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ROOT-N-CONSISTENT SEMIPARAMETRIC REGRESSION 

BY P. M. ROBINSON1 

One type of semiparametric regression on an Rp X R"-valued random variable (X, Z) 
is ,B'X+ @(Z), where P3 and 0(Z) are an unknown slope coefficient vector and function, 
and X is neither wholly dependent on Z nor necessarily independent of it. Estimators of P8 
based on incorrect parameterization of 0 are generally inconsistent, whereas consistent 
nonparametric estimators deviate from P8 by a larger probability order than N- 1/2, where 
N is sample size. An estimator generalizing the ordinary least squares estimator of ,B is 
constructed by inserting nonparametric regression estimators in the nonlinear orthogonal 
projection on Z. Under regularity conditions ,B is shown to be N'/2-consistent for /B and 
asymptotically normal, and a consistent estimator of its limiting covariance matrix is given, 
affording statistical inference that is not only asymptotically valid but has nonzero 
asymptotic first-order efficiency relative to estimators based on a correctly parameterized 0. 
We discuss the identification problem and /B's efficiency, and report results of a Monte 
Carlo study of finite-sample performance. While the paper focuses on the simplest 
interesting setting of multiple regression with independent observations, extensions to other 
econometric models are described, in particular seemingly unrelated and nonlinear regres- 
sions, simultaneous equations, distributed lags, and sample selectivity models. 

KEIwoRDs: Regression, semiparametric model, kernel nonparametric estimators, root 
N-consistent estimation, central limit theorem, SUR model, linear simultaneous equations, 
distributed lags, heteroskedasticity, sample selectivity. 

1. INTRODUCTION 

STATISTICAL INFERENCE on a multidimensional random variable commonly 
focuses on functionals of its distribution that are either purely parametric or 
purely nonparametric. A reasonable parametric model affords precise inferences, 
a badly misspecified one, possibly seriously misleading ones, while nonparametric 
modeling is associated both with greater robustness and lesser precision. An 
intermediate strategy employs a semiparametric form, such as the regression 
function 

(1.1) E(YIX,Z) =fl'X+@(Z) almostsurely(a.s.), 

where (X, Y, Z) is an Px x M q-valued observable random variable, P3 is a 
MP-valued unknown parameter, and 9 is an unknown real function. In (1.1), X, 
Z, and fi are column vectors and the prime indicates transposition. As usual, 
(1.1) might be the outcome of logging a multiplicative model. 

Versions of (1.1) have been studied by Cosslett (1984), Shiller (1984), Wahba 
(1984, 1985), Stock (1985), Engle et al. (1986), N. Heckman (1986), Rice (1986), 
Schick (1986). The statistical objectives in these papers vary, as do the motivating 
applications. In most, though not all, of them Z is a scalar nonstochastic design 
variable, typically a time index. Our own aim is precise estimation of P3 when Z 

l This article is based on research funded by the Economic and Social Research Council (ESRC) 
reference number: B00232156. I thank Miguel Delgado for carrying out the simulations reported in 
Section 6, and two referees for many incisive and constructive comments which have stimulated 
substantial improvements. A previous version was circulated under the title "Adaptive Semiparamet- 
ric Regression." 
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is stochastic and of arbitrary dimension, indeed the value of q nontrivially 
influences our methodology and theory. The components of 13 may have interest- 
ing economic significance, and some hypotheses of interest may be expressible 
purely in terms of ,B, in which event the building of a full parametric model may 
be of secondary importance. Good estimates of 13 can assist also in parameteriz- 
ing 0. We picture a practitioner faced with a large cross-sectional data set 
including many candidate explanatory variables, who on the basis of economic 
theory or past experience with similar data feels able to parameterize only some 
of them. Very crudely, (1.1) describes a qualitative unevenness in prior informa- 
tion. It is possible also to rationalize (1.1) as emerging from some econometric 
models involving latent variables: extending models developed by J. Heckman 
(1976) and others, a dependent variable is censored or truncated when a latent 
variable of possibly unknown distributional form exceeds a (possibly unknown) 
function of Z; extending a model of Zellner (1970), a linear regression includes 
both observed and latent variables, where the latter are an unknown function of 
Z. It is also possible to interpret 13 as the coefficients of the "surprise" compo- 
nent of X, that is the part that cannot be predicted using Z. Both (1.1) and the 
conditions we impose on it are restrictive in terms of direct applications, but we 
also describe how some of these conditions might be relaxed and how more 
general semiparametric models than (1.1) might be estimated. 

Under regularity conditions, ordinary least squares (OLS) regression of Y on 
X alone consistently and efficiently estimates 13 when E(XO(Z)) = 0, as when 
E(X) = 0 and X and Z are statistically independent. Such orthogonality is 
present in certain experimental designs and models containing dummy variables, 
as well as in some modeling strategies in which Z is not fully or parsimoniously 
specified, for example orthogonal polynomial and trigonometric regression. Or- 
thogonality can be checked, but it is exceptional, particularly when the explana- 
tory variables include stochastic ones or are large in number. The bias of OLS in 
the presence of a nonorthogonal omitted variable is explained in elementary 
econometric textbooks. In much applied work there is an understandable tenden- 
cy to include candidate explanatory variables in an ad hoc, typically linear, 
fashion, resulting again in biased estimation. Rigorous statistical analysis of 
parametric estimators in the presence of model misspecification is possible; under 
typical regularity conditions OLS estimators of 13 based on incorrect parameteri- 
zation of 9 are asymptotically normal about 13 + B after N1/2 norming, where N 
is the number of observations and the "asymptotic bias" B reflects the unknown 
9 (see, e.g., White (1982)). Some analysis of B may be possible, allowing 
speculation about the direction of bias and the signs of 13P's elements relative to 
13 + B's. The omission of many variables, or a "large" discrepancy between the 
true 0 and the misspecified one, does not necessarily result in incorrect conclu- 
sions. On the other hand some applied studies indicate high sensitivity of 
parameter estimators to misspecification of the rest of the model. Automatic or 
semi-automatic algorithms help bridge the gap between theory and model specifi- 
cation (see, e.g., Amemiya (1980), Stone (1981), and references therein). For 
example, stepwise regression selects a parsimonious model with good explanatory 
power while keeping some variables (i.e., X) in the regression irrespective of their 
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t ratios, though it searches only over linear models. Specification tests are 
available, but failure to reject correct specification does not necessarily inspire 
confidence in the null hypothesis, and rejection necessitates continuing the model 
search. 

Consistency for ,8 in the presence of unknown 9 is possible, however. Perhaps 
the most obvious source is nonparametric estimation of e(x, z) = E(YIX = x, Z 
= z) at a point (x, z). Let e(x, z) be (say) a Nadaraya-Watson kernel estimator 
of e(x, z) with differentiable kernel (see, e.g., Prakasa Rao (1983, pp. 33-37, 
180-200, 239-247, and Section 2 below)); when X and Z do not overlap, 

e=(x/dx)e(x, z) estimates /3 consistently under quite general conditions; see, 
e.g., Schuster and Yakowitz (1979). Unfortunately e and ex are not N' 2-con- 
sistent, because the asymptotically correct centering at ,B is due to a "bandwidth" 
parameter approaching 0, with the effect that, asymptotically, only a vanishingly 
small proportion of the data, "near" (x, z), is used. Indeed, the greater p + q, the 
further we fall short of N1/2-consistency, and ex converges even slower than e; 
Stone (1982) discusses optimal rates of convergence in nonparametric regression 
and its derivatives. Estimators that are consistent but not N1/2-consistent gener- 
ate inferences which, though asymptotically valid, have zero efficiency relative to 
ones based on NI/2-consistent estimators, and while the latter comparison 
presents an exaggeratedly pessimistic impression of the finite-sample reality, it is 
debatable whether nonparametric estimators should necessarily be preferred to 
the "N1/2-inconsistent" ones based on incorrectly parameterizing 9. Averaging ex 
over n (x, z)-values only improves rates of convergence if n increases with N, for 
example 

N 

(1.2) * = ex(Xi, Zi) i 
i=1 

where xi, zi might be either the observed X's and Z's or a sequence of 
representative design points, and the wi are probability weights, e.g., w, N- . 

(It seems /3* is N'/2-consistent for /3 under suitable conditions, and thus 
competitive with the estimator /3 developed below. One might establish /3*'s 
limiting distribution and compare its efficiency with Af's.) 

