T3) = −,

which implies σ{2,3,4,5}(x) ∈ {0,−}, for the resonance sign vector of any point x ∈ C(T1)∩
C(T3).

Question 2. Which cliques in Γn are/are not indexable collections?
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While we have no good answer at the moment, we can say a bit more about maximal
indexable collections in terms of the compatibility graph.

Theorem 4. All maximal indexable sets in In are maximal cliques in the compatibility
graph Γn.

By Corollary 2, we have the following comparison.

Corollary 4. The number of chambers Rn of the rank n resonance arrangement is bounded
above by the number of maximal cliques of Γn+1.

Example 2. There are 250 alternating trees on [5], so that |V5| = 250. The graph Γ5 is
shown in Figure 12, where it is divided into 10 components of size one and 20 components
of size 12. There are 370 maximal cliques in this graph, each of which is a maximal set
of indexable trees. Hence R4 = 370.

In Γ6, however, there are 18, 552 maximal cliques yet only 11, 296 of these correspond
to the maximal indexable sets labeling the chambers of R5.

The proof of Theorem 4 relies on the following lemma, which essentially says that any
point in the interior of a root cone with σI(x) = + can be induced by a positive flow on
an alternating tree with σI(T ) = +.

Lemma 7. Suppose T is an alternating tree on [n], and suppose x ∈ C(T ) is induced by a
positive flow on T . Let ∅ 6= I ( [n] such that σI(x) = +. Then there exists an alternating
tree T ′ on [n] such that σI(T

′) = + and x is also induced by a positive flow on T ′.

The proof of the lemma is a bit tedious, so we defer it to the next subsection. First,
we present the proof of Theorem 4.

Proof of Theorem 4. We will proceed by contradiction. Suppose T = {T1, . . . , Tk} is a
maximal clique in Γn such that T /∈ In, and yet for some ` < k, T′ = {T1, . . . , T`} ∈ In.
We consider ` maximial so that {T1, . . . , T`, T`+1} /∈ In.

We will show there is a tree T ′ /∈ T′ such that C(T ′) ∩ C(T1) ∩ · · · ∩ C(T`) is full-
dimensional, contradicting the assertion that T′ is a maximal indexable collection.

For each j = 1, . . . , k, we denote the intersection of the first j root cones by

Cj = C(T1) ∩ · · · ∩ C(Tj).

Since we are assuming that C`+1 is not full-dimensional but C` is, there is a chamber R
of the resonance arrangement contained in C`, R ⊆ C`, but such that R 6⊆ C`+1. Let x be
in the interior of R so that the resonance sign vector σS(x) 6= 0 for all ∅ ( S ⊆ [n− 1].
If, for all ∅ ( S ⊆ [n−1], σS(T`+1) ∈ {σS(x), ?}, we would have that R ⊆ C(T`+1). Hence
there must exist some I ⊆ [n − 1] such that σI(T`+1) 6= σI(x) and σI(T`+1) ∈ {+,−}.
Without loss of generality, assume that σI(T`+1) = − so that σI(x) = +. Then σI(Ti) =?
for 1 6 i 6 `: For any such i, R ⊆ C` implies R ⊆ C(Ti). Hence σI(Ti) ∈ {+, ?}. But if
σI(Ti) = +, then Ti and T`+1 would not be sign compatible.

We will now construct a tree T ′ with T ′ /∈ T such that σI(T
′) = + and R ∩ C(T ′) is

full-dimensional. The existence of this tree will complete our proof, since it will contradict
the assertion that T′ was a maximal indexable set.
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Figure 12: The graph Γ5 on 250 vertices (corresponding to the 250 alternating trees on 5
vertices). There are 20 isomorphic components on 12 vertices, and 10 singleton vertices.

