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Abstract—Root locus analysis is a graphical method to
determine how the roots of the characteristic equation of
a linear time-invariant feedback loop change with the loop
gain. In this paper we show that a similar analysis can be
carried out for randomly sampled systems, i.e., controlled linear
systems sampled at random times spaced by independent and
identically distributed time-varying intervals. For such systems,
the roots of a characteristic equation determine the behavior of
expected values of signals in the loop. The root locus analysis
in this context is especially useful for positive systems, for
which (almost sure) stability can be concluded if the roots of
the characteristic equation have a negative real part, and it
is particularly simple when the distribution of the intervals
between sampling times is exponential or Erlang.

I. INTRODUCTION
Originally proposed by Evans [1], root locus analysis

consists of a graphical method to determine how the poles
of a linear single-input single-output feedback loop change
with a given parameter, typically the loop gain. It is taught
worldwide in introductory control courses [2, Ch. 5] and
thus it is widespread in industrial control design. However,
it is limited to time-invariant systems, either continuous-time
or discrete-time/periodic sampled-data, since the concept of
pole does not easily extend to time-varying systems. As a
result, root-locus analysis is not immediately applicable to
emergent networked control applications (remote surgery,
smart grids, automotive industry, etc.) in which sensors,
actuators and controllers are connected by communication
networks introducing time-varying sampling intervals and
delays (see, e.g., [3]–[14]). The absence of root locus anal-
ysis and other classical analysis tools (Nyquist criterion,
sensitivity analysis, etc.) in these contexts is a bottleneck
in the process of streamlining the analysis and design of
networked control systems (NCSs).
In this paper we show that an analogous method to root-

locus analysis can be carried out for studying a closed
loop model capturing important features of NCSs. We con-
sider randomly sampled systems, i.e., systems in which the
sampling times at which the loop is closed are spaced by
independent and identically distributed time-varying inter-
vals. Randomness in the sampling time intervals models
the fact that communication networks (such as wireless and
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Ethernet local area networks) implement protocols involving
stochastic features such as packet collisions, drops, back-off
times, etc (see [15]).
Our analysis builds upon the fact, established in [16], [17],

that one can obtain Laplace transform expressions for the
expected value of signals in a randomly sampled loop. Such
expressions reveal that the behavior of these expected values
is determined by the roots of a characteristic equation, so-
called characteristic exponents, which thus play the role of
poles in the context of randomly sampled systems. The main
contribution of this paper is to show that the characteristic
exponents can be obtained as a function of the loop gain by a
graphical method that parallels classical root locus analysis.
There are two important differences with respect to the

classical analysis for deterministic systems. First, the number
of characteristic exponents may be infinite. Nonetheless, we
show that the number of roots is finite if the distribution of
the sampling intervals belongs to the class of phase-type dis-
tributions, which can arbitrarily approximate any probability
distribution [18, Ch. III]. In particular, for exponential and
Erlang distributions, instances of phase-type distributions,
the analysis is especially simple. Second, (almost sure)
stability cannot in general be assured if the characteristic
exponents have a negative real part. Yet, we show that the
latter condition does imply (almost sure) stability for the
class of positive systems (found in economics, transportation
networks, etc. [19]).
While, to the best of our knowledge, root-locus analysis

has not been considered beyond the scope of deterministic
time-invariant systems, we can establish connections with
previous work. Early work on randomly sampled systems
can be found in [20], [21] [22], [23]. One of the motivations
was to capture sampling jitter in digital control. More re-
cent work, motivated by networked control and applications
in system biology, can be found in [6]–[8], [16], [17],
[24]. For related work considering sampling jitter, delays,
packet drops, and other network-induced control constraints,
see [3]–[14]. For an eigenvalue-based approach to study
deterministic time-delay systems see [25].
The paper is organized as follows. Section II provides

preliminary results. Our main results are given in Section III
and Section IV presents a numerical example. Section V dis-
cusses the limitations of the work motivating future research.