Other modifications of nonparametric regression should be mentioned. 
Elbadawi et al. (1983) and Gallant (1985) approximate their models by infinite 
series, the early terms representing the parametric part (our /'X), the remaining 
ones (a trigonometric expansion) representing the nonparametric part (our 9). 
The hope is that few of the latter terms will be required, and that /3 will be 
estimated with good precision. However, / is not really on a different footing 
from the coefficients of the trigonometric expansion, and consistency relies on the 
number of terms in the series, hence the number of parameters, going slowly to 
infinity with N. While the estimators of Elbadawi et al. (1983) and Gallant (1985) 
might well be better in finite samples than pure nonparametric ones, they 
converge slower than N1/2 unless the true regression is approximated at a fast 
enough rate as N - co. (Actually, identification of /3 requires strong restrictions 
on 9; see Section 4 below.) Stone's (1982, 1985) results imply that nonparametric 



934 P. M. ROBINSON 

estimators exploiting the additive structure of (1.1) can achieve faster rates of 
convergence than pure nonparametric regression on X and Z, but his estimators 
do not exploit the partial parameterization of (1.1), and fall short of Nl/'2-con- 
sistency. Projection pursuit regression (Friedman and Stuetzle (1981)) entails 
some structural restriction of 6, and it is not clear whether it can produce 
N 1/2-consistency. 

In most of the earlier work relating to (1.1) that was referenced above, 
N1/2-consistency of estimation of P is not established, indeed the emphasis is 
sometimes as much if not more on estimating 0. The exceptions are N. Heckman 
(1986) and Rice (1986), who assume Z is a scalar nonstochastic design variable 
on the unit interval, the "observations" on which get dense as N-- x, and 
Schick (1986), who assumes Z is a scalar uniform random variable. Our setting of 
stochastic multi-dimensional Z, of quite general distributional form, is more 
suited to econometric applications. Like N. Heckman and Schick we establish not 
only N1/2-consistency but asymptotic normality of our estimator (which differs 
from theirs and Rice's), and also we give a consistent estimator of the covariance 
matrix in the limiting distribution, providing the usual basis for large-sample 
interval estimation and hypothesis testing. The only information on finite-sample 
properties we present is the outcome of some Monte Carlo simulations. 

We compare and contrast our problem and results with ones in the "adaptive 
estimation" literature. Authors such as Bickel (1982) and Manski (1984) pre- 
sented asymptotically efficient estimators of linear and nonlinear regression 
estimators in the presence of residuals of unknown distributional form, while 
Carroll (1982), Robinson (1985) presented regression estimators that achieve the 
asymptotic Gauss-Markov bound in the presence of residuals suffering from 
heteroskedasticity of unknown form. Like these authors, we insert nonparametric 
shape estimators of the nonparametric component in a standard "parametric" 
estimator. Unlike them, we are unable to claim efficiency of our semiparametric 
estimator, since the "orthogonality" between the parametric and nonparametric 
components of their models (see Begun et al. (1983)) is in general lacking in ours, 
and we merely isolate some parametric 6 for which our approach happens to be 
as efficient as one which uses information on O's form. 

2. ESTIMATOR OF A 

The model (1.1) implies that Y- E(YIZ) = ,'(X- E(XIZ)) + U, where 
E(UIX, Z) = 0 a.s., suggesting that estimators of the regression functions 
E(XIZ), E(Y Z) be inserted prior to application of a standard rule, such as 
no-intercept OLS. While a variety of nonparametric regression estimators is 
available (two leviews are Prakasa Rao (1983, pp. 239-256), Collomb, (1985)), 
the technical difficulties described in Section 3 below are conveniently overcome 
by a subset of the Nadaraya-Watson kernel estimators. Introduce even functions 
k: 9? and K: pqM related by 

q 

(2.1) K(z) = k(zi), 
i=l 
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where z, is z's ith element. Let a be a positive constant. For a vector-valued 
sequence A1,..., AN' introduce the notation 

(2.2) Ai= (Naq) 1E Aj.ij Ki= K( i Z), 
j=1a 

and define, with 11 1, fi= l, Xi = Xi/fi, Yi = Y,/fi. Under conditions set out in 
Section 3, fi "estimates" f(Zi), the probability density function (pdf) of Z with 
random argument Zi, while Xi and Yi "estimate" E(XiIZ1) and E(YiI Zr). As in 
some other applications of kemel regression estimators, Xi and Yi cause technical 
difficulty owing to the random denominator fi, which can be small; we " trim" 
out small fi as do, e.g., Bickel (1982), Manski (1984). For constant b > 0 define 
Ii = I(fifI > b), where I is the usual indicator function; then estimate ,B by 

(2.3) /3 =SX SX-*, Y- Y 

where for scalar or column-vector sequences Ai and Bi, we define SAB= 

N-1EY2N7AiB/I and SA = SAA. Notice that 

(2.4) SA-A, B-B = (Al *iAN) 

x (diag(Il,... , IN) DD 'diag(Il,... , IN))}(Bl '... BN) 9 

where D is the N-rowed identity matrix minus the matrix with (i, j)th element 
Kij/fj, so ,B has a generalized least squares (GLS) interpretation, as well as a 
no-intercept OLS one. Because Kij = Kji, Kii K(O), only 1N(N - 1) distinct 
Kij need be computed; nevertheless (2.3) entails O(p2qN2) operations. 

If the Xi, Yi are replaced in ,B by the linear OLS predictors of the Xi, Y, we 
have the OLS estimator ,B, say, that corresponds to taking @(Z) linear in Z; 
indeed if we take k(u) cc I(I u j < 1) and a large enough, ,B reduces to OLS that 
assumes @(Z) constant. This similarity of /3 to a standard parametric estimator 
(not shared by ,3* in (1.2), for example) seems attractive in view of 3 's well 
known optimality properties, and it extends to the structure of formulae for 
standard errors (see the theorem in Section 3), the only additional statistic needed 
to calculate N1/2( 8 - /3)'s estimated covariance matrix a2SX k being 

A2 = =Sy_?-+ 2Sy ,x-kf + f'Sx- fi 

which estimates a2 =V(YI X, Z), assuming the residuals from (1.1) are condition- 
ally homoskedastic. The extension of ,B to more general semiparametric models is 
analogous to f8's in parametric models, as will be indicated in Section 7. ,B and 1B 
differ in /'s use of residuals from the best (in least squares sense) predictors of Y 
and X given Z, rather than the best linear predictors, and in computational 
terms the difference is immense, increasing rapidly with N and q. /3 is likely to be 
more expensive of computer time than nonlinear least squares (NLLS) when 0 is 
nonlinear in parameters, though its closed form structure is an advantage, it is 
straightforward to program, and it avoids the need to choose a vector of starting 
values for the iterations and the possibilities of slow or nonexistent convergence. 
To compare with other semiparametric treatments of (1.1), Wahba (1984, 1985), 
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Shiller (1984), Engle et al. (1986), N. Heckman (1986), and Rice (1986) use spline 
estimation; Stock (1985) uses (untrimmed) kernel estimation, but his focus is not 
,B; Schick (1986) uses the kernel idea, but his estimator for his version of (1.1) is 
quite different in form. Comparing /B with N1/2-consistent estimators proposed 
for other problems, Bickel (1982), Manski (1984), Robinson (1987), Powell et al. 
(1986), Schick (1986), and others, all employ, for technical reasons, an element of 
" sample-splitting," which in our case might entail replacing N in (2.2) by M < N, 
then constructing Sx- *, Sx_ x y- x by summing only over the remaining N - M 
observations. By avoiding this device, /3 makes fuller use of the data. 

The dependence of /3 on the user-supplied numbers a and b is an undesirable 
feature shared with other semiparametric estimators that employ nonparametric 
"shape" estimation. The Theorem sets conditions on a and b's rate of decay as 
N -x o that are virtually useless to the practitioner. It is not obvious how 
sensitive ,B is to a and b, but the effects of extreme choices, while possibly not as 
catastrophic as in the case of pure nonparametric estimation, are liable to be 
serious: "large" a can induce bias, "small" a, imprecision, because l/a can be 
thought of like the dimensionalit,y of a parameterization of 0; a "large" b loses 
efficiency, a "small" b allows Xi and Yi with small denominators fi to exert 
undue influence. Automatic methods such as cross-validation offer an alternative 
to trial-and-error choice of a, and it is easy to suggest suitable cross-validating 
objective functions, but we will not discuss the details because our theorem 
unfortunately does not cater to data-driven a to b. In connection with a, when 
q > 1 some refinement in /3 is desirable because of likely scale differences in Z's 
elements, indicating that K's argument in (2.2) should be replaced by a- 1(Zi - 
Zj) where a is here either a diagonal or a positive definite matrix (in the latter 
case K is a more general multivariate function than (2.1)). The conditions on a 
in our Theorem are straightforwardly generalized in the manner of conditions of 
Cacoullos (1966) for diagonal a, and Robinson (1983) for matrix a. We have not 
bothered to treat this extension explicitly because our conditions and proofs are 
already somewhat complicated, and merely note that it suffices, in the diagonal-a 
case, for each diagonal element to decay as N -*00 at the same rate. One 
alternative to multidimensional a is scaling the Zi, via the estimated standard 
deviations or covariance matrix, though our conditions do not automatically 
require that Z have infinite variance. 