Since R ⊆ C`, in particular R ⊆ C(T1), and there is a point x ∈ R induced by a
positive flow on T1. Since σI(R) = +, we know σI(x) = +. Since σI(T1) =?, there must
be arcs of T1 going both into and out of I, i.e., in((T1)I) 6= ∅. However, by Lemma 7, we
can modify T1 to create a new tree T ′ that also induces x with a positive flow, such that
in(T ′I) = ∅. This tree T ′ satisfies our desired conditions: R ⊆ C(T ′) and T ′ /∈ T, thus
completing the proof.

3.5 Proof of Lemma 7

We will break the proof down into an even smaller technical lemma.

Lemma 8. Let T be an alternating tree on [n] and suppose x is induced by a positive
integer flow f : E(T ) → Z>0 on T and that σS(x) 6= 0 for any ∅ 6= S ⊂ [n − 1], i.e., x
is in the interior of a resonance chamber. Further, suppose I is such that σI(x) = + and
let (k, l) be an arc with (k, l) ∈ in(TI). Then there exists an alternating tree T ′ on [n]
with in(T ′I) ⊆ in(TI) and with a positive integer flow f ′ : E(T ′)→ Z>0 that also induces
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x, such that either:

• (k, l) /∈ E(T ′) or

• f ′(k, l) < f(k, l).

Proof. As in the statement of the lemma, let T be an alternating tree with positive
integral flow f . Let x = x(T ; f) with σS(x) 6= 0 for any S. Further suppose I is such
that σI(x) = + and let (k, l) ∈ in(TI).

Since σI(x) = +, the net flow out of I is positive:∑
(i,j)∈out(TI)

f(i, j)−
∑

(k,l)∈in(TI)

f(k, l) =
∑
i∈I

xi > 0.

In particular, since f is a positive flow, | out(TI)| 6= 0. Let (i, j) ∈ out(TI). Note that
vertices i, j, k, and l must be distinct since T is alternating: i ∈ I and k /∈ I are sources,
while j /∈ I and l ∈ I are sinks.

We will create T ′ in two stages. We first add an edge to T , creating a graph T+ that
contains a cycle. We will then augment the flows within the cycle, then delete an edge
from T+ to produce T ′. The details of how we do this depends mildly on three cases. Let
P denote the unique undirected path from k to j in T , and let T+ denote the alternating
graph with arcs E(T ) ∪ {e}, where e is the arc determined below.

1. if P contains (k, l), then e = (k, j),

2. if P contains (i, j) but not (k, l), then e = (i, l),

3. if P contains neither (i, j) nor (k, l), then e = (i, l).

See Figure 13 for an illustration of each of these three cases for P . Notice the important
feature that we can always form a cycle containing the edge (k, l). Moreover, the graph
T+ is still alternating and the cycle is therefore even with at least four arcs.

Let us denote the cycle in T+ by

C = (e1, e2, . . . , e2r)

with e1 = (k, l). Note that the new arc e we added is either e2r = (k, j) (Case 1) or it is
e2 = (i, l) (Cases 2 and 3).

Let f ∗ = min{f(e1), f(e3), . . . , f(e2k−1)}. Note that f ∗ ∈ Z>0 since it was part of the
original positive integral flow on T .

The flow f can be viewed as a flow on the arcs of T+, E(T+) = E(T ) ∪ {e}, with
f(e) = 0. We now create a new flow on T+ by subtracting f ∗ from all the odd-indexed
arcs in C—this includes our special arc e1 = (k, l)—and adding f ∗ to all the even-indexed
arcs, i.e., let f ′ be the flow given by

f ′(a, b) =


f(a, b) if (a, b) /∈ C,
f(a, b)− f ∗ if (a, b) = e2s−1 ∈ C for some 1 6 s 6 r,

f(a, b) + f ∗ if (a, b) = e2s ∈ C for some 1 6 s 6 r.
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Case 1:

k l j

Case 2:

kl i j

Case 3:

kl ij

Figure 13: The three types of paths P from k to j in T , and how they are augmented in
T+ with a new arc. The new arc is drawn with a dashed line.