II. PRELIMINARIES
Consider a control loop in which the process is described

by a minimal realization
ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t), t ∈ R≥0,
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Fig. 1. SISO digital control loop; Stk is the sampler, Htk is the standard
zero-order hold updated at times tk , and gL is the loop gain; the process
block may include a controller/compensator.

where x(t) ∈ Rm is the state, u(t) ∈ R is the control input,
and y(t) ∈ R is the output. The state of the process may
include (and in general does include) some variables from
a dynamic controller/compensator such that analyzing the
control law u(t) = −gLy(t) for a positive loop gain gL
suffices to obtain desired behavior for the closed loop. The
open loop transfer function is given by n(s)

d(s) , where

d(s) := det(sI −A), n(s) := Cadj(sI −A)B,

and adj stands for adjugate of a matrix, and the closed loop
poles (eigenvalues of A− gLBC) coincide with the roots of
the characteristic equation

d(s) + gLn(s) = 0. (1)

The root locus analysis (see [2, Ch. 5]) describes how the
location of the closed loop poles change with gL. It can also
be applied to the standard digital control loop depicted in
Figure 1, where the controller has only access to the output
samples {y(tk)|tk+1 − tk = h, k ∈ N0}, for some sampling
period h, and a standard zero order hold interface is used

ŷ(t) := y(tk), t ∈ [tk, tk+1), (2)

which results in the input −gLŷ(t) to the
process/compensator. The characteristic equation takes
now the form

dd(z) + gLnd(z) = 0, (3)

where

nd(z) := Cadj(zI −Ad)Bd, dd(z) := det(zI −Ad),

Ad := eAh, and Bd :=
∫ h
0 eAτdτB result from the step-

invariant discretization of the process.
Motivated by networked control applications, in this paper

we assume that hk := tk+1 − tk in the setup of Figure 1
are independent and identically distributed random variables,
following a probability cumulative distribution F ,

tk+1 − tk ∼ F, k ∈ N0.

We assume that F can be written as F = F1 + F2, where
F1 is an absolutely continuous function F1(τ) =

∫ τ
0 f(s)ds,

for some density function f , and F2 is a piecewise constant
increasing function that captures possible atom points {a i}
occurring with probability {wi}. Then, for a matrix-valued
function G, we have

∫∞
0 G(τ)F (dτ) =

∫∞
0 G(τ)f(τ)dτ +∑

iwiG(ai).
To pursue and interpret a root locus analysis in this

setting, we need two preliminary results. The first follows

from [16], [17] and provides Laplace transforms for expected
values of state variables of the randomly sampled control
loop. Let w(t) := [x(t)ᵀ ŷ(t) ]ᵀ and note that

ẇ(t) = Āw(t), t ∈ R≥0, t $= tk,

w(tk) = J̄w(t−k ), k ∈ N,
(4)

where
Ā :=

[
A −BgL
0 0

]
, J̄ :=

[
I 0
C 0

]
,

and w(t−k ) := lims↑tk w(s). Moreover, consider the follow-
ing assumption:

eλ̄(A)tr(t) < ce−α1t for some c>0, α1>0, (5)

where λ̄(A) is the real part of the eigenvalue(s) of A with
the largest real part, which is always satisfied if the open
loop system is stable, or if F has bounded support.
Theorem 1: Suppose that (5) holds. Then, the Laplace

transform of the expected value of the state of (4),

ŵ(s) :=

∫ ∞

0
E[w(t)]e−stdt,

is equal to

ŵ(s) = Ĥ(s)[I − K̂(s)]−1w(0), (6)

where

K̂(s) := J̄

∫ ∞

0
eĀτe−sτF (dτ), Ĥ(s) :=

∫ ∞

0
eĀτr(τ)e−sτ dτ,

and r(τ) :=
∫∞
τ F (dr).

!
The characteristic exponents are defined as the roots of

the characteristic equation

det(I − K̂(s)) = 0 (7)

and determine the behavior of ŵ(s) and thus also the be-
havior of E[w(t)], which can be obtained by inverse Laplace
transforms. In particular, one can conclude from the inverse
Laplace transform that E[w(t)] → 0, as t → ∞, if the
characteristic exponents have a negative real part (cf. [26,
Ch. 7]). The second of our two preliminary result establishes
that this is sufficient for (almost sure) stability if the closed
loop system is positive, in the sense that each component of
x(t) is positive for every t ∈ R≥0.
Proposition 2: Consider the system (4) and suppose that

each component of x(t) is positive for every time t ∈
R≥0, that (5) holds and that E[w(t)] → 0, as t → ∞.
Then, the closed loop system is almost surely stable, i.e.,
Prob[limt→∞ ‖x(t)‖ = 0] = 1.