Finally, we can use ,B to form "estimators" of 0(Z1), 0(Zi)= Yi-/'Xi; 
predictors of Y (conditional on Xi, Z1), 1i = /3'Xi + 0(Z1); and estimated residu- 
als, U = Y- Y-, 1 < i < N. (In fact, a2= SU.) Given (1.1), 'i and Ui should 
improve on predictors and residuals based on pure nonparametric regression, 
though we make no study of their properties. 

3. CONDITIONS AND THEOREM 

With the definitions U= Y- /8'X- 0(Z), 0i,= 0/f^, di= UL/lf, write 

(3.1) A 
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The component 0i - Oi of the "residual" in (3.1) presents a bias problem, because 
it is hard to see how N1/2-consistency of /B can be established in the absence of 
the property Sx _k o- = op(N- 1/2). Assuming the conditional expectation t(z) 
= E(XjZ = z) exists, and defining V= X- {(Z), it is sufficient that Sv_ C,-#= 
op(N-1/2) and SE-,o_#=op(N-1/2). The last relationship is troublesome to 
establish. After centering the i - i and 0i - 0i in St - ; at expectations 
conditional on the Zi, it is not difficult to show that the resulting expression is 
indeed op(N-1/2) so long as a does not approach 0 too rapidly as N -* co, and 
this type of condition on a is required elsewhere in the proof in any case. 
However, this centering introduces a term reflecting the bias of the kernel 
"estimators" 0 and (i of Oi and {i. Such bias can be made arbitrarily small by 
setting a small enough, to establish S -_ p 0 and eventually / ,/. However, 
achieving the more ambitious goals of St -g op (N-1/2), and N1/2-con- 
sistency of ,B, simply by making a approach 0 suitably fast as N -x o may not be 
possible because of the aforementioned limitations on a's convergence. In fact, 
as in much statistical theory for kernel estimators (see, e.g., Cacoullos (1966), 
Stone (1982)) the upper bound on a's rate of decay as N -* xo strengthens as the 
dimensionality q of Z increases, so much so that unless q is suitably small, 
N1/2-consistency requires special measures to ensure an a-sequence satisfying the 
competing restrictions even exists. 

We adopt the "higher-order" kernel approach to bias-reduction proposed by 
Bartlett (1963) for nonparametric probability and spectral density estimators, 
since developed by many authors and featured prominently in the kernel litera- 
ture: a sufficiently smooth function behaves locally like a polynomial of suffi- 
ciently high order, and if this property is exploited by a kernel with enough zero 
"moments," the bias decreases sufficiently rapidly with a. 

DEFINITION 1: K,, 1> 1, is the class of even functions k: _Q - satisfying 

(3.2) u'k(u)du= Sio (iO...,I-l), 

(3.3) k(u) = 0((1 +I Ull+l+e)), some E> 0, 

where Si' is Kronecker's delta. 

The requirement that k be bounded and integrate to 1 makes f a sensible 
estimator of f(Zi). For given 1 satisfying (3.2), (3.3) has a slightly stronger tail 
condition on k than f I u'k(u) I du < xo, which is usually employed in the higher- 
order kernel literature (see, e.g., (23) on p. 44 of Prakasa Rao (1983)), but kernels 
used in practice usually have compact support or decay exponentially. Some of 
the kernel literature emphasizes weak conditions on k as a priority, but for 
implementation it suffices that the conditions admit a convenient k, and practical 
experience suggests less sensitivity to k than to a. If (3.2) holds for some odd 1 it 
holds for 1+ 1 also under (3.3). X, contains no nonnegative functions when 
1 > 3, indicating the potential for negative estimates of the density of f, although 
this seems of little concern in our context. As indicated by a number of authors 
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(e.g., Prakasa Rao (1983, p. 44)) a k e Y is straightforwardly constructed. 
Consider, for even 1 > 2, 

1/2(1-2) 

(3.4) k(u)= E cjU2j4(U), 
j=O 

where %P is even. Given that we can evaluate the moments m21= Ju2jA(u) du, 
0 j (1 -2), as readily we may when + (u) = 1I(IuI <1) or + (u)= 
(21T) -1/2exp(-_ u2), substitution of the cj satisfying the linear system of 
(I - 2) simultaneous equations 01!g'2)cJm2(i+J) = iO' 0 < i < (1 - 2), into (3.4) 

produces a k E Xl, if 4 (u) = 0((1 + u 1 21-1 + e)1). 
The classes X, confer increasingly small bias on nonparametric kernel estima- 

tors as 1 increases, but also increasingly large asymptotic variance, the latter 
varying directly with Jk(u)2 du. However, the asymptotic distribution in the 
Theorem below is independent of k, detecting no advantage or disadvantage in a 
X, when 1 is chosen arbitrarily greater than required. Nevertheless, in finite 
samples A may inherit variance properties of the kernel estimators from which it 
is formed, as might be revealed by a closer approximation to the distribution of 
A. Thus, while increasing 1 cannot shrink, and may well widen, the band of 
a-sequences satisfying our Theorem, we caution against too generous a choice 
of 1. It is interesting that whereas the classes Y, play useful roles of bias-reduc- 
tion and of widening the spectrum of admissible bandwidths in nonparametric 
estimation, they are decisive in our problem, which requires dealing with a 
greater (N1/2) norming than in the central limit theorem for q-variate nonpara- 
metric estimators ((Naq)l/2). A related bias-reduction device is the "generalized 
jacknife" method suggested by Schucany and Sommers (1977) for kernel density 
estimators, later developed by other authors, which would require q + 1 band- 
width numbers to be selected, instead of our single a. In fact, Schucany and 
Sommers' approach is used in a different semiparametric estimation problem 
from ours by Powell et al. (1986), who extend Stoker's (1986) work on the model 
E(Yj X) = F(,B'X) where F is unknown, and there are no functional relation- 
ships between components of X. Stoker independently rediscovered a result used 
previously by Beran (1977) and Cox (1985) in other semiparametric and nonpara- 
metric problems, that h(X) and X's score function have covariance 
E((a/dX)h(X)), to suggest a simple estimator of j8 up to undetermined scale 
that depends on finite parameterization of X's score function. In a spirit similar 
to (1.2), Powell et al. relax the latter requirement by using nonparametric kernel 
estimation of the derivative of X's density, solving a bias problem analogous to 
ours via an extension of Schucany and Sommers' approach. 

The potential of the X, classes to produce N1/2-consistency, or to widen the 
band of admissible a-sequences, will not be realized unless the functions 0, (, and 
f are collectively sufficiently smooth, and all else being equal it seems reasonable 
to suppose that the smoother they are, the better A will be. Let 1 I denote 
Eucidean norm. 
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DEFINITION 2: a9 I a> 0a O > 0, is the class of functions g: Rq __ g satisfy- 
ing: g is (m - 1)-times partially differentable, for m - 1 < ,u < m and all z; for 
some p > O, supy,,f7 Ig(y)-g(z) - Q(Y, z)Il/y-zI < h(z) for all z, where 
YZP= {Y: Y - zI <p}; Q = 0 when m = 1; Q is a (m - 1)th-degree homoge- 
neous polynomial in y - z with coefficients the partial derivatives of g at z of 
orders 1 through m - 1 when m > 1; and g(z), its partial derivatives of order 
m - 1 and less, and h(z), have finite ath moments. 

The functions in O,A are thus expanded in a Taylor series with a local Lipschitz 
condition on the remainder, (a, u) depending simultaneously on smoothness and 
moment properties. Bounded functions in Lip(,u) (the Lipschitz class of degree 
t) for O < ,u < 1 are in 9; for . > 1, C contains the bounded and (m - 1)-times 
boundedly differentiable functions whose (m - I)th partial derivatives are in 
Lip (,I-m + 1). In applying 9, to f, we take a = oc, but we allow for a < c in 
Definition 2 because we have no wish to require that Z, ( or 0 are a.s. bounded. 
For example, a degree-m polynomial in Z is in 9OOa when E ZI ma < Xo. 

THEOREM: Let the following conditions hold: (i) (Xi, Yi, Zj), i = 1,2,..., are 
independent and distributed as (X, Y, Z); (ii) (1.1) is true; (iii) U is independent of 
X,Z; (iv) E(U2)=a2< oc; (v) EIX14< oo; (vi) Z admits apdff cA, for some 
X > 0; (vii) t E 9 2, for some ,u > 0; (viii) 0 E ,4, for some v > 0; (ix) as N -x 00, 

Na-2qb4 00 a2min(A+1,)+2min(X+1,)b-4 0, amin(A+1, 2 , y,)b - 0, b O 0; 
(x) k E max(l+m-1,l+n- 1), for the integers 1, m, n such that 1- 1 <X <1, m - 1 
< ,u < m, n - 1 < v < n. Then the condition 

(3.5) 0=E[{(X-E(XIZ)} {X-E(XIZ)}'] is positive definite 
is necessary and sufficient for N1/2(/3 - _) 4 N(O o 25-1) and a - 4 a2 1 

The proof of this theorem is presented in the form of Appendices. Notice that 
(ix) and (x) are to be satisfied simultaneously, for X, ,u, v, 1, m, n satisfying the 
stated inequalities, so that, for example, when k E Y2 only, the lower bounds on 
a's rate of decay are no better than Na 8b -4 __ 0, a 2b-2 - 0, no matter the 
degree of smoothness prevailing. While (ix) prevents b from converging to 0 too 
fast, there is nothing to stop it converging arbitrarily slowly. A necessary 
condition for reconciling the components of (ix) is 

(3.6) X> q-1, X+,u>q-1, X+v>q-1, ,u+v>q. 