This operation leaves the net flow at each vertex unchanged, and so induces the same
point: x(T+; f ′) = x(T ; f).

Moreover, we can see that one of the arcs of C has to have flow zero, i.e., f ′(e2s−1) = 0
for some s. In fact, this arc is unique, for otherwise the nonzero parts of f ′ would split
into positive flows on two disjoint components, say T+

S and T+
[n]−S. But then by Lemma

4, σS(x) = 0, which contradicts our assumption that σS(x) 6= 0 for any S.
Now that we know the arc with flow zero is unique, we delete that arc, e2s−1, from

T+ to obtain T ′. Since T+ was alternating, connected, and had exactly one cycle, and
we removed one arc from that cycle, we know the graph T ′ is indeed an alternating tree.
Further, it satisfies all our desired properties: x(T ′; f ′) = x, and either e1 = (k, l) was
deleted, or f ′(k, l) = f(k, l)− f ∗ < f(k, l).

We can now prove Lemma 7 by repeated application of Lemma 8 and induction on
| in(TI)|. If | in(TI)| = 0, then T = T ′ and we are done. Otherwise, suppose x is induced
by a positive integer flow on T . (By taking a nearby rational point and rescaling, it is
safe make this assumption.) We then pick an arc (k, l) ∈ in(TI) and apply the lemma to
produce a tree T ′ with either (k, l) /∈ in(T ′I) or with 0 < f ′(k, l) < f(k, l). In the former
case, we know in(T ′I) ( in(TI) so we are done by induction.

In the latter case, we apply Lemma 8 to T ′ and the arc (k, l) again, to produce a tree
T ′′ with positive integer flow f ′′ such that (again) either (k, l) /∈ in(T ′′I ) or 0 < f ′′(k, l) <
f ′(k, l). In at most f(k, l) iterations, then, we will produce a tree with a positive integer
flow and without arc (k, l).

By repeating the argument for any remaining arcs into I, Lemma 7 now follows.
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3.6 Symmetries of the compatibility graph and enumeration

Since permutation of coordinates preserves adjacency of chambers, we can see some sym-
metries of sign vectors which carry over to the graph Γn+1. For example, consider the
fact that if T and T ′ are sign compatible, then in particular they must have the same
sources and the same sinks. Suppose they have k sources among the nodes {1, 2, . . . , n}
(we ignore vertex n + 1). Then by permuting labels/coordinates in [n], there are sign
compatible trees π(T ), π(T ′) with sources {1, 2, . . . , k}. Of course this reasoning applies
to entire indexable sets, not just pairs of trees, and this narrows the focus of our counting
problem.

Let us denote by IIn+1 the set of maximal indexable collections whose trees T have
{i ∈ [n] : i is a source vertex in T} = I. In the sign vector for any such tree, we see
σJ(T ) = + for each J ⊆ I and σS(T ) = − for S ⊆ [n] − I. Notice that for each I, the
trees appearing in the collections for IIn+1 either have |I| or |I| + 1 positive coordinates,
depending on whether vertex n+1 is a source or sink. When I is empty, there is precisely
one alternating tree, with arcs from n+ 1 to every other vertex. Upon reversing arcs, we
find there is but one tree with sources for all I = [n]. This symmetry of swapping sources
and sinks (geometrically, multiplication by −1) extends to all other cases, so we find IIn+1

and I [n]−I
n+1 are in bijection.

In the special case of I = {1, 2, . . . , k}, we write Ikn+1 = I [k]
n+1 for short. The permu-

tation of coordinates x1, . . . , xn mentioned earlier means the sets IIn+1 and Ikn+1 are in
bijection if |I| = k, with I∅n+1 = I0

n+1. Thus we have

In+1 =
⋃
I⊆[n]

IIn+1,

and

Rn = |In+1| =
n∑
k=0

(
n

k

)
|Ikn+1|.