!
The proof is omitted, but we mentioned that it can be

obtained by analyzing the discrete-time process {w(tk)|k ∈
N0} and combining arguments from [16], [27], [28]. For
general systems, other methods can be used to assure almost
sure stability (see, e.g., [16], [20], [21], [27], [28]) and the
root locus analysis presented next is still useful as a method
to infer the behavior of the expected value of the state. We
exploit this in the application example of Section IV.
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III. MAIN RESULTS

The following is the main result of the paper.
Theorem 3: The roots of (7), i.e., the characteristic expo-

nents, coincide with the roots of

dF (s) + gLnF (s) = 0, (8)

where

dF (s) = det(I − Â(s)), nF (s) = Cadj(I − Â(s))B̂(s),

and

Â(s) :=

∫ ∞

0
eAτe−sτF (dτ), B̂(s) :=

∫ ∞

0

∫ τ

0
eArBdre−sτF (dτ).

!
Note that (8) has the same structure as (1) suggesting that

a root-locus analysis may be carried out as a function of
gL. This is in fact the case, provided that we make some
adjustments to cope with the fact that, contrarily to the
classical case (1), nF (s) and dF (s) are not necessarily finite
complex functions for every s ∈ C (if F has unbounded
support) and are not in general polynomials. In particular,
the number of roots of (8) may be infinite. This is illustrated
in the following example.
Example 4: Suppose that n(s) = 1, d(s) = (s+ a), C =

B = 1, A = −a, a ∈ R≥0, leading to

dF (s) = (1−F̂ (s+a)), nF (s) =
1

a
(F̂ (s)−F̂ (s+a)), (9)

where
F̂ (s) :=

∫ ∞

0
e−stF (dt). (10)

For uniform F in the interval [0, T ], we obtain F̂ (s) =
(1−e−sT )

sT and (8) has an infinite number of roots. For exam-
ple, for gL = 0, the roots are given by the infinite number
of complex solutions to T (s + a) = 1 − e−(s+a)T . On the
other hand, if F corresponds to an exponential distribution
with rate λ (unbounded support), i.e.,

F (τ) = e−λτ , τ ∈ R≥0, (11)

then F̂ (s) = λ
λ+s and

nF (s) =
λ

(s+ λ)(λ + s+ a)
, dF (s) =

s+ a

λ+ s+ a
, (12)

are both infinite when s = −(a+λ) and dF (s) is also infinite
when s = −λ.

!
A consequence of the fact that nF (s) and dF (s) are

not necessarily finite (if F has unbounded support) is that,
contrarily to the classical case, it does not suffice to consider
the roots of nF (s) = 0 and dF (s) = 0 to perform a root-
locus analysis based on (8). This is clear from Example 4,
in which the characteristic equation (8) for (12) is equivalent
to

(s+ λ)(s + a) + gLλ = 0. (13)

Here −a and −λ play the role of ’open loop poles’ (roots of
d(s) = 0) in the classical analysis (1) instead of simply −a,

which is the only root of dF (s) = 0 (in this case nF (s) = 0
has no roots). This illustrates the fact that, in general, if F has
unbounded support, one needs to rearrange (8) to perform a
root-locus analysis.
The fact that nF (s) and dF (s) are not polynomial, leading

to a possible infinite number of characteristic exponents,
seems to hinder a closed loop analysis in such a case.
However, this can be circumvented by approximating F by
a phase-type distribution (dense in the set of all probability
distribution on (0,∞) [18, Th. 4.2, Ch. III]), i.e., it can
accurately approximate any given probability distribution).
The class of phase-type distributions [18, Ch. III] is pa-
rameterized by a p × p square matrix S and a 1 × p row
vector α and it is characterized by F (x) = 1 − αeSx1 and
F̂ (s) = −α(sI − S)−1S1, respectively, where 1 is a row
vector of ones. Computing nF (s) and dF (s) for a phase
type distribution one obtains rational functions (ratio of poly-
nomials). Hence, the root-locus analysis can be pursued by
rearranging (8) to obtain an equation as (1) for polynomials
n(s) and d(s), like we did to obtain (13) for (12), and using
standard rules [2, Ch. 5]. The problem of fitting a phase-type
distribution to a given probability distribution is addressed
in [18, Ch. III]. Note that from a practical point of view it is
desirable to obtain a good fit with a small p (dimension of
the matrix S), since in general the number of characteristic
exponents increases with p.
We consider below two special cases of phase-type dis-

tributions: (i) exponential distributions in Section III-A;
(ii) Erlang distributions in Section III-B, where we also
illustrate how a Dirac distribution (digital control) can be
approximated by phase-type distributions. In Section III-
C we discuss the connection between our method and a
discrete-time approach in the spirit of [20]–[23], [27].