Conditions (vi)-(viii) are complicated but it is not hard to find examples 
satisfying them, as the discussion of Definition 2 indicated, and some simple ones 
are used in the simulations of Section 6. Although some smoothness in f, {, 0 is 
needed even when q = 1, this need not amount to differentiability, and for other 
smallish values of q (vi)-(viii) may not be excessive. Very smooth f, {(f, 0) can 
compensate for a not-very-smooth @(t). In view of (3.6), a necessary condition 
for (x) is that k Et q 1. Given sufficient smoothness in f, ( and 0, when q < 3, 
2 (which includes all even, bounded pdfs with finite fifth moments) admits 
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suitable a and b sequences, although the greater the order of X the greater the 
range of a, b sequences satisfying (x). The main restriction on the explanatory 
variables is that discrete components of Z (but not X) are ruled out. In fact it is 
not difficult to allow Z to have components that are discrete with finite support, 
and we can see how to achieve some further relaxation when q < 3, as well as a 
variety of trade-offs between conditions, but still the difference between our 
conditions on explanatory variables and unknown functional forms and the 
weaker ones of Robinson (1987) for a different semiparametric regression prob- 
lem is considerable, and warrants further investigation. 

4. IDENTIFICATION 

The necessary and sufficient condition (3.5) is an identification condition, 
unfortunately a very restrictive one. It prohibits ,B from including an "intercept" 
coefficient; only "slope" coefficients can be estimated. This is less a drawback of 
Ai than a consequence of the generality of the semiparametric model (1.1): 
,B'X+ 0(Z) = (a + ,B'X) + {0(Z) - a), for all a, and 0(Z) may be redefined as 
0(Z) -a. It is possible to identify a if the model is restricted further; for 
example Schick (1986) assumes 0 integrates to zero and Z is uniformly distrib- 
uted, and in fact considers the efficient estimation of a under further conditions. 

More generally, (3.5) prevents any element of X from being a.s. perfectly 
predictable by Z in the least squares sense. This rules out such important cases as 
an unknown regression function of a single variable Z, with ,B'X representing a 
truncated Taylor expansion and 0 taking care of the remainder (c.f. White, 1980). 
Such models could be said to be more nonparametric than semiparametric (they 
are "seminonparametric" in Gallant's (1985) terminology), and again it is the 
unrestricted nature of 0 which excludes them, not our method of estimation, 
because B'X + 0(Z) = {f 'X + 71(Z)) + ( 0(Z) - 71(Z)}, for all 71(Z). While ,B is 
not identified in the linear model 

(4.1) Y= a+1'X+y'Z+U 

if any X element is linear in Z, (1.1) forbids more general forms of dependence, 
and it is only to be expected that this more loosely specified model would entail 
stronger identification conditions. Notice that (nonlinear) functional relationships 
among X elements are not ruled out. Notice also that identification may be 
possible even if X uniquely defines Z, when the converse is not true: for example, 
if p=q=1 and Z=X2, then {(z)=Vz(1-2P) and '5=4P(1-P)E(X2), 
where P = P(X < 0), so it is necessary and sufficient that X be neither nonnega- 
tive nor nonpositive. Given that no elements of the prediction error X - {(Z) are 
a.s. zero, the additional condition implied by (3.5) is their lack of multicollinear- 
ity, which fails if X itself is collinear. 

5. EFFICIENCY OF f 

Suppose 0 is a known, partially differentiable function of Z and of a r-dimen- 
sional unknown parameter vector 8, 0(Z; 8). If (,8+, 8+) is a NLLS estimator of 
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(,B, 8), then it is well known that under regularity conditions the covariance 
matrix in the limiting normal distribution of N1/2(/'- /3) is 

(5.1) a ( -Ca a CX) 
where Cx = E(XX'), Cxa= E{ X(ad/8)'O(Z; 8)}, Ca = E {(a/dS) x 
O(Z; 8)(ad/a)'O(Z; 8)}. Note that (5.1) is the asymptotic Gauss-Markov bound 
in case (4.1), and in the nonlinear case is minimal with respect to the class of 
weighted NLLS estimator, when U is conditionally homoskedastic, as we have 
assumed. 

By the Schwarz inequality, (5.1) < a2ck1, so /B+ is at least as efficient as /B. 
There is equality between 2 5-1 and (5.1) if and only if E{ E(XI Z)E(XI Z)'} = 

xaC-8Cax, that is if 

(5.2) E(XIZ)= r(ala s) ( Z; s), a.s., 
for some p X r matrix r. Of course (5.2) includes the case of @(Z) actually 
constant, so that at least no efficiency has been lost by our elaborate estimator / 
relative to OLS estimation of slope coefficients, which is all that is required then. 
If, more generally, O(Z; 8) = a + y'Z, (5.2) can be written 

(5.3) E(XIZ) = rF + F2Z, a.s., 

the necessary and sufficient condition for ,B to attain the Gauss-Markov bound 
with respect to (4.1). It immediately follows that P3 is then also asymptotically as 
efficient as the maximum likelihood estimator based on (4.1) when the distribu- 
tion of Y given X, Z is normal. Often (5.3) is assumed in parametric estimation 
of "surprise" models. 

The intuition behind efficiency condition (5.3) is seen by rewriting (4.1) as 
Y= (a + /3'rl) + ,B'V+ (/t'r2 + y')Z + U, under (5.3). By construction, Z and V 
are orthogonal and E(V) = 0, so were V observable, regressing Y on V would 
asymptotically efficiently estimate /; the Theorem demonstrates that /3 is asymp- 
totically as efficient as this regression. When /3 is not efficient in this sense, and 
indeed no element of the vector equality (5.3) is true, an approximate level-a 
Hausman (1978)-type specification test consists of rejecting (4.1) if (with Z. = 

(1, Zi')) 

(5.4) N-2,8,8 '[Sx - N EXi Xi, 

- Ex2Z'(ZiZ') 1 E2ix'}j1 t_A 

exceeds the 100(1 - a)th percentile of the P distribution. If desired, 2 could be 
replaced in (5.4) by the residual mean square in the OLS regression fit of (4.1). 
Computationally, (5.4) is far more expensive than statistics based on parametric 
omitted variables, and it should be less powerful in the direction of such 
alternatives, but if /3 has already been computed (5.4) entails little extra work and 
might be expected to enjoy reasonable power against a range of alternatives. 

Necessary and sufficient conditions on X and Z for (5.3) are given by Kagan 
et al. (1973, pp. 11, 12). One interesting case of (5.3) is (X, Z) multivariate 
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normal, but normality is not necessary, except for special structures (Kagan et al. 
(1973, Sec. 10.5)). An estimation strategy is suggested in relation to a tentatively 
specified linear regression model 

(5.5) E(YIW)=a+y'W 

where y and W are r x 1. Denoting jth element by subscript j, form y such that 
yj is /B with p = 1, q = r- 1; let X= Wj and Z be W with Wj deleted. Then 
estimates yj robustly in the sense of being N _2-consistent even if the functional 
dependence on the Wk, k #j, has been misrepresented by (5.5). Moreover, if (5.5) 
is correct, y is as efficient asymptotically as the OLS estimator of y if the 
regression of Wi on all Wk, k #j, is linear, for each j, for example if W is 
normal. 

6. SIMULATIONS 

Finite-sample theory for semiparametric estimators such as /3 is not on the 
horizon, even under much more precise distributional assumptions than ours; 
indeed little is known about the finite-sample distribution of the nonparametric 
regression estimators of which /3 is composed. To gain some idea of finite-sample 
performance and the influence of such factors as dimensionality of Z and 
order of kernel, a small simulation study was conducted, in double precision 
FORTRAN on the University of London's Amdahl computer. Such vast varia- 
tion of design is possible that the results are in no sense representative, and we 
would only wish to add that ,B is invariant to location shifts in X, Y and Z, while 
,B -,B (on which all the summary statistics we report depend) is invariant to ,B. 
Four different models with varying q (= 1,5,10) and 0 (and satisfying the 
regularity conditions of the Theorem) were selected, and three sample sizes, 
N = 25, 50, and 200. Because computing time varies greatly with N and q, as 
indicated above, the numbers of replications were on a sliding scale, from 
100,000 when q =1 or 5 and N= 25, to a mere 1000 when q= 5 or 10 and 
N = 200. We obtained a and b by inspecting the results for various values used 
on training samples, the only constraint that was initially imposed being that a 
and b be monotonic over N and q in a fashion that roughly reflects condition (ix) 
of the Theorem. There was no serious attempt at optimal choice but we avoided 
values which entailed extreme bias or variability, and used the same values for 
model (4.1) and model (6.1) below. We report results only for three different 
kernels, selected in order to gauge the implications of kernel order. Kernels 1-3 
are in 2, 4, and Y6 respectively, and given by (3.4) with 1 = 2,4,6, respec- 
tively, and 4'(u) = (27T)-1/2exp(_- u2). Most of the calculations were also 
repeated for the three corresponding kernels formed from 4 (u) = I(IuI < 1); 
these are quicker to compute, but having compact support, unless N and/or a 
are large enough relative to q it does happen on occasion that Xi Xi, when the 
estimator breaks down. 