The small values of |Ikn+1| are given in Table 2, where we witness the symmetry given by

IIn+1 ↔ I
[n]−I
n+1 . For example, when n = 4,

R4 = 1 + 4 · 19 + 6 · 36 + 4 · 19 + 1 = 370

This partitioning of the counting problem extends to the compatibility graph. Let us
denote by ΓIn+1 the subgraph of Γn+1 consisting of all the alternating trees whose source

set among the vertices {1, 2, . . . , n} is I, and let Γkn+1 = Γ
[k]
n+1 for short, with Γ0

n+1 = Γ∅
n+1.

Then the graphs ΓIn+1 and Γkn+1 are isomorphic, when |I| = k. For each k = 0, 1, . . . , n,
then, there are

(
n
k

)
components of Γn+1 that are isomorphic to Γkn+1.

We see that we can reconstruct all of Γn+1 from the disjoint components Γkn+1, k =
1, . . . , bn/2c. Let

hk = |{ maximal cliques in Γkn }|.
Then hk = hn−k and

|Ikn+1| 6 hk.
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n\k 0 1 2 3 4 5
0 1
1 1 1
2 1 2 1
3 1 5 5 1
4 1 19 36 19 1
5 1 149 490 490 149 1

Table 2: The triangle of numbers |Ikn+1|.

Example 3. Consider Γ5 shown in Figure 12 and how it relates to the chambers of
R4. The subgraph Γ0

5 is an isolated node, isomorphic to Γ4
5. It consists of the unique

alternating tree in which vertex 5 is the only source. The graph Γ1
5, isomorphic to Γ3

5,
has two connected components: an isolated node for the tree that has vertex 1 as its only
source, and a connected component of 12 trees with source 1 and source 5. Finally, Γ2

5

has two connected components: a component of 12 trees with sources {1, 2}, and another
component of 12 trees with sources {1, 2, 5}.

To build an isomorphic copy of the full graph Γ5, we take:

• 2 copies of Γ0
5,

• 2 ·
(

4
1

)
copies of Γ1

5, and

• 2 ·
(

4
2

)
copies of Γ2

5.

Thus, we end up with 2 + 8 = 10 isolated nodes and 8 + 12 = 20 connected components
with 12 trees.

Our symmetry so far focused on permutation of the coordinates x1, . . . , xn since these
amount to symmetries of sign vectors. However, we can do a similar partition of Γn by
considering full permutations of x1, . . . , xn+1 as well. To illustrate this idea, we return to
Γ5 and observe that there are

(
5
1

)
+
(

5
4

)
= 10 isolated nodes (corresponding to choosing

either 1 or 4 nodes to be sources) and there are
(

5
2

)
+
(

5
3

)
= 20 isomorphic components

containing 12 trees each.

4 Chambers of polynomiality for the Kostant partition function

We now turn our attention to the connection between chambers of the resonance arrange-
ment and the chambers of polynomiality for the Kostant partition function. Let us first
provide some background.

The Kostant partition function (for the root system An) is a counting function κn :
Rn+1 → Z>0. For a given point a ∈ Rn+1, we have

κn(a) =

∣∣∣∣{x ∈ Z(n+1
2 )

>0 : M(K+
n+1)x = a

}∣∣∣∣ , (6)
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where M(K+
n+1) is the (n+ 1)×

(
n+1

2

)
incidence matrix of the complete graph K+

n+1 with
edges oriented from smaller to larger vertices. Thus the columns of M(K+

n+1) are precisely
the positive roots ei − ej with 1 6 i < j 6 n + 1, and the Kostant partition functions
counts how many nonnegative integer flows on K+

n+1 induce the point a.
To put it another way, κn(a) is the number of lattice points in the flow polytope

F(K+
n+1; a) associated with the complete graph K+

n+1 and netflow vector a:

F(K+
n+1; a) =

{
x ∈ R(n+1

2 )
>0 : M(K+

n+1)x = a

}
.