A. Exponential distribution
When considering exponential distributions in Example 4

we obtained a characteristic equation (13) taking the form
d(s)(s+ λ) + gLλn(s) = 0. The next result shows that this
is a general property.
Theorem 5: Suppose that F corresponds to an exponential

distribution (11) with rate parameter λ > λ̄(A). Then, (5)
holds and the characteristic equation (8) takes the form

d(s)(s+ λ) + gLλn(s) = 0. (14)

!
This result has two important implications. First, the root

locus analysis as a function of gL (for exponential inter-
transmission times and fixed λ) boils down to the following
procedure. Consider the set of zeros and poles of the open
loop transfer function n(s)

d(s) and add a pole at location −λ;
perform a classical root locus analysis to determine the
closed loop poles as a function of the loop gain g̃L = λgL.
Then, the location of the roots of the characteristic equation
of the randomly sampled system coincide with that of these
closed loop poles. Second, noting that (14) is equivalent to

d(s)s+ λ(d(s) + gLn(s)) = 0,
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a root locus analysis as a function of the intensity λ (for
fixed gL, and λ > max(λ̄(A), 0) ) can be pursued, where
the role of numerator and denominator of the open loop
transfer function are played by the denominator of the closed
loop transfer function and by the polynomial obtained by
multiplying the denominator of the open loop transfer func-
tion by s, respectively. Note, in particular, the simplicity of
determining the influence of the (average) sampling rate on
the characteristic exponents when compared to an analogous
analysis for traditional digital control with a deterministic
sampling rate.

B. Erlang distributions
Consider now that F corresponds to an Erlang distribution

with shape parameter κ ∈ N and mean 1/λ, i.e., F has the
density

f(x) =
(λκ)κxκ−1

(κ− 1)!
e−λκx. (15)

Then, one can show that (5) is met if λ > λ̄(A)
κ , and

F̂ (s) = (
λκ

s+ λκ
)κ. (16)

By varying κ, we can consider a range of distributions
starting with the exponential distribution with rate λ for
κ = 1 and approximating a Dirac function at 1

λ as κ → ∞.
In particular, as κ → ∞, (16) converges to e−

s
λ , which

is (10) for a Dirac at 1
λ . The Dirac function coincides with the

special case of digital control in the setup of Figure 1 with
sampling periodic tk+1 − tk = 1

λ . As such, we can interpret
considering a finite but large κ for a gamma distribution
in this setting as inferring the effect of a sampling jitter in
digital control.
We start by considering the simple case n(s)

d(s) = 1
s+1 as in

Example 4. For this case we can conclude from (8), (9), (16)
that, for a given κ, the roots of (8) coincide with the roots
of

d̄(s) + gLn̄(s) = 0 (17)

for polynomials

n̄(s) :=
(λκ)κ

a

(
(s+ λκ+ a)κ − (s+ λκ)κ

)
,

d̄(s) := (s+ λκ)κ
(
(s+ a+ λκ)κ − (λκ)κ

)
.

A classical root locus analysis can then be pursued based on
the location of the roots of d̄(s) = 0 and n̄(s) = 0; d̄(s) = 0
has κ multiple roots at s = −κτ and the following roots

s = −a+ λκ(e
j2π#
κ − 1), % ∈ {0, . . . ,κ− 1} (18)

with an interesting geometric pattern: they lie on the circle
passing through αi and αi − λκ; the roots of n̄(s) = 0 are
given by:

s = −λκ+
−a

1− e
j2π#
κ

, % ∈ {1, . . . ,κ− 1}.

