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1 Introduction

Global root numbers have played an important role in the study of rational points on
abelian varieties since the discovery of the conjecture of Birch and Swinnerton-Dyer.
The aim of this paper is to throw some new light on this intriguing and still largely
conjectural relationship. The simplest avatar of this phenomenon is the parity conjecture
which asserts that for an abelian variety A over a number field F , and for each prime
number p, the Zp-corank of the Selmer group of A over F should have the same parity
as the root number of the complex L-function of A. Many affirmative results in this
direction have been established when A is an elliptic curve, notably by B. Birch and N.
Stephens [4], T. and V. Dokchitser [17], [18], R. Greenberg and L. Guo [24], B-D. Kim
[28], P. Monsky [33], and J. Nekovář [34], [35]. In §1, we use ideas due to Cassels, Fisher
[15, Appendix], Shuter [43], and T.Dokchitser and V. Dokchitser [17] to prove with some
technical restrictions, the parity conjecture for the prime p and and an abelian variety
A of dimension g over a number field F having an isogeny of degree pg. In the rest of
the paper, we give some fragmentary evidence that there is a close connexion between
root numbers and the Selmer group of an elliptic curve E over certain non-commutative
p-adic Lie extensions of the base field F . The non-commutativity of the Galois group
of these p-adic Lie extensions is important for us, because we are interested in cases
in which there are infinite families of irreducible self-dual Artin representations of this
group. In fact, for two non-commutative p-adic Lie extensions, we prove analogues of the
parity conjecture for twists of both the Selmer group and the complex L-function by all
irreducible, orthogonal Artin representations of the Galois group. Our results have some
overlap with the recent work of Mazur and Rubin [30], [31], and T. and V. Dokchitser [19]
although our viewpoint is rather different in that our proofs use methods and invariants
arising from Iwasawa theory. Because of our use of Iwasawa theory, our results at present
require much stronger hypotheses than these authors. However one advantage of our
approach is that it provides both upper and lower bounds for the Zp-corank of the Selmer
group, and surprisingly in some cases the two bounds coincide (see also [16, Appendix]).

One advantage of our approach is that it provides both upper and lower bounds for the
Zp-corank of the Selmer group, and surprisingly in some cases the two bounds coincide
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(see also [16, Appendix]). We also believe that our methods are rather general, and can
be used to establish analogous results for a wide class of p-adic Lie extensions, which
contain the cyclotomic Zp-extension of the base field F . Another suprising aspect of our
work is that it provides some evidence that there may be rather strong uniform upper
bounds for the order of zero at s=1 of the twists of the complex L-function of E by the
infinite family of all irreducible Artin representations of any fixed p-adic Lie extension of
F of infinite degree.

We are extremely grateful to the generous help we have received from many colleagues
while preparing this paper. In particular, we wish to thank T. Dokchitser, V. Dokchitser
and D. Rohrlich for providing us with illuminating computations related to global root
numbers, which play a vital role in §4 and §6. We would also like to thank R. Greenberg
for informing us of the beautiful generalisation of his earlier theorem with L. Guo (see
Theorem 3.8), which is crucial in our work. The second author gratefully acknowledges
support from a JSPS Postdoctoral Fellowship held at DPMMS, Cambridge University,
and the first, second and fourth authors gratefully acknowledge support from RIMS and
Kyoto University.

2 On the parity of the Zp-corank of Selmer

Let A be an abelian variety of dimension g defined over a finite extension F of Q, and let
p be a prime number. As F will be fixed throughout this section, we shall often omit it
from the notation. We recall that the p-primary part S(A) of the Selmer group of A is
defined by

S(A) = Ker (H1(F,Ap∞)→
∏

v

H1(Fv, A(F̄v))),

where Ap∞ denotes the Galois module of all p-power division points on A, and v runs
over all places of F . It is a basic elementary result that S(A) is a cofinitely generated
Zp-module, and we write s(A) for its Zp-corank. Let w(A) = ±1 be the root number
occurring in the conjectural functional equation of the complex L-function of A. The
parity conjecture asserts that we should have

(1) w(A) = (−1)s(A)

for all prime numbers p. The aim of this section is to prove the parity conjecture for the
prime p when A admits an isogeny of degree pg, subject to some technical restrictions on
p.

Let A∗ denote the dual abelian variety. We write A[p] for the Galois module of p-
division points on A, and let

〈 , 〉A,p : A[p]× A∗[p]→ µp

be the Weil pairing, where µp denotes the Galois module of p-th roots of unity.
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Theorem 2.1. The parity conjecture (1) holds for A and p when the following conditions
are satisfied:-

(i) There is a subgroup C of A[p] of order pg, stable under Gal(F̄ /F ), and an isogeny

ψ : A → A∗ of degree prime to p, such that the dual isogeny ψ∗ : A = (A∗)∗
ψ∗

−→ A∗

coincides with ψ, and also such that the Weil pairing 〈 , 〉A,p annihilates C × ψ(C);

(ii) Either p ≥ 2g+2, or p ≥ g+2 and A has semistable reduction at each finite place
v of F ;

(iii) For each place v of F dividing p, either A is potentially ordinary at v, or A
achieves semistable reduction over a finite abelian extension of Fv.

By potentially ordinary at v, we mean that there is a finite extension L of Fv such
that A has semistable reduction over L, and in addition, the connected component of the
special fiber of the Néron model of A⊗F L is an extension of an ordinary abelian variety
by a torus. In particular, A is potentially ordinary at v if A has potentially good ordinary
reduction at v. If A is an elliptic curve, A is potentially ordinary at v if and only if either
A has potentially good ordinary reduction at v, or potentially multiplicative reduction at
v.

Corollary 2.2. Assume p is an odd prime number, and that E/F is an elliptic curve
admitting an F -isogeny of degree p. If p = 3, assume that E has semistable reduction at
each finite place of F. If p > 3, suppose that for each prime v of F dividing p, either E has
potentially good ordinary reduction at v, or E has potentially multiplicative reduction at
v, or E achieves good supersingular reduction over a finite abelian extension of Fv. Then
the parity conjecture (1) holds for E and p.

Our proof of Theorem 2.1 has been inspired by the work of [15], Appendix by T.
Fisher, [17], [43], and has its origin in the work of Cassels. A slightly weaker version
of Corollary 2.2 is already proven in [17]. We also note that [18] proves that the parity
conjecture (1) holds for all elliptic curves E over Q, and for all primes p, generalizing the
works in [34], [35], [28].

We first show how the ideas going back to Cassels lead to a parity statement for s(A)
when A is an abelian variety of any dimension over F which satisfies (i) of Theorem 2.1.
For a slightly different approach, which includes the case p = 2, see also [18], especially
Theorem 4.3 there and its proof. If g : M1 →M2 is any homomorphism of abelian groups
whose kernel and cokernel are both finite, we define

(2) χ(g) = ♯(Coker (g))/♯(Ker (g)).

We assume A satisfies (i) of Theorem 2.1. Let A′ = A/C, and let φ : A → A′ be the
associated isogeny. For each place v of F , we define

(3) h(v) = ordpχ(φv),

where φv : A(Fv) → A′(Fv) is the homomorphism induced by φ (of course, φv has finite
kernel and cokernel). By an elementary argument, one can check that h(v) = 0 for almost
all places v of F .
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Theorem 2.3. Let A/F be an abelian variety satisfying (i) of Theorem 2.1, with p an
odd prime number. Then

(4) s(A) ≡
∑

v

h(v) mod 2,

where the sum is taken over all finite and infinite places of F .

Proof. If M is any cofinitely generated Zp-module, we define Mdiv to be the maximal
divisible subgroup of M , and put

(5) Mnd = M/Mdiv, Tp(M) = lim
←−
n

(M)pn ,

where (M)pn denotes the kernel of multiplication by pn on M . For an abelian group M ,
M(p) will denote the p-primary torsion subgroup of M . For any compact or discrete
Zp-module M , M

∨
will denote its Pontrjagin dual Hom cont(M,Qp/Zp).

Let φ∗ : (A′)∗ → A∗ be the dual isogeny of φ. We write

φS : S(A)→ S(A′), φ∗
S : S((A′)∗)→ S(A∗)

for the homomorphisms induced by φ and φ∗. Let Σ denote any finite set of places of F ,
which contains all places lying over p, all archimdean places, and all finite places where A
has bad reduction. The first step in the proof is to use Cassels’ variant of the Poitou-Tate
sequence (see [32], Chap. 1) to prove that

(6)
χ(φS)

χ(φ∗
S)
·
∏

v∈Σ

χ(φv) =
♯(S(A′)nd)

♯(S(A)nd)
·
♯(A∗(F )(p))

♯(A(F )(p))
·
♯(A′(F )(p))

♯((A′)∗(F )(p))
.

To establish this formula, we need three preparatory lemmas. Put

GΣ = Gal(FΣ/F )

where FΣ is the maximal Galois extension of F in which all places of F outside Σ are
unramified. Since p is assumed to be odd, GΣ has p-cohomological dimension equal to 2.
If M is any finite GΣ-module, we write

χ(GΣ,M) =
2

∏

i=0

♯(H i(GΣ,M))(−1)i

.

As C = Ker (φ), it follows from the Weil pairing that Ker (φ∗) = C
∨
(1). Hence φ∗ gives

rise to an exact sequence of Galois modules

(7) 0→ C
∨

(1)→ (A′)∗p∞ → A∗
p∞ → 0.

For m = 0, 1, 2, write

(8) αm : Hm(GΣ, (A
′)∗p∞)→ Hm(GΣ, A

∗
p∞)

for the homomorphisms induced by φ∗.
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Lemma 2.4.
χ(α1)

χ(α0)χ(α2)
=

∏

v|∞

χ(φv),

where the product is taken over all archimedean places of F .

Proof. By the long exact sequence of cohomology arising from (7), we have

χ(α1)

χ(α0)χ(α2)
= χ(GΣ, C

∨

(1)).

On the other hand, since p is odd, Tate’s Euler characteristic formula [32, Theorem 5.1],
asserts that

χ(GΣ, C
∨

(1)) =
∏

v|∞

♯(H0(Fv, C))−1.

Again, since p is odd, it is clear that the right hand side of this last formula is equal to
∏

v|∞

χ(φv), as required.

We next define
P (A) = lim

←−
n

Spn(A),

where
Spn(A) = Ker (H1(F,Apn)→

∏

v

H1(Fv, A(F̄v))).

It is easily seen that we have an exact sequence

(9) 0→ A(F )(p)→ P (A)→ Tp(S(A))→ 0.

Note also that Tp(S(A)) = Tp(S(A)div). Now the isogeny φ : A → A′ induces homomor-
phisms

β1 : P (A)→ P (A′), β2 : S(A)div → S(A′)div.

Lemma 2.5.

χ(β1) =
♯A′(F )(p)

♯A(F )(p)
·

1

χ(β2)
.

Proof. Let γ : Tp(S(A)div)→ Tp(S(A′)div) be the map induced by β2. As S(A) and S(A′)
have the same Zp-corank and the kernel of β2 is finite, it follows that β2 is surjective, γ
is injective, and Coker (γ)

∼
→ Ker (β2). The assertion of the lemma now follows on using

(9) for both A and A′.

Finally, let

(10) δ : ⊕v∈ΣH
1(Fv, (A

′)∗(F̄v))(p)→ ⊕v∈ΣH
1(Fv, A

∗(F̄v))(p)

be the homomorphism induced by the isogeny φ∗. We write Σf for the set of non-
archimedean places contained in Σ.
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Lemma 2.6.

χ(δ) =
∏

v∈Σf

χ(φv)
−1.

Proof. Since p is odd, the v-component of (10) is 0 when v is archimedean. If M is an
abelian group, we write M∧ = lim

←−n
M/pnM for its p-adic completion, and we use a

similar notation for homomorphisms. If v is in Σf , Tate local duality shows that the
v-component of (10) is dual to the homomorphism

φ∧
v : A(Fv)

∧ → A′(Fv)
∧.

But Ker (φv) and Coker (φv) are p-primary, and so χ(φ∧
v ) = χ(φv), completing the proof

of the lemma.

We can now complete the proof of (6). Cassels’ variant of the Poitou-Tate sequence
asserts that we have an exact sequence

0→ S((A′)∗)→ H1(GΣ, (A
′)∗p∞)→ ⊕v∈ΣH

1(Fv, (A
′)∗(F̄v))(p)→ P (A′)

∨

→ H2(GΣ, (A
′)∗p∞)→ 0,

and similarly an exact sequence

0→ S(A∗)→ H1(GΣ, A
∗
p∞)→ ⊕v∈ΣH

1(Fv, A
∗(F̄v))(p)→ P (A)

∨

→ H2(GΣ, A
∗
p∞)→ 0.

The two sequences are related by the maps discussed in Lemmas 2.4, 2.5, and 2.6, making
a large commutative diagram whose vertical columns are given by φ∗

S, α1, δ, β
∨

1 , and α2,
respectively. But the existence of this commutative diagram shows that

(11) χ(φ∗
S)χ(α1)

−1χ(δ)χ(β1)χ(α2) = 1.

Using Lemmas 2.4, 2.5 and 2.6, we see that (6) is equivalent to (11), and the proof of (6)
is now complete.

We now consider the isogeny ψ. Let φ′ : A′ → A be the unique isogeny such that
φ′φ = p and φφ′ = p. By the general theory of the duality of abelian varieties, the kernel
of (φ′)∗ : A∗ → (A′)∗ coincides with the annihilator of C in A∗[p] with respect to the Weil
pairing A[p] × A∗[p] → µp. Since the annihilator of C is ψ(C), the isogeny ψ : A → A∗

induces an isogeny ψ′ : A′ = A/C → A∗/ψ(C)
∼
→ (A′)∗ which satisfies

(12) ψ′φ = (φ′)∗ψ.

By composing φ′ from the right to (12), we obtain pψ′ = (φ′)∗ψφ′. Since (ψ)∗ = ψ, this
shows that p(ψ′)∗ = pψ′, and hence

(13) (ψ′)∗ = ψ′.

By composing φ∗ from the left to (12), we obtain also

(14) φ∗ψ′φ = pψ.
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By (14), the composition

S(A)
φS
→ S(A′)

ψ′
S→ S((A′)∗)

φ∗S−→ S(A∗)

coincides with the map induced by pψ. Since the degrees of ψ and ψ′ are prime to p,
ψS : S(A)→ S(A∗) and ψ′

S : S(A′)→ S((A′)∗) are isomorphisms, and hence we have

(15) χ(φS) · χ(φ∗
S) = χ(S(A)

p
→ S(A)) = p−s(A).

We consider the right hand side of (6). There is a perfect pairing

S(A)nd × S(A∗)nd → Qp/Zp

([32], Chap. 1, §6), and since ψ∗ = ψ, the composition

S(A)nd × S(A)nd
1×ψS−→ S(A)nd × S(A∗)nd → Qp/Zp

is non-degenerate and alternating [20], and there is a similar pairing for A′. Hence

(16) ♯(S(A)nd) and ♯(S(A′)nd) are squares.

Since the degrees of ψ and ψ′ are prime to p, they induce isomorphisms

(17) A(F )(p) ≃ A∗(F )(p), A′(F )(p) ≃ (A′)∗(F )(p).

By (15), (16), (17), we immediately deduce Theorem 2.3 from (6).

We now turn to root numbers, and we recall that for any abelian variety A over a
number field F , we have

w(A) =
∏

v

wv(A)

where v ranges over all finite and infinite places of F and wv(A) = +1 or −1 is the local
root number of A at v which is +1 for all but a finite number of v. In order to compare
wv(A) and (−1)h(v), we let

αC : Gal(F̄ /F )→ Aut(C) ≃ GLg(Z/pZ)

be the homomorphism giving the action of Gal(F̄ /F ) on C, and for each place v of F , let

αC,v : Gal(F̄v/Fv)→ Aut(C)

be the homomorphism induced by αC . The determinant of αC,v is a 1-dimensional char-
acter of Gal(F̄v/Fv), and hence by class field theory can be viewed as a homomorphism

χC,v : F×
v → (Z/pZ)×.

By the reciprocity law of global class field theory, we have
∏

v

χC,v(−1) = 1.

Hence it is clear that Theorem 2.1 follows immediately from Theorem 2.3 and the following
local result.
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Theorem 2.7. Assume that A satisfies the hypotheses of Theorem 2.1. Then for any
place v of F , we have

(−1)h(v) = wv(A)χC,v(−1).

In fact, Theorem 2.7 follows directly from the following explicit and separate compu-
tation of wv(A) and (−1)h(v). For each finite place v of F , let t(v) be the dimension of
the largest split torus in the special fiber of the Néron model of A at v. For example,
when A is an elliptic curve, then t(v) = 1 if A has split multiplicative reduction at v, and
t(v) = 0 otherwise. For abelian varieties in general, we have

t(v) = dimQℓ
Hom Gal(F̄v/Fv)(Tℓ(A)⊗Qℓ,Qℓ)

for any prime number ℓ, where Tℓ(A) is the l-adic Tate module of A. Also t(v) = 0 if A
has potential good reduction at v. For each place v of F lying over p, with residue field
kv, we will later define a homomorphism

χC,v,crys : O×
Fv
→ k×v

which is a crystalline version of the Galois theoretic homomorphism χC,v.

Proposition 2.8. Let A/F be an abelian variety of dimension g.

(1) Assume (i) in the hypotheses of Theorem 2.1. Let v be an archimedean place of F .
Then

wv(A) = (−1)g, (−1)h(v) = (−1)gχC,v(−1).

(2) Assume (i) and (ii) in the hypotheses of Theorem 2.1. If v is a finite place of F which

does not divide p, we have

wv(A) = (−1)t(v)χC,v(−1), (−1)h(v) = (−1)t(v).

(3) Assume (i), (ii), (iii) in the hypotheses of Theorem 2.1. If v is a place of F which

divides p, we have

wv(A) = (−1)t(v)χC,v,crys(−1), (−1)h(v) = (−1)t(v)χC,v(−1)χC,v,crys(−1).

The most difficult part in the above proposition is to prove the formula for (−1)h(v) in
(3), which compares the Galois object χC,v and the crystalline object χC,v,crys. A part of
the proof of this formula is given in the Appendix, and uses the Dieudonné theory of finite
flat commutative group schemes over discrete valuation rings of mixed characteristic as
developed by Breuil [3].

The remainder of this section is organised as follows. In 2.9 and 2.10, we review the
definition of the local root numbers wv(A) via the theory of local ǫ-factors of represen-
tations of Weil-Deligne groups. We then prove Proposition 2.8, remarking that for the
proof of the formula for (−1)h(v) in Proposition 2.8 (3), we need Lemma 2.20 (6) which is
established in the Appendix.
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2.9. We assume from now on that K is either C, R, or a complete discrete valuation field
with finite residue field k. Let WK denote the Weil group of K (see [13]). By local class
field theory, the local reciprocity map gives an isomorphism

(18) W ab
K ≃ K×,

where W ab
K is the quotient of WK by the closure of the commutator subgroup of WK . We

follow the convention of Deligne [13] in normalising (18), so that under the isomorphism
(18), prime elements of K map to the geometric Frobenius ϕk in Gal(k̄/k). Suppose V is
a finite dimensional representation of WK over C. Then the local ǫ-factor ǫ(WK , V, ψ, dx),
which is a non-zero element of C, is defined for each non-trivial continuous group homo-
morphism ψ : K → {z ∈ C× | |z| = 1} and for every choice of a Haar measure dx of the
additive group K [13]. We have

(19) ǫ(WK , V, aψ, cdx) = χV (a)(c · ||a||−1)dim(V )ǫ(WK , V, ψ, dx)

for a ∈ K× and c > 0, where we set (aψ)(x) = ψ(ax), || || is the normalized absolute value
of K, and χV denotes the homomorphism K× ≃W ab

K → C×, arising from the determinant
map on V . Another basic property of these ǫ-factors is

(20) ǫ(WK , V, ψ, dx) = ǫ(WK , V
′, ψ, dx) ǫ(WK , V

′′, ψ, dx)

whenever we have an exact sequence

0→ V ′ → V → V ′′ → 0

of representations of WK .

Let W ′
K denote the Weil-Deligne group. We now recall some of the basic properties

of finite dimensional representations of W ′
K over C. When K is archimedean, such a

representation is simply a representation of WK over C and the ǫ-factors are the same.
When K is non-archimedean, a representation of W ′

K over C is a pair (V,N) where V
is a representation of WK over C and N : V → V (−1) is a homomorphism of WK

representations. Here for a representation V of WK , we set V (n) = V ⊗ ωn with the
character

ω : WK →W ab
K ≃ K× ‖ ‖

→ R×.

For such a representation (V,N), we define

(21) ǫ(W ′
K , V, ψ, dx) = ǫ(WK , V, ψ, dx) det(−ϕ−1

k : (V/Ker (N))IK ),

where ϕk is any geometric Frobenius in Gal(K̄/K).

We recall that the pair (ψ, dx) is self-dual if, for the Fourier transform Fψ,dx defined
by

(Fψ,dx)(f)(x) =

∫

K

f(y)ψ(xy)dy,
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we have (F2
ψ,dx(f))(x) = f(−x) where f is any C-valued function on K which belongs

to the Schwartz class. The following pairs (ψ, dx) are self-dual: (a) K = R, ψ(x) =
exp(2πix), dx is the Lebesgue measure; (b) K = C, ψ(z) = exp(2πiTrC/R(z)), dx = dz∧dz̄
and (c) K is non-archimedean, the largest OK-submodule of K contained in the kernel of
ψ is OK , and the volume of OK with respect to dx is 1. Moreover, any self-dual pair is
obtained as (aψ, ||a||−1/2dx) from (ψ, dx) as in (a), (b), (c) for some a ∈ K×. If (ψ, dx) is
self-dual, then for any representation V of W ′

K over C, we have

(22) ǫ(W ′
K , V, ψ, dx)ǫ(W

′
K , V

∗(1), ψ, dx) = χV (−1),

where V ∗ is the dual of V viewed as a representation of WK , and N : V ∗(1) → V ∗ is
defined to be − tN with tN the transpose of the given N : V → V (−1).

Suppose now that V is a representation of W ′
K over C satisfying

(23) V ≃ V ∗(1),

(24) dim(V ) is even, and det(V ) ≃ C(dim(V )/2),

where det(V ) denotes the determinant of V . It follows from (22), (23) and (24) that for
(ψ, dx) self-dual, we have

(25) ǫ(W ′
K , V, ψ, dx) = ±1.

Moreover by (19) and (24), ǫ(W ′
K , V, ψ, dx) is independent of the choice of the self-dual

pair (ψ, dx).

2.10. Let A be an abelian variety over our local field K. We now recall the definition of
the fundamental representation V(A) of W ′

K over C attached to A. This representation
V(A) of W ′

K always satisfies (23) and (24), and the local root number wK(A) is then
defined by

(26) wK(A) = ǫ(W ′
K ,V(A), ψ, dx) with (ψ, dx) self-dual.

Suppose first that K = C or R. Then V(A) = H1(A(C),C) on which WK acts in the
following manner. Recall that WC = C×, WR contains WC as a subgroup of index 2, and
WR is generated by WC and an element ι satisfying ι2 = −1 ∈ C× = WC and ιzι−1 = z̄
for z ∈ C× = WC. We have a surjective homomorphism

H1(A(C),C)→ Hom C(H0(A,Ω1
A/C),C) ; γ 7→ (ω 7→

∫

γ

ω),

where H0(A,Ω1
A/C) is the vector space of holomorphic differentials on A. Let V−1,0(A)

be the kernel of this homomorphism. Then V(A) is the direct sum of V−1,0(A) and the
complex conjugate V0,−1(A) of V−1,0(A) with respect to the R-structure H1(A(C),R) of
H1(A(C),C). Consider the action of C× on V(A) where z ∈ C× acts by z−1 on V−1,0(A)
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and by z̄−1 on V0,−1(A). When K = C, this is the action of WK on VC(A). When K = R,
we extend this to the action of WR for which ι acts as i−1 times the C-linear map on V(A)
induced by the complex conjugation A(C)→ A(C).

Now assume K is a complete discrete valuation field. The representation V(A) of W ′
K

associated to A is obtained from the representation Vp(A) = Qp ⊗Zp Tp(A) of Gal(K̄/K),
where p is any prime number which is different from char(k) and Tp(A) is the p-adic Tate
module of A, as in §8 of [13]. We introduce here a description of V(A) by using the theory
of Raynaud [36] (see also [42, Chap. IX]), which we use for the proof of Proposition 2.8.
We write OK for the ring of integers of K, mK for its maximal ideal, kK for its residue
class field, and use similar notation for all finite extensions of K. Take a finite Galois
extension L of K such that AL = A ⊗K L has split semistable reduction. Let AOL

be
the Néron model of AL over OL. The work of Raynaud shows that there is a smooth
commutative group scheme A over OL, which is characterized up to unique isomorphism,
by the following two properties:- (i) There is an exact sequence

(27) 0→ T → A→ B → 0

with T a split torus over OL and B an abelian scheme over OL.

(ii) For i ≥ 1, A ⊗OL
(OL/m

i
L) is the connected component of AOL

⊗OL
(OL/m

i
L)

containing the origin.
We then have a commutative diagram with exact rows

0 → T (OL) → A(OL) → B(OL) → 0
↓ ↓ ‖

0 → T (L) → A(L) → B(L) → 0.

Here B(OL) = B(L) since B is proper over OL. Hence we have

A(L)/A(OL) ≃ T (L)/T (OL) = Hom (X(T ), L×)/Hom (X(T ), O×
L ) ≃ Hom (X(T ),Z),

where X(T ) denotes the character group of the split torus T .

The dual abelian variety A∗ of A also has split semistable reduction over L, and we
have the corresponding objects A∗, T ∗, B∗ attached to A∗. In fact, B∗ coincides with the
dual abelian scheme of B. Raynaud constructed a canonical injective homomorphism

(28) X(T ∗)→ A(L)

such that if

(29) N : X(T ∗)→ Hom(X(T ),Z)

denotes the composition of (28) and A(L) → A(L)/A(OL) ≃ Hom (X(T ),Z), then N is
injective and has finite cokernel (we shall see later that this N is very closely related to
the one occurring in the definition of V(A)). He also constructed a canonical isomorphism

(30) A(K̄) ≃ A(K̄)/X(T ∗)
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which is compatible with the action of Gal(K̄/K), and which induces an isomorphism

(31) A(L) ≃ A(L)/X(T ∗).

For example, if A is an elliptic curve with split multiplicative reduction over L, then
A = T = Gm, B = 0, X(T ∗) ≃ Z, and the presentation (31) of A(L) is none other than
the Tate parametrization.

Näıvely, it is only Gal(K̄/L) which acts on A(K̄) since A is a scheme over OL. But in
fact, Gal(K̄/K) acts on it for the following reason. By the uniqueness of A (up to unique
isomorphism), we have an action of Gal(L/K) on the scheme A which is compatible
with the action of Gal(L/K) on Spec(OL) via the canonical morphism A → Spec(OL),
and which is compatible with the group structure of A. Here for σ ∈ ∆, the action
σ : Spec(OL) → Spec(OL) is the morphism corresponding to σ−1 : OL → OL. For
σ ∈ Gal(K̄/K), the action of σ on A(K̄) is defined to be x 7→ σ ◦ x ◦ σ−1 for x ∈ A(K̄)
which we regard as a morphism Spec(K̄) → A. (The last σ−1 acts Spec(K̄) as the
morphism corresponding to σ : K̄ → K̄.) Similarly, Gal(K̄/K) acts on T (K̄) and on
B(K̄).

Let AL = A ⊗OL
L, TL = T ⊗OL

L, BL = B ⊗OL
L. Let p be a prime number

which is different from the characteristic of K. By (27), (30), we obtain exact sequences
of Gal(K̄/K)-modules

0→ Tp(AL)→ Tp(A)→ X(T ∗)⊗ Zp → 0,

0→ Tp(TL)→ Tp(AL)→ Tp(BL)→ 0.

Define the Gal(K̄/K)-stable increasing filtration Fili(Tp(A)) on Tp(A) by

Fil−3 = 0 ⊂ Fil−2Tp(A) = Tp(TL) ⊂ Fil−1Tp(A) = Tp(AL) ⊂ Fil0Tp(A) = Tp(A).

Then for i = 0,−1,−2, griTp(A) = FiliTp(A)/Fili−1Tp(A) is described as

gr0Tp(A) = X(T ∗)⊗ Zp, gr−1Tp(A) = Tp(BL), gr−2Tp(A) = Hom (X(T ),Zp(1)).

For a group Γ, a semisimple representation V of Γ over a field M of characteristic 0,
and a semisimple representation V ′ of Γ over a field M ′ of characteristic 0, we say V and
V ′ are isomorphic as representations of Γ if Trace(σ;V ) = Trace(σ;V ′) ∈ Q for any σ ∈
Γ. This condition is equivalent to the following condition: For any field M ′′ and any
homomorphisms M → M ′′ and M ′ → M ′′ of fields, M ′′ ⊗M V and M ′′ ⊗M ′ V ′ are
isomorphic as representations of Γ over M ′′. It is known that in the case p 6= char(kK),
Vp(BL) is semisimple as a representation of WK over Qp, and the isomorphism class of
this representation is independent of p 6= char(kK) in the above sense.

The representation V(A) of W ′
K over C is described as follows. As a representation of

WK ,
V(A) = gr0V(A)⊕ gr−1V(A)⊕ gr−2V(A),

12



where
gr0V(A) := X(T ∗)⊗ C, gr−2V(A) := Hom(X(T ),C)(1),

and gr−1V(A) is any representation ofWK over C which is isomorphic to the representation
Vp(BL) ofWK over Qp with p 6= char(kK) (so V(A) is determined only up to isomorphism).
We define the map N : V(A)→ V(A)(−1) to be the composite

V(A)→ gr0V(A)
N
→ gr−2V(A)(−1)→ V(A)(−1)

where the first arrow is the projection, the third arrow is the inclusion map, and the
middle map is induced from (29). In view of this definition, for any p 6= char(kK) and for
i = 0,−1,−2, the representation griV(A) ofWK over C is isomorphic to the representation
gri(Tp(A)⊗Qp) of WK over Qp. It is known that V(A) is semi-simple as a representation
of WK .

The following lemma is well known (see [42]).

Lemma 2.11. The abelian variety A over K has semistable reduction if and only if the
inertia subgroup of WK acts trivially on V(A). It has split semistable reduction if and
only if it has semistable reduction and the action of WK on gr0V(A) and (gr−2V(A))(−1)
is trivial.

Taking now p = char(kK), the representation V(A) can be explained in terms of
Dieudonné theory as follows. Let Ap∞ (resp. Tp∞, resp. Bp∞) be the p-divisible group
over OL associated to A (resp. T , resp. B), which is the inductive limit of the commutative
finite flat group scheme A[pn] (resp. T [pn], resp. B[pn]) over OL. Let kL be the residue
field of L, and let D = D(Ap∞ ⊗OL

kL) (resp. D(Tp∞ ⊗OL
kL), resp. D(Bp∞ ⊗OL

kL))
be the covariant Dieudonné module of the special fibre of this p-divisible group. Then D
is a free module of finite rank over the ring W (kL) of Witt vectors, and D is endowed
with a semi-linear action of Gal(L/K) and with a frobenius operator ϕp : D → D. The
operator ϕp is an injection with finite cokernel, ϕp(ax) = ϕp(a)ϕp(x) for a ∈ W (kL)
and x ∈ D, where ϕp : W (kL) → W (kL) is the ring homomorphism induced by the
endomorphism of kL given by x 7→ xp, and ϕp commutes with the action of Gal(L/K).
Let Frac(W (kL)) be the field of fractions of W (kL), and define the linear action of WK on
D ⊗W (kL) Frac(W (kL)) over Frac(W (kL)) as follows. Let σ ∈ WK and let ϕnk (n ∈ Z) be
the image of σ in Gal(k̄/k). Define the linear action of σ on D as ϕnfp σ̄ where f = [kK : Fp]
and σ̄ is the image of σ in Gal(L/K). The following result is well-known for p = char(kK).

Lemma 2.12. For p = char(kK) we have:

(1) The representation gr−1V(A) ⊕ gr−2V(A) of WK over C is isomorphic to the repre-
sentation D(Ap∞ ⊗ kL)⊗W (kL) Frac(W (kL)) of WK over Frac(W (kL)) defined above.

(2) The representation gr−1V(A) of WK over C is isomorphic to the representationD(Bp∞⊗OL

kL)⊗W (kL) Frac(W (kL)) of WK over Frac(W (kL)).

(3) The representation gr−2V(A) of WK over C is isomorphic to the representationD(Tp∞⊗OL

kL)⊗W (kL) Frac(W (kL)) of WK over Frac(W (kL)).
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Finally, assuming always that K is non-archimedean, since

(−1)t(K,A) = det(−ϕ−1
k ; (V(A)/Ker (N))IK ),

we have

(32) wK(A) = ǫ(WK ,V(A), ψ, dx) · (−1)t(K,A)

with (ψ, dx) self-dual, and where t(K,A) denotes the multiplicity of the trivial represen-
tation in the representation gr0V(A) of WK . By [42, Chap. IX], t(K,A) coincides with
the dimension of the split torus part of the reduction of the Néron model of A over OK .

2.13. Let the assumptions be as in Theorem 2.1. We now make some remarks on C =
Ker (A → A′) and discuss commutative finite flat group schemes over p-adic discrete
valuation rings related to C. Let

C ′ = A[p]/C = Ker (φ′ : A′ → A).

Since ψ induces an isomorphism C
∼
→ Ker ((φ′)∗ : A∗ → (A′)∗), Cartier duality between

Ker (φ′ : A′ → A) and Ker ((φ′)∗ : A∗ → (A′)∗) induces a Cartier duality

(33) C ≃ Hom (C ′, µp)

of finite commutative group schemes over F . Here we have identified a finite commutative
group scheme P over F with the corresponding representation P (F̄ ) of Gal(F̄ /F ).

We can apply the results of 2.10 with K = Fv, for a finite place v of F . Regarding C
as a subgroup of Tp(A)/pTp(A) ≃ A[p], define Gal(F̄v/Fv