Kostant partition functions have a rich interplay with flow polytopes in algebraic combi-
natorics and combinatorial optimization as has been explored in, e.g., [3, 4, 12,29–32,37].
The main connection with the resonance arrangement comes from the following result
about the Kostant partition function.

Theorem 5. ( [12]) The Kostant partition function κn is a piecewise polynomial function
of degree

(
n+1

2

)
− n. Its domains of polynomiality are the maximally refined chambers

obtained by intersections of positive root cones.

Compare this result with Proposition 1 which states that resonance chambers are
intersections of all (not necessarily positive) root cones. We can immediately infer a great
deal about these chambers by restricting our study of alternating trees to the study of
positive alternating trees, where we recall a positive alternating tree has all arcs of the
form (i, j) with i < j. Recall also that the set of Kostant chambers is denoted Kn, and
that the number of such chambers is Kn = |Kn|.

We adapt the notation and terminology of Section 3 as follows:

• A positive indexable collection T = {T1, . . . , Tk} is an indexable collection of
positive alternating trees.

• We let I+
n denote the set of maximal (under inclusion) positive indexable collections.

• The positive compatibility graph Γ+
n is the subgraph of Γn obtained by restrict-

ing the vertex set to positive alternating trees on [n].

We have the following results from Section 3 mirrored for positive trees.

Corollary 5 (Compare with Corollary 2). The number of maximal indexable collections of
positive trees on [n+ 1] equals the number of chambers of polynomiality for the Kostant
partition function, i.e.,

Kn = |I+
n+1|.

See Figure 14 to see the K3 = 7 chambers of K3 labeled by maximal indexable collec-
tions of positive alternating trees on [4]. Compare with Figure 10.

Corollary 6 (Compare with Theorem 4). All maximal positive indexable sets in I+
n are

cliques in the positive compatibility graph Γ+
n .
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e2 − e3

e3 − e4e1 − e2

e2 − e4e1 − e3

e1 − e4

Figure 14: The 7 Kostant chambers of K3, labeled by indexable collections of positive
alternating trees on [4]. Compare with Figure 10.

We caution that while Γ+
n ⊂ Γn, it is not true that I+

n is a subset of In. Note that in
particular it is not obvious whether the sets in I+

n are maximal cliques in Γ+
n , and our proof

of Theorem 4 does not readily adapt itself to positive alternating trees. (In particular, if
a new edge is created in Lemma 8, we cannot control whether it is of the form (i, j) with
i < j.) Thus as a follow-up to Question 2 we propose the following question.

Question 3. Which cliques in Γ+
n are/are not positive indexable collections? In particular,

is it true that all maximal positive indexable sets in I+
n are maximal cliques in the positive

compatibility graph Γ+
n ?

From Proposition 1 and Theorem 5 the Kostant chambers contain resonance chambers,
and by the Corollary 3 about the consequences of cyclic permutation of coordinates, we
obtain the following upper bound recorded also in Observation 1:

Corollary 7. The resonance chambers in the positive root cone C(K+
n ) refine the Kostant

chambers. In particular,

Kn 6 R+
n =

Rn

(n+ 1)
.
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As stated in Problem 1 in the introduction, we have also observed

Rn < Kn+1 <
1

2
Tn,

on small data points, though we cannot prove this.

5 The threshold arrangement

The threshold arrangement Tn (corresponding to Tn−1) has normal vectors given by all
±1 vectors in Rn (corners of an n-cube). Since a nonzero vector v and its opposite −v
give the same hyperplane, we can choose as representative normal vectors those vectors

vS = (±1,±1, . . . ,±1,−1),

where the elements of S ⊆ [n− 1] = {1, 2, . . . , n− 1} indicate which entries are positive.
For example, if n = 8,

v{1,3,4,6} = (1,−1, 1, 1,−1, 1,−1,−1).