For a more general case, suppose that A is diagonalizable,
A = UDU−1, and let ai, i ∈ {1, 2, . . . ,m} denote the
diagonal elements of D assumed to the real, vi the row

vectors of U and wj the row columns of U−1. Then, from
the expressions provided in Theorem 3 we can conclude that

nF (s)

dF (s)
=

n∑

i=1

CviwiBgi(s, ai),

where
gi(s, ai) =

(F̂ (s− ai)− F̂ (s))

ai(1− F̂ (s− ai))
.

We can again see that the roots of (8) coincide with the
roots of an equation taking the form d̄(s) + gLn̄(s) = 0
for polynomials n̄(s) and d̄(s). The roots of d̄(s) = 0 are
easy to determine: κ multiple roots are located at −κτ and
the remaining roots take the form (18) when a is replaced
by each −ai, i ∈ {1, . . . ,m}. However, the location of the
roots of n̂(s) = 0 do not seem straightforward to determine.

C. Connection to a discrete-time approach
When F corresponds to a Dirac at h (i.e., digital

control with sampling period h), we obtain Â(s) =
Ade−sh, B̂(s) = Bde−sh, and (8) can be written as

det(I −Ade
−sh) + gLCadj(I −Ade

−sh)Bde
−sh = 0,

or equivalently as (3) for z = esh. Note that (3) is obtained
taking a discrete-time approach, i.e., considering the system
{w(tk)|k ∈ N0} or {x(tk)|k ∈ N0}. This raises the question
whether a discrete-time approach in the spirit of [20]–[23]
can also be pursued for root-analysis of randomly sampled
systems.
To this effect, let zk := E[x(tk)] and note that from (4)

we obtain
zk+1 = (Ã− gLB̃C)zk, (19)

where

Ã :=

∫ ∞

0
eAτF (τ), B̃ :=

∫ ∞

0

∫ r

0
eAτdτF (dr)B.

From this we can conclude that the eigenvalues are the roots
of

dd(z) + gLnd(z) = 0, (20)

where dd(z) := det(zI − Ã) and nd(z) := Cadj(zI − Ã)B̃,
suggesting that a root-locus analysis can be carried out. The
roots of dd(z) have the following relation with respect to the
open loop poles of the continuous-time transfer function:

{z∈ C|dd(z)=0}={
∫ ∞

0
esτF (dτ)| det(sI −A) = 0, s ∈C}.

(21)
Table III-C summarizes this relation for distributions of
interest. Note that the stable continuous-time poles (Re(s) <
0) are always mapped onto the unit circle. As for digital
control, there appears to be no easy way to describe the
roots of nd(z).
A possible drawback of this approach with respect to the

one provided above is that it is not easy to interpret how the
location of the roots of (20) influences the behavior of the
closed loop. Note that in the approach of the previous section
the characteristic exponents can be interpreted as exponential
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Exp. Erlang Unif. (support T ) Dirac at h
z = λ

s−λ z = ( λκ
s−λκ )

κ z = esT −1
sT z = esh

TABLE I
CONNECTION BETWEEN THE ROOTS OF det(sI − A) = 0 AND THE

ROOTS OF det(zI − Ã) = 0 FOR SEVERAL DISTRIBUTIONS

decays/increase times rates of the expected value of the state.
Here, however, they represent exponential decay/increase
rates for the sampled system (19), and it does not appear
to be easy to relate these with decay/increase time rates.

IV. NUMERICAL EXAMPLE
Consider the following model:

ẋ1(t) = −5x1(t) + %12(x2(t)− x1(t))

ẋ2(t) = %21(x1(t)− x2(t)) + %23(x3(t)− x2(t))

ẋ3(t) = %32(x2(t)− x3(t)), t ∈ R≥0,

(22)

which can be used to describe a platoon of three vehicles [29,
Example 2]. As mentioned in [29, Example 2], the terms
%ij(xj(t) − xi(t)) represent position adjustments based on
distance measurements between the vehicles and the term
−5x1(t) reflects the fact that the first vehicle maintains his
position stable but the second and third vehicles rely on the
distance measurements for stabilization. These measurements
are assumed to be ideally transmitted between vehicles
(available for every time t). We set %ij = 1 for every i, j. The
model (22) is a positive system in the sense that if xi(0) ≥ 0
for every i, then xi(t) ≥ 0, for every t ∈ R≥0 and every i
(see [29]). Here we analyze the introduction of additional
terms representing a position adjustment between the first
and the third vehicles. If the communication between these
two vehicles was ideal, we would have