In (4.1) we took X and Z to be scalar random variables from a bivariate 
normal population with zero means, variances 4 and 3, and covariance 2; U to be 
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TABLE I 

MODEL (4.1) 

N a b r /4(1) A(2) ,t(3) 

25 1.65 .01 lo, -.1213 -.0254 -.0095 BIAS 
.9141 .9750 .9128 VEFFICIENCY 

50 1.25 .005 5 X 104 -.0697 -.0094 -.0040 BIAS 
.9020 .9626 .9376 VEFFICIENCY 

200 0.75 .001 1 -.0161 -.0007 .0003 BIAS 
.9607 .9722 .9696 VEFFICIENCY 

standard normal; and a =,B= y = 1. Subroutine G05DDF from the NAG library 
generated the observations. Let /3 be the OLS (i.e., maximum likelihood) estima- 
tor of ,B based on the true model: for (4.1) it is unbiased when N > 3. (Intercept 
OLS of Y and X alone, denoted /3, is inconsistent.) While /3 is not unbiased for 
finite N, it is as efficient as /3 in (4.1) (see Section 5), so these are relatively 
favorable circumstances for ,B, especially as q = 1 only. The results are presented 
in Table I, where r is the number of replications. In each table we report the 
simulation biases of the /3 estimates, formed from kernels 1-3, and headed /3(i), 
i = 1,2,3, and the ratio of /3's simulation standard deviation to ,B(i)'s, called 
Vefficiency. The biases in Table I are mostly negative, and decrease a bit as kernel 
order increases. The Vefficiencies are not as good as the asymptotic ones. 

Table II contains corresponding results for the model 

(6.1) Y=a+/3X+yZ2+ U, 

under the same specification as before. Now / is no longer as efficient asymptoti- 
cally as OLS /3 based on (6.1) (its asymptotic relative efficiency is 2/3). (/3 
happens to be consistent, unbiased when N > 2, and asymptotically efficient for 
this model.) The biases are all positive and increase a bit as kernel order 
increases. The Vefficiencies are sometimes better, sometimes worse, than the 
asymptotic ones, though not surprisingly uniformly worse than Table I's. 

Finally we tested the method against Z's of much higher dimension, extending 
(6.1) to 

q 

(6.2) Y=a+,X+ E jZ2) + U, 
j=1 

TABLE II 

MODEL (6.1) 

N a b r (1) (2) A(3) 

25 1.65 .01 105 .0188 .0191 .0204 BIAS 
.7862 .7761 .7271 VEFFICIENCY 

50 1.25 .005 5 X 104 .0075 .0079 .0083 BIAS 
.8754 .8606 .8375 ,EFFICIENCY 

200 0.75 .001 .0018 -.0019 .0019 BIAS 
.9356 .9299 .9201 ,EFFICIENCY 
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TABLE III 

MODEL (6.2), q = 5 

N a b r m(1) A(2) ,t(3) 

25 3 .0001 105 .2774 .1600 .1276 BIAS 
.3638 .3527 .3246 ,EFFICIENCY 

50 2.4 .00005 25 X 103 .1743 .0988 .0813 BIAS 
.3743 .3716 .3231 ,EFFICIENCY 

200 1.5 .00001 103 .0693 .0399 .0285 BIAS 
.4349 .4245 .3653 ,EFFICIENCY 

TABLE IV 

MODEL (6.2), q= 10 

N a b r A(') A(2) A(3) 

25 4.5 10-8 25 X 103 .6688 .3559 .2523 BIAS 
.2788 .2231 .1941 ,EFFICIENCY 

50 3.25 5 x 10-9 .3357 .1621 .1070 BIAS 
.2181 .1972 .1726 ,EFFICIENCY 

200 2.25 10-9 10 .1663 .0728 .0485 BIAS 
.2081 .2039 .1785 ,EFFICIENCY 

where a, ,B and the yj are all 1; U is as before; and X and the Z(j) are 
equicorrelated identically distributed N(1, 3) variables, with correlation 2/3. The 
asymptotic relative efficiency of /3 to /3 increases from 8/9 when q = 1, to 1 as 
q -- oo. Because E(Z(j)) * 0, /3 is inconsistent. Results for cases q = 5 and 10 are 
presented in Tables III and IV. The biases are uniformly positive and mostly very 
bad, especially in Table IV, though bias does improve materially with increase in 
N and, more interestingly, with kernel order. The role played by the higher-order 
kernels in the asymptotic theory does therefore seem to have implications for 
finite-sample practice. However, they do produce larger variances, as surmised in 
Section 3, though even for kernel 1 the Vefficiencies are anything from half (when 
q = 5) to less than a quarter (when q = 10) of that predicted by asymptotic 
theory. These figures are only slightly influenced by ,'s variances being mostly a 
bit lower than the asymptotic ones. Evidently the nonparametric kernel estimates 
are so bad for these sample sizes and high-dimensional Z's as to seriously inflate 
3's variability. 

7. EXTENSIONS 

We indicate some extensions of our semiparametric model and estimator that 
are of possible econometric interest, without giving full details or regularity 
conditions (which have not been worked out), but noting limitations as well as 
positive features. 

1. Seemingly unrelated regression. A system of J partly linear semiparametric 
"seemingly unrelated" regressions is Y(j) = 1(j)X(j) + OJ(Z(j)) + U(j), 1 < J, 
where the Oi are unknown functions and X(j), Z(j) all comprise elements of a 
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vector W, independent of U* = (U(1),..., U(J)), such that a W-element might 
appear in X in one subset of the equations and in Z in another, disjoint, subset. 
Given N observations distributed as (W, Y(1),..., Y(J)), the efficiency of J sep- 
arate estimators of the form (2.3) can be improved upon when S = E(U*U*') is 
not diagonal, by analogy with Zellner (1963). 

2. Simultaneous equations. Consider the structural equation 

(7.1) Y=a'Y*+y'X*+0(z)+ U, 

where Y* is not uncorrelated with U but X* and Z are independent of U (so 
nonlinearities of unknown form in endogenous variables are not allowed, though 
(7.1) could be completely nonparametric in exogenous variables). Replacing the 
conditional expectations in the projection form of (7.1) by nonparametric "esti- 
mators" gives Y- Y= a'(Y* - Y*) + y'(X* - X*) + U. A valid instrument for 

- Y* is a vector function of an observable vector W that includes Z and is 
independent of U, such that the covariance matrix in the limiting distribution of 
our resulting N1/2-consistent estimator of a and y exists. The most efficient 

- A 

instrument is Y* - Y*, where Y* is a nonparametric "estimator" of E(Y* IW), 
which is of unknown form if the structural equations for Y, Y* and any other 
endogenous variables contain nonlinearities in the endogenous and/or exogenous 
variables of unknown form, or even if the form of nonlinearity is known but 
information on Y*'s conditional distribution given W is insufficient to parameter- 
ize E(Y* I W). (When 0(Z) is absent but Y* still has nonparametric reduced form 
our estimator is similar to Newey's (1986) for nonlinear equations with known 
structural form but unknown reduced form.) For a full system or a subsystem of 
equations like (7.1), whose residuals are not all uncorrelated, a further improve- 
ment in efficiency is possible via an analogue of three stage least squares. 

3. Nonlinear regression. Generalize (1.1) to E(YIX, Z) = g(X; yo) + 0(Z), 
where g is a known function of X and the unknown s-dimensional parameter 
my. We might estimate y0 by y mmizing Ej[Ej{Yi - Yj - g(Xi; y) + 
g(Xj; y)}Kij] 2i/fA2 over admissible y's. The prospect of a grid search over s 
dimensions to obtain a starting value for iterations is daunting, and it seems 
desirable that representation (2.4) be used in both the search and iterations after 
storing DD'. In the class g(X; yo) = ah(/3'X) for a an unknown scalar, we may 
estimate ,B up to an unknown scale 8, say, using derivatives of nonparametric 
regression as described in Section 1 or by Powell et al. (1986); then after 
concentrating out ai we need only search over 8. 