Let VS = {x ∈ Rn : 〈x, vS〉 = 0} denote the hyperplane normal to vS. Let Tn denote
the arrangement of these 2n−1 hyperplanes, and let Tn−1 denote the number of chambers
in this arrangement. We call this the threshold arrangement since its chambers are in
bijection with threshold functions on n− 1 variables (see, e.g., [42]).

For example, in Figure 15 (also in Figure 2) we see the threshold arrangement of rank
3. Here, the four hyperplanes are

V∅ = {(x, y, z) ∈ R3 : x+ y + z = 0},
V1 = {(x, y, z) ∈ R3 : x = y + z},
V2 = {(x, y, z) ∈ R3 : y = x+ z},
V12 = {(x, y, z) ∈ R3 : x+ y = z}.

The normal vectors are v∅ = (−1,−1,−1), v1 = (1,−1,−1), v2 = (−1, 1,−1), and
v12 = (1, 1,−1).

Definition 9 (Threshold sign vectors). Given a point x ∈ Rn, the threshold sign vector
of x is denoted by

τ(x) = (τS(x))S⊆[n−1],

where

τS(x) =


+ if 〈x, vS〉 > 0,

− if 〈x, vS〉 < 0,

0 if 〈x, vS〉 = 0.

For example, the point x = (1, 2, 1) has τ(x) given by

(τ∅, τ1, τ2, τ12) = (−,−, 0,+).
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V∅

V1

V2

V12

Figure 15: A view of the threshold arrangement T3 of rank 3. The six regions of the
resonance arrangementR2 can be seen as the restrictions of V1, V2, and V12 to the subspace
V∅.

5.1 Invariance of the threshold arrangement

The arrangement Tn is invariant under flipping signs in coordinates, i.e., under reflections
across coordinate hyperplanes (in fact, it is invariant under the action of the hyperocta-
hedral group of signed permutations of coordinates; this fact was deployed by Zuev [42] in
the proof of a lower bound of Tn). This implies that the face structure in any particular
hyperplane of Tn is the same as the face structure of Tn in V∅. We make this claim precise
now.

First we note the following lemma about sign vectors. Lemma 9, along with Lemma
10, will then allow us to biject the walls of Tn in hyperplane VJ with the chambers of the
resonance arrangement Rn−1. We will formalize this bijection in Corollary 8. Observation
2 part (2) relates the walls and chambers of Tn: nC(Tn) 6 2W (Tn). This relationship,
together with Corollary 8, we will yield Theorem 1’s lower bound on Rn in terms of Tn.

Lemma 9. For any I, J ⊆ [n− 1], and x ∈ VJ , we have

〈x, vI〉
2

= 〈x, uI − uJ〉 = 〈x, uI〉 − 〈x, uJ〉. (7)

In particular, if x ∈ Rn−1, then σI(x) = τI(x).

The lemma says that if J = ∅, i.e., if x is in Rn−1, then the sign vectors coincide:
τI(x) = σI(x). The only difference is that in τ(x) we also note that τ∅(x) = 0.

Proof. Let x ∈ VJ . Then by definition,

〈x, vJ〉 =
∑
i∈J

xi −
∑

j∈[n]−J

xj = 0,

the electronic journal of combinatorics 28(1) (2021), #P1.12 33



and so
xn =

∑
i∈J

xi −
∑

j∈[n−1]−J

xj.

Thus,

〈x, vI〉 =
∑
i∈I

xi −
∑

j∈[n−1]−I

xj − xn,

=
∑
i∈I

xi −
∑

j∈[n−1]−I

xj +
∑

j∈[n−1]−J

xj −
∑
i∈J

xi,

= 2
∑
i∈I−J

xi − 2
∑
j∈J−I

xj,

= 2
∑
i∈I−J

xi + 2
∑
k∈I∩J

xk − 2
∑
k∈I∩J

xk − 2
∑
j∈J−I

xj,

= 2
∑
i∈I

xi − 2
∑
j∈J

xj,

= 2〈x, uI〉 − 2〈x, uJ〉.