ẋ = (A− gLBC)x(t),

where

A :=




−6 1 0
1 −2 1
0 1 −1





is the system matrix for (22), B := [1 0 ,−1]ᵀ, C := [1 0 −
1], and gL a positive gain. However, here we assume that
vehicles 1 and 3 acquire each others’ positions through a
bidirectional transmission link. Transmissions occur at times
{tk|k ∈ N0} and, in between, the last position adjustment is
held constant as in Figure 1.
We address first under which conditions the closed loop

model of Figure 1 for the process characterized by matrices
A, B, C remains a positive system (as the open loop (22)).
It is easy to conclude that between sampling times

x(t)=(eA(t−tk)− gL

∫ t

tk

eA(t−tk)dsBC)x(tk), t ∈ [tk, tk+1),

(23)
and that eA(t−tk) has all entries strictly positive for t > tk.
Suppose that the distribution F of the intervals between
transmission has bounded support T . Then, for sufficiently

small gL and T , x(t) will have positive entries in the interval
[tk, tk+1) if the same holds at tk, and by induction we
conclude that the system is positive. Figure 2(a) illustrates
the values of gL, T where all the components of the matrix
eAT +gL

∫ T
0 eAsdsBC are positive (and thus the closed loop

is positive). From Proposition 2 we conclude that for such
values of gL, T , if the characteristic exponents lie in the left
half plane, we can guarantee (almost sure) stability.
However, considering a distribution with a bounded sup-

port (e.g., uniform, see Example 4) typically leads to an
infinite number of characteristic exponents. Moreover, if we
approximate F by a phase-type distribution, we must in
general deal with a distribution with unbounded support.
From (23) we can conclude that for a fixed gain gL there is a
t > tk and a x(tk) such that x(t) has negative components,
i.e., the system is not necessarily positive. As such, we have
to resort to other methods to assert stability.
In this example we consider only the exponential (phase-

type) distribution (11) with rate λ. We use the results
from [16] to test mean square stability (which implies almost
sure stability) for specific values of gL,λ, which is illustrated
in Fig. 2(b). Note that there may exist other values of gL and
λ for which the closed loop is almost surely stable, although
not mean square stable (see [16] for the definition of mean
square stability).
We turn now to a root-locus analysis made possible by the

results of the present paper. As mentioned in Section III-A,
the analysis is especially simple for exponential distributions:
it suffices to add a pole at −λ to the poles and zeros of the
open loop transfer function, which for the matrices A, B, C
above is given by

n(s)

d(s)
=

2s2 + 11s+ 10

s3 + 9s2 + 18s+ 5
;

the zeros of this transfer function are at −4.35 and−1.15 and
the poles at −0.33, −2.42, −6.25. Figure (3) shows the root-
locus in this setting showing the characteristic exponents as
a function of gL for exponential F with rate λ = 7. A root-
locus analysis based on ideal communication would simply
not have the extra open loop pole at −7 and thus the closed
loop pole that starts at −6.25 for gL = 0 would tend to
minus infinity along the real line. Intuitively, adding a pole
at −λ has a repulsive effect on the remaining poles, in the
sense that they become closer to the right-half plane. This
plays well with intuition, since imposing communication
constraints leads to a slower convergence of the system to
zero.

V. DISCUSSION
In this paper, we proposed a novel root-locus analysis

framework for studying how the characteristic exponents of
a randomly sampled systems change with the loop gain.
One of the highlights is the simplicity of the analysis when
the distribution of the sampling intervals is exponential or
Erlang. Some limitations include the fact that (almost sure)
stability when no right-half plane characteristic exponents
exist can only be guaranteed for positive systems, and the
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Fig. 3. Root-locus for a randomly sampled system when F is exponential
with λ = 7.

fact that distributions with bounded support lead in general
to an (impractical) infinite number of exponents -although
this can be circumvented by using a phase-type distribution
to approximate the original distribution, this may still lead
to a large number of characteristic exponents.
One way to overcome the latter limitation is to use the

Nyquist criterion to assure the existence of no right-half
plane roots of the characteristic equation (8), a topic for
future work. In order to make the stability analysis applicable
to general systems (other than positive), we also plan to
investigate to which extent the results carry on to an analysis
of second moments as in [16].
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