4. Time Series. It remains to be seen to what extent N1/2-consistency holds 
when the data are serially dependent but stationary, not only for /3 but for 
analogues of parametric methods for improving efficiency in the presence of 
serially dependent residuals. One time series model of interest is the partly 
rational distributed lag 

p p 

(7.2) Yi - E 3jyi'-i = (Zi) + u, 1 - E f3js # 0, ISI >1, 
j=1 j=1 

where Zi is independent of Uj for all i and j. When Zi consists of lagged values 
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of a single variable Zli, and 0 is linear, (7.2) approximates a quite general linear 
distributed lag in Z11 in a uniform frequency-domain sense, but no such strong 
result justifies approximating (7.2) by a linear form. When Ui is serially indepen- 
dent the asymptotic covariance matrix of /3 can be derived from (3.5), where /3 is 
automatically identified. A sufficient condition for / to be as efficient as OLS 
when 0 is actually linear is that Zi is stationary Gaussian (see Section 5). When 
Ui is serially dependent, /3 is inconsistent, but a natural extension of Liviatan's 
(1963) instrumental variables estimator is possible. Other time series models that 
might be treated are partly linear stationary autoregressions, such as Yi 3Yi -1 + 
0(Yi-2) + Ui- 

5. Heteroskedasticity. Assumption (iii) of the Theorem, that U is independent 
of the explanatory variables, is familiar, but too strong for many econometric 
applications, and in fact it can be relaxed to a milder assumption on conditional 
moments, at the cost of some strengthening of other conditions. Under condi- 
tional heteroskedasticity (V(UI X, Z) = a 2(X, Z), say) ,B will still be N1/2-con- 
sistent under appropriate conditions. A parametric form for a 2(X, Z) seems 
implausible since the conditional mean is semiparametric, but following Eicker 
(1963), a consistent estimator of ' = E[{ X - {(Z)} { X- (Z)}'a2(X, Z)] in ,'s 
limiting covariance matrix 0-'Z-' should be - = N-1Yi(Xi - Xi)(Xi - 
Xi)'ui2Ii, in the presence of heteroskedasticity of unknown form. A heteroskedas- 
tic (1.1) arises naturally from the semiparametric sample selectivity model 

(7.3) Y(1)-=3X+/('L)Z(i) +LU(1), Y(2) = 02(Z(1), Z(2)) +U(2) 

where we observe Y(1) when and only when Y(2) > 0, so the second (decision) 
equation in (7.3) imparts sample selectivity when U(1) and U(2) are not indepen- 
dent, and where U(1) and U(2) are in any case independent of the disjoint vectors 
of explanatory variables X, ZM and Z(2)- In the Tobit and some other models, 
all explanatory variables in the first (outcome) equation, are present also in the 
decision equation, in which case ,B'X is absent and our approach is inapplicable. 
On the other hand, we do not assume a parametric conditional distribution of 
U(1) given U(2), and allow the decision equation to be nonparametric, in which 
sense (7.3) is more general than J. Heckman's (1976) model. (Some further 
generalization of (7.3) is possible.) With Y = Y(l) 1 Y(2) > 0, Z = (Z(1), Z(2)), 

@ (Z) = P('l)Z(l) + E(U(l) I U(2) ->- 2 (Z)), 

we obtain (1.1), and also 

V(YIX, Z) = V(U(l)I U(2) > -02(Z)) = (Z), 

so we can use P as before, and (5.4) as a test for absence of sample selectivity, but 
we must allow for heteroskedasticity of unknown form in estimating /3's covari- 
ance matrix if the test rejects. J. Heckman's (1976) estimator is also based on Y's 
regression function, but a parametric version. For other work on semiparametric 
inference in limited dependent variable models, see e.g. Manski (1975), Cosslett 
(1983, 1984), Powell (1984), Chamberlain (1986). Irrespective of (1.1)'s origin, we 
may improve upon P3's efficiency in the presence of residual heteroskedasticity of 
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unknown form, by GLS-type estimators employing nonparametric estimators of 
a2(X, Y), c.f. Carroll (1982), Robinson (1985). 

6. Multiplicative and other models. An alternative, multiplicative rather than 
additive, semiparametric regression function appears in the model Y= 
g(X; yo)O(Z) + U, say a semiparametric Cobb-Douglas model with additive 
residuals. Then 

Y/E(YiZ) =g(X; yo)/E(g(X; yo)IZ) + U. 

Nonparametric "estimates" of the two denominators can be inserted, then y0 
estimated by NLLS. One can conceive of more general structures which permit 
an unknown function of Z to be identified in terms of conditional expectations 
of various functionals of Y and X. 

Department of Economics, London School of Economics, Houghton St., London 
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APPENDIX A: PROOF OF THEoREM 

Necessity of (3.5) is obvious. Rewrite fi and a2 using (3.1), 

1 -fi=Si1*(Sx_*, _6 + Sx-kua,u- 

62 _2 = (SU 1-02) + S0o+ (fi-)'Sx-(-) + 2Se-,U- 

-2(f -f)'Sx_k,u_&- 2( - )'Sx-* , 

where 

Sx-f= Sv- Sv- Sv+ Sf + Sv,-i + S j, v- Stu,+ +St_, 

Sx-k,e- = sv,-6-s - + St0, S ,u = - 

SX- , u- d = Svu-S u-SVSo + S4 + St-I, U-St-I, d, 

Su- d = Su- Su-Su + SC. 
The proof is completed by applying Propositions 1-15 established below, which imply via the Cauchy 
inequality that Svv, S Sv,, SU SG,U and S0,6, all P 0. The propositions apply the 
lemmas of Appendix B. We use the abbreviations Ei(.) = E(- I Z.), i = min(X + 1, ),D = min(X + 
1, v); C denotes a generic constant. 

PROPOSITION 1: E(S0_g) = O(N-la-qb-2 + a2Db-2). 

PROOF: By identity of distribution, E(S0,_g) = E((01 1} < N-2a-2qb-2E(T2), where T= 

Sit,, t, = (01 - O,)Kli, where E(T2) < 2E(Y(tj - t)}2 + 2N2E(t2), where t = El(ti). Conditional on 
Z1, the t, - t are independent with mean 0, so E(X(t, - t)}2 =XE(tj - t)2 < NE(t2) = O(Naq) by 
k's boundedness and Lemma 3. By Lemma 5, E(t2) = 0(a2(q+ 

PROPOSITION 2: EISTI = O(N- la b 2+ a2b 2). 

PROOF: Use Proposition l's proof and Cauchy inequality. 

PROPOSITION 3: N1_2Sgj S C6 O (N- 1/2a- -b2 + N' a + b 

PROOF: By Cauchy inequality and Propositions 1 and 2. 

PROPOSITION 4: SV = ,0 + O (N- 1/2a-q/2b- 1 + aAb- 1) + o (p) 
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PROOF: Because the V, are independent and E I XI4 < oo implies E I V4 < oo, N-lEVjVJ' = ' + 
Op (N- 1/2) by Chebyshev inequality. By Schwarz inequality 

El N- Y-VjVj' (1 - Ii ) < { El X14p(f < b) } /2 

With fi =f(Z1), 

P(f < b) < P(if -fA I > b) + P(fi < 2b). 
By Chebyshev inequality 

P(ih | > b) < 2{ E( f )2 + E(f _fi)2} /b2 

wherefi = E1(f1) = (Nag) {K(O) + (N- 1) E1(K12)}. 

Thus 

E( f-fi)2 6 2E{ a-qEl (K12) f }2 + 2(Naq) 2E{fi + K(0) 

= O(a2A + (Naq)2), 

by Lemma 4. Because fi-fi = (Naq)-l{Kli -El(Kli)}, whose summands are, conditional on Z1, 
independent with zero mean, 

E(fi -fi) (Naq) )2E(Kj2j) O(N 

then Lemma 6 implies P(A < b) -- 0. 

PROPOSITION 5: SV= Op(N 1a"qb 2). 

PROOF: Because E(V VIfN) = 0, a.s, where ff (Z1. ZN), E Sl < E(l V1VI) , 
(Naqb) 2YE(I JKl2Kl), where the sum is 

(0)El V12+ (N-1)VE(I 212K122 ) CEIXI2 + NE{I V2 K1)} 

C(l + Naq )El X12, 

by Lemma 2. 

PROPOSITION 6: N112Sv,eg = Op(N-l/2a-q/2b-1 + ab-1). 

PROOF: 

EIN' _D 1l2=N-'IE{l 'I2(0i_Si)2I,} < [El V14 {( 01)4Il} 

< (Naqb) -2 { ElXXl4E(T4)}1/2. 

Now E(T4) < C[E(Y2(ti - t)}4 + N4E(t4)] by Minkowski inequality, and 

Ety(ti t))4< E t,4) + , E(it)2(t _ t)2} 
i$j 

< NE(t4) + 8N2 [ E(t2t32) + { E(t4) E(t4)}1/2 + E(t4)]. 

By Schwarz inequality E(t22t32) E((01 E-2)4Kf12KA3 }=E((01 02 )4K 3E1(Kl)) =O(a2q), using 
Lemmas 2 and 3, and since E(t4) = O(a4(q+t)) by Lemma 5, 

(A1) E(T4) = O(N2a2q + N4a4(q+t) 

PROPOSITION 7: N112Sf 0-D = O,(N-l/2a-q/2b-2 + ab-2). 

PROOF: 

(A.2) E+Nl/2s _12 6 E tN I V( - 
bi)2,i 

(A.3) +|E(N1 V" tj(i i(j i)i 
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Because E(I V1 12IN) (Naqb)2E(, I I12K12ilfN), a.s., (A.2)'s right-hand side is bounded by 
(Naqb)-4 times 

E(I KI2K?2VT2) 6 CE(I V1 1T2 + NI V2I2 2Kt 2 + NI 
V212K12Tl), 

where T1 = T-22 

By (A.1), E(I V1 12T2) = O(Naq + N2a2( +t)). Applying Lemmas 2 and 3 and (A.1), 

E(I V2I2t2Ki2) 6 [E{l V24E2(K42)} E(t4)] (aq), 

(A.4) E(I V2I2Kl2T2) 6 [E{I V2I4E2( K12 )} E{ T14E1(K2 ) }1/2 O(Na2q + N2a3q+2 ). 

Thus (A.2)'s right hand side equals O(N-2a-2qb-4 + N-la2t-q). Next 

(A.5) E(VEV2IlI2N) = N 

so (A.3) is bounded by N3a 4b4E(Y2 I i12KliK2iIT2), in turn by 

CN-3a 4b4E {(I V112 + I V212)( + IK12IT12) + NI V3 2K13K23( t2 + t2 + T2 

where T2 = T1-t3. As in (A.4) and (A.5), E(IV 2t2)O(a ), E(l '12 K121T12) = O(Na2q+ 
N2a3q+2t) for i= 1, 2. Applying Lemmas 2 and 3 

E(I I312|KU3K23 | 32 E { V 4E(K13 ) E3 I K23 1 }E { t34E3 I K23 1 } 0=O( a ) 

and afortiori, E(I V312IKI3K23It2) = O(aq). Applying Lemma 2 and (A.1), 

E(I V3IIKi3K23IT22) [E{IV314EI K43IE3IK23}E {TE1 (I1K3IE3IK23D)]}I]/ 

which is O(Na3q + N2a4q+2t). Thus (A.3) = O(N-la-qb-4 + a2b -4). 

PROPOSITION 8: N1/2SU, {_ = Op(N- /2a- q2b-1 + a'b-1). 

PROOF: By independence of }, ( Zi }, EI N1/2Su_ 12 = a 2E{ tr(S_j)}. Apply Proposition 2. 

PROPOSITION 9: N1l2S0,j= Op (N- l/ka /2b-2 + a-2b) 

PROOF: 

(A.6) E IN 
1 

2SCI,_ < E(U1 1141 1) + 21NEf 'lU2(tl41 (4-2 II 

Put wi = (t - t,)Kli, W=2w1, W1 = W- w2, W2 = W- w3. The first term on (A.6)'s right-hand 
side has bound C(Na b)-4 times 

E( E K2i wI W12) C[El W12 + WNEw22 +NE{I W1 1 2E ( K122)} 

= O(N2a2q + N3a3q+2n) 

using Lemmas 2 and 3 and Proposition l's proof. The second term of (A.6)'s right-hand side is 
likewise bounded by C(Naqb)-4 times 

NE( I KliK2i I lWI2) 

< CN [E(I w2l 1 1l 2EJ IK12 I 

+N{W212E1I13 + I W312E3IK3IW+ +NE-I(1 + K131 I K231 NW212E(IK13 IE3IK23 I}) 

=O(N 3a 3q + N4a4q+27). 
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PROPOSITION 10: Nll2su( = Op (N- /2a q12b-1). 

PROOF: By independence of {Ui} and (Xi, Zi}, EIN112SUVI2 = 2E(I V1 12I) = O(N-la-qb-2) 
as in Proposition 5's proof. 

PROPOSITION 11: N1l2S IV= Op (N 1/2a -/2b-1). 

PROOF: Conditioning first on (Ui, Vi 1, then only on { Vi 

EIN112SoIv < E(I Vi 1201211) < C(Naqb) E(l V1 ( 2I Kl) = O(N la-b2). 

PROPOSITION 12: Nl/2S = Op (N l/2a /2b2). 

PROOF: E I N1 2}12 < E(12I Vl 12) + 2NI E(UiU2V' V21I2) 1. The first term on the right hand 
side has bound C(Naqb)-4 times 

E(Kl2iE~j1 j2K12j) 

C [ EI V1i12 + NE{ V1 1 2E( K122)} +N2E {V312E1( K122) E( K123)}I 

= O(N2a2q) 

by Lemma 2. After taking expectations over { Ui } and applying (A.5), 

| E(U2UVl'V21112) 1 

= a2(Naq)4 |E{(jK K2j)(i ' I2KijK2j)?rI21IiI2 } | 

< 0J2(Naqb) -4E(F,I KiK2il I F,IVj2IKjjK2jI) 

< C(Naqb) E{ (I K121 + NJ K13K23 1) 

x(i V1 12IK121 + I V3121K13K231 + NI V4121K14K24I)} 

of which the dominant term has bound C(Na2qb2)-2E{( V4lE4(1K14K241E2lK231)I = 

O(N-2a-qb-4). 

PROPOSITION 13: Sd = Op(Nla-qb-2). 

PROOF: E(S ) =u2(Naqb)-2E(?Kl2iIl)= O(N-'a-qb-2). 

PROPOSITION 14: SU = a 2 + & (1). 

PROOF: By Khinchine law of large numbers N-1Ui2 P a2, whereas EIN 2-b2(1-Ii) = 

uJ2P(f1 < b) -O 0 by Proposition 4's proof. 

PROPOSITION 15: N1 2Suv N(O, 2 l) 

PROOF: By Levy central limit theorem N-12 biVK d N(O, a2),whereas 

ElN-/2 biV( - )| < a2{ EI X14P(p < b) } O 

as before. 
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APPENDIX B: TECHNICAL LEMMAS 

Lemmas 1-3 below are unoriginal, merely versions of results used time after time in the immense 
kernel estimation literature, but they are presented for ease of reference, while their short proofs will 
aid the reader unfamiliar with kernel manipulations. Although Lemmas 4 and 5's proofs use 
techniques familiar in the kernel literature, previous results on effects of higher-order kernels of which 
we are aware concern bias of estimation at a fixed, rather than random, point, and we were unable to 
find the results we need. It is inconceivable that Lemma 6 is new, but we failed to locate a reference. 

LEMMA 1: Let supu I k(u) I + J I uXk(u) I du < oo, for some X > O. Then uniformly in z 

(B.1) fJIY-Z z1X1' K((y -z)/a) I dy = 0(aq+X). 

PROOF: The left-hand side is 

aq+XflyIxjK(y)j dyV aq+xqxf1uxk(u)1 du(flk(u)l du) 

LEMMA 2: Let supjt(z)< oo, supuIk(u) I + fI k(u)I du< oo. Then uniformly in z 

EIK((Z -z)/a) I = 0(aq). 

PROOF: The left-hand side < sup_ f(z)f I K((y - z)/a) I dy; then apply Lemma 1. 

LEMMA 3: Let sup_f(z)< oo, EIg(Z)I < oo, supuIk(u)I + JIk(u)I du< oo. Then 

Elg(Z1)K12 1 = O(aq). 

PROOF: The left-hand side<EI g(Z1 )E1IK121 I < CaqE Ig(Z) , by Lemma 2. 

LEMMA 4: For X satisfying I- 1 < X < 1, where 1 1 is an integer, let f E !?0, k E Xl. Then 

(B.2) E(a-qEl(K12) -f(Zl)}2 = O(a2X). 

PROOF: Let R(y, z) -f(z) be defined relative to f in the way Q(y, z) was in relation to g in 
Definition 2, so it is a homogeneous (I- 1)-degree polynomial in y - z with coefficients that are 
bounded functions of z, the remainder term in the Taylor expansion being in Lip (X - m + 1). By 
(3.2), 

J{ R(y, z) -f (z)}K((y-z)/a) dy-O, 

so E{K((Z- z)/a)} - aqf(z) is bounded by 

J f (y -R (y z) K( a)dy + {R(y, z) -f (z)}K( ) dy 

? fY {f(y)-f(z)}K( Ya)dYy 

which is bounded by CL(X), where L(X) is the left-hand side of (B.1), because IY-zl >p for 
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y eYz and X>1- 1. Now k(u) = O((1 + Iuul+l+e)-1) implies flulk(u)l du < oo. Thus by Lemma 
1, not only E{a- K((Z - z)/a) - f(z)} = O(aX) for all z, but (B.2) follows by dominated conver- 
gence. 

LEMMA 5: For X, ,u satisfying I-1 < X < 1, m-1 < ,u < m, where 1 > 1, m > 1 are integers, andfor 
a>1, letfe iw, geG,a, ke XI+m-. Then 

E E1[ { g(Z1) -g(Z2)}Kl2] r = 0(aa(q+n)) 

PROOF: By (3.2), JQ(y, z)R(y, z)K((y-z)/a) dy=-0, so IE[ g(Z)-g(z)}K((Z - z)/a)] is 
bounded by 

f {g(y) -g(z) - Q(y, z)}f(y)K( a) dy 

+ f Q(y,z){f(y)-R(y,z)}K( Yz) dy 

zpa 

* Q5 {(y, ) R (y,z() K ( dy| 
+ f {g(y) -g(z)If (y) K(Y )dy 

m-1 

* Ch (z)L (,u) + G (z) L L(i + A) + H(z)L (A + IA) 
i=l 

+ C{g (z) I + El g(Z) I}) aq+71 sup (I u Iq+,,Ik(u)j q} 
u 

where E(G(Z)G + H(Z)G} < oo. Then again apply Lemma 1 and dominated convergence, noting 
that min(I, X + 1, X + A) = < min(l+ 1, m) < 1+ m - 1 < q(l+ mr-1 +E). 

LEMMA 6: himb ,OP(f(Z)<b)=O. 

PROOF: 

P(f (Z) < b) < bf dz + P(IZI > B) < (2B)qb + P(I ZI > B) 
Izl <B 

for all B > 0. For any E > 0, choose B so P(IZI > B) < E; then b < (2B)-qE. 

REFERENCES 

AMEMIYA, T. (1980): "Selection of Regressors," International Economic Review, 21, 331-354. 
BARTLErT, M. S. (1963): "Statistical Estimation of Density Functions," Sankhya, Ser. A, 25, 145-154. 
BEGUN, J., W. J. HALL, W. HUANG, AND J. A. WELLNER (1983): "Information and Asymptotic 

Efficiency in Parametric-Nonparametric Models," Annals of Statistics, 11, 432-452. 
BERAN, R. (1977): "Adaptive Estimates for Autoregressive Processes," Annals of the Institute of 

Statistical Mathematics, 28, 77-89. 
BICKEL, P. (1982): "On Adaptive Estimation," Annals of Statistics, 10, 647-671. 
CACOULLOS, T. (1966): "Estimation of a Multivariate Density," Annals of the Institute of Statistical 

Mathematics, 18, 179-189. 
CARROLL, R. J. (1982): "Adapting for Heteroscedasticity in Linear Models," Annals of Statistics, 10, 

1224-1233. 



SEMIPARAMETRIC REGRESSION 953 

CHAMBERLAIN, G. (1986): "Asymptotic Efficiency in Semiparametric Models with Censoring," 
Journal of Econometrics, 32, 189-218. 

COLLOMB, G. C. (1985): "Nonparametric Regression: An Up-to-Date Bibliography," Statistics, 2, 
309-324. 

COSSLETT, S. J. (1983): "Distribution-free Maximum Likelihood Estimator of the Binary Choice 
Model," Econometrica, 51, 765-782. 

(1984): "Distribution-Free Estimator of a Regression Model with Sample Selectivity," 
manuscript, University of Florida. 

Cox, D. D. (1985): "A Penalty Method for Nonparametric Estimation of the Logarithmic Derivative 
of a Density Function," Annals of the Institute of Statistical Mathematics, 37, 271-288. 

EICKER, F. (1963): "Asymptotic Normality and Consistency of the Least Squares Estimator for 
Families for Linear Regressions," Annals of Mathematical Statistics, 34, 447-456. 

ELBADAWI, I., A. R. GALLANT, AND G. SouzA (1983): "An Elasticity Can Be Estimated Consistently 
Without A Priori Knowledge of its Functional Form," Econometrica, 51, 1731-1751. 

ENGLE, R. F., C. W. J. GRANGER, J. RiCE, AND A. WEISS (1986): "Semiparametric Estimates of the 
Relation Between Weather and Electricity Demand," Journal of the American Statistical Associa- 
tion, 81, 310-320. 

FRIEDMAN, J., AND W. STUETZLE (1981): "Projection Pursuit Regression," Journal of the American 
Statistical Association, 76, 817-823. 

GALLANT, A. R. (1985): "Identification and Consistency in Seminonparametric Regression," paper 
presented at the World Congress of the Econometric Society. 

HAUSMAN, J. A. (1978): "Specification Tests in Econometrics," Econometrica, 46, 1251-1271. 
HECKMAN, J. J. (1976): "The Common Structure of Statistical Models of Truncation, Sample 

Selection and Limited Dependent Variables and a Simple Estimator for Such Models," Annals of 
Economic and Social Measurement, 5, 475-492. 

HECKMAN, N. E. (1986): "Spline Smoothing in a Partly Linear Model," Journal of the Royal Statistical 
Society, Series B, 48, 244-248. 

KAGAN, A. M., Y. V. LINNIK, AND C. R. RAo (1973): Characterization Problems in Mathematical 
Statistics. New York: Wiley. 

LIVIATAN, N. (1963): "Consistent Estimation of Distributed Lags," International Economic Review, 4, 
44-52. 

MANSKI, C. F. (1975): "Maximum Score Estimation of the Stochastic Utility Model of Choice," 
Journal of Econometrics, 3, 205-228. 

(1984): "Adaptive Estimation of Non-Linear Regression Models," (with comment), Economet- 
ric Reviews, 3, 145-194. 

NEWEY, W. K. (1986): "Efficient Estimation of Models with Conditional Moment Restrictions," 
manuscript, Princeton University. 

POWELL, J. L. (1984): "Least Absolute Deviations Estimation for the Censored Regression Model," 
Journal of Econometrics, 25, 303-325. 

POWELL, J. L., J. H. STOCK, AND T. M. STOKER (1986): "Semiparametric Estimation of Weighted 
Average Derivatives," manuscript, Massachusetts Institute of Technology. 

PRAKASA RAO, B. L. S. (1983): Nonparametric Functional Estimation. New York: Academic Press. 
RICE, J. (1986): "Convergence Rates for Partially Splined Models," Statistics and Probability Letters, 

4, 203-208. 
ROBINSON, P. M. (1983): "Nonparametric Estimators for Time Series," Journal of Time Series 

Analysis, 4, 185-207. 
(1987): "Asymptotically Efficient Estimation in the Presence of Heteroskedasticity of Un- 

known Form," Econometrica, 55, 875-891. 
SCHICK, A. (1986): "On Asymptotically Efficient Estimation in Semiparametric Models," Annals of 

Statistics, 14, 1139-1151. 
SCHUCANY, W. R., AND J. P. SOMMERS (1977): "Improvement of Kernel Type Density Estimators," 

Journal of the American Statistical Association, 72, 420-423. 
SCHUSTER, E., AND S. YAKOWITZ (1979): "Contributions to the Theory of Non-parametric Regres- 

sion, with Application to System Identification," Annals of Statistics, 7, 139-149. 
SCHILLER, R. J. (1984): "Smoothness Priors and Nonlinear Regression," Journal of the American 

Statistical Association, 72, 420-423. 
STOCK, J. H. (1985): "Nonparametric Policy Analysis; An Application to Estimating Hazardous 

Waste Cleanup Benefits," manuscript. 
STOKER, T. M. (1986): "Consistent Estimation of Scaled Coefficients," Econometrica, 54, 1461-1481. 



954 P. M. ROBINSON 

STONE, C. J. (1981): "Admissible Selection of an Accurate and Parsimonious Normal Linear 
Regression Model," Annals of Statistics, 9, 475-485. 

(1982): "Optimal Global Rates of Convergence for Nonparametric Regression," Annals of 
Statistics, 10, 1040-1053. 

(1985): "Additive Regression and Other Nonparametric Models," Annals of Statistics, 13, 
689-705. 

WAHBA, G., (1984): "Partial Spline Models for the Semi-Parametric Estimation of Functions of 
Several Variables," in Statistical Analysis of Time Series. Tokyo: Institute of Statistical Mathe- 
matics, 319-329. 

(1985): "Discussion to 'Projection Pursuit', by P. J. Huber," Annals of Statistics, 13, 518-521. 
WHITE, H. (1980): "Using Least Squares to Approximate Unknown Regression Functions," Interna- 

tional Economic Review, 21, 149-170. 
(1982): "Maximum Likelihood Estimation of Misspecified Models," Econometrica, 50, 1-25. 

ZELLNER, A. (1962): "An Efficient Method of Estimating Seemingly Unrelated Regressions and Tests 
for Aggregation Bias," Journal of the American Statistical Association, 57, 348-368. 

(1970): "Estimation of Regression Relationships Containing Unobservable Variables," Inter- 
national Economic Review, 11, 441-454. 


	p. 931
	p. 932
	p. 933
	p. 934
	p. 935
	p. 936
	p. 937
	p. 938
	p. 939
	p. 940
	p. 941
	p. 942
	p. 943
	p. 944
	p. 945
	p. 946
	p. 947
	p. 948
	p. 949
	p. 950
	p. 951
	p. 952
	p. 953
	p. 954