Now, let ri(x) denote the reflection that sends x to x − 2〈x, ei〉ei, where ei is the
standard basis vector, i.e., we subtract 2xi from the ith coordinate of x:

ri((x1, . . . , xi, . . . , xn)) = (x1, . . . ,−xi, . . . , xn).

This “toggles” the sign of the ith entry and leaves the rest of the vector untouched.
Notice that r2

i (x) = x, so the toggle is an involution (also clear since it is just the
reflection across the coordinate hyperplane), and if i 6= j,

ri(rj(x)) = (x1, . . . ,−xi, . . . ,−xj, . . . , xn) = rj(ri(x)),

so these toggles commute. Since the toggles commute, it makes sense to write

rJ(x) = x−
∑
i∈J

2〈x, ei〉ei,

for any subset J ⊆ [n− 1]. Again, r2
J(x) = x.

In what follows, let I∆J = (I ∪ J)− (I ∩ J) denotes the symmetric difference of two
sets.

Lemma 10. For any x ∈ Rn, and any subsets I, J ⊆ [n− 1], we have

τI(x) = τI∆J(rJ(x)).

Proof. Let y = rJ(x). Notice that yi = xi if i /∈ J , and yj = −xj if j ∈ J . Then,

〈y, vI∆J〉 =
∑
i∈I∆J

yi −
∑

j∈[n]−I∆J

yj,
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=
∑
i∈I−J

yi +
∑
k∈J−I

yk −
∑

j∈[n]−(I∪J)

yj −
∑
l∈I∩J

yl,

=
∑
i∈I−J

xi −
∑
k∈J−I

xk −
∑

j∈[n]−(I∪J)

xj +
∑
l∈I∩J

xl,

=
∑
i∈I

xi −
∑

j∈[n]−I

xj,

= 〈x, vI〉.

If we take I = J in Lemma 10, we see that if x ∈ VJ , then rJ(x) ∈ V∅. This, along
with Lemma 9, implies the following observation.

Observation 3. If x ∈ VJ , then rJ(x) ∈ V∅. Moreover, σI(rJ(x)) = τI(rJ(x)) = τI∆J(x)
for any subset I ⊆ [n− 1].

In other words, for x ∈ VJ , the τ -sign vector of x determines σ-sign vector of rJ(x).
For example, if x = (−1, 3, 1, 1) ∈ V12, then it has τ(x) given by

(τ∅, τ1, τ2, τ3, τ12, τ13, τ23, τ123) = (−,−,+,−, 0,−,+,+).

We have r12(x) = (1,−3, 1, 1) ∈ V∅, and σ(x) is given by

(σ∅, σ1, σ2, σ3, σ12, σ13, σ23, σ123) = (0,+,−,+,−,+,−,−).

Note σ∅ = τ12, σ1 = τ2, σ2 = τ1, σ3 = τ123, and so on.
We now collect the important consequences of our lemmas and observations.

Corollary 8. For any face F that is not a chamber of Tn, we have F ∈ VI if and only if
rJ(F ) ∈ VI∆J . Moreover, the sign vector τ(F ) uniquely determines τ(rJ(F )), and vice
versa.

In particular, for each face F ∈ Rn−1, we have rJ(F ) ∈ VJ and the sign vector τ(rJ(F ))
is uniquely determined by the sign vector τ(F ) = σ(F ).

Thus, rJ gives a bijection between the walls of Tn in hyperplane VJ and the chambers
of the resonance arrangement Rn−1.

Proof. The first claim is an immediate consequence of Lemma 10, since (I∆J)∆J = I.
The second claim uses the first claim together with Lemma 9 that shows the τ - and
σ-vectors coincide in V∅. The third statement refers to only codimension one faces of
Tn.

We are now ready to prove the bounds in Theorem 1.

5.2 Threshold functions and resonance chambers

In this section we prove Theorem 1. For convenience we restate the inequality (1) claimed
in Theorem 1:

(n+ 1)

2n+1
Tn < Rn <

1

2
Tn.
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The upper bound follows from Observation 2 part (1). That is, since Rn lives in a
hyperplane of Tn+1, its chambers are walls in Tn+1 that separate chambers with τ∅ > 0
and τ∅ < 0. Thus, for each of the Rn chambers of Rn there are two chambers in Tn+1

that contain it on their boundary. This immediately implies

2Rn < Tn.

The bound is not sharp, as can be seen in the n = 3 case, where there are two chambers
with no walls on V∅.

The lower bound in Theorem 1 follows this idea:

(chambers in Tn) ↪→ (walls in Tn)↔ (chambers in Rn−1)× (hyperplanes in Tn).

From Observation 2 part (2), we know nC(Tn) 6 2W (Tn), where C(Tn) = Tn−1 is the
number of chambers of the threshold arrangement, and W (Tn) is the number of walls in
the arrangement. The inequality is strict since the threshold arrangement is not simplicial
(and so there are chambers with more than n walls on their boundary). The walls are
partitioned according to the hyperplane they live in, so that W (Tn) =

∑
I⊆[n−1] W (VI).

But, by Corollary 8, we know W (VI) = C(Rn−1) = Rn−1 for all subsets I. Hence,

nTn−1 < 2W (Tn) = 2
∑

I⊆[n−1]

W (VI) = 2nRn−1,

from which the lower bound claimed in Theorem 1 follows:

nTn−1

2n
< Rn−1.

Remark 5 (Intertwined arrangements). In this paper we focus on how the resonance ar-
rangement sits inside the threshold arrangement. Curiously, we also note that the thresh-
old arrangement of lower rank embeds in the resonance arrangement as well, implying
Tn−1 < Rn. This bound also yields the asymptotic result for log2Rn in Theorem 1, but it
is known that (2n−1 + 1)Tn−1 6 Tn (see [41]), and Tn/(2

n−1 + 1) < (n + 1)Tn/2
n+1 for n

larger than 3, so the lower bound in (1) is better than Tn−1.

Remark 6 (Better upper bounds). One can do better than the upper bound in Theorem
1 if one understands how many walls to expect in a typical chamber of Tn. That is,
w(n)Tn−1 = 2W (Tn) = 2nRn−1, where w(n) is the average number of walls per chamber.
Since Tn has rank n, w(n) > n. While neither the threshold arrangement nor the resonance
arrangement are simplicial, w(n) might not grow too quickly with n. For example, if
w(n) < n2 this would say

2nRn−1 < n2Tn−1,

which would imply the upper bound:

Rn−1 <
n2Tn−1

2n
.

The data for (the base-2 logarithm of) this comparison is given in Tables 3, which seems
to suggest that w(n) is closer to n than n2.
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n log2

(
b (n+1)

2n+1 Tnc
)

log2 (Rn) log2

(
1
2
Tn
)

log2

(
d (n+1)2

2n+1 Tne
)

1 1 1 1 2
2 2.4 2.6 2.8 4.0
3 4.7 5 5.7 6.7
4 8.2 8.5 9.9 10.5
5 13.1 13.5 15.5 15.7
6 19.6 20.0 22.8 22.5
7 28.0 28.4 32.0 31.0
8 38.2 38.6 43.0 41.3

Table 3: Base-2 logarithms of the number of maximal unbalanced families and lower and
upper bounds in terms of the number of threshold function. Boldface entries are better
than the best general upper bound.

Problem 3. Estimate w(n), the average number of walls per chamber in Tn. In particular,
is w(n) < n2?
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[30] K. Mészáros and A. H. Morales. Flow polytopes of signed graphs and the Kostant
partition function. Int. Math. Res. Not. IMRN, (3):830–871, 2015.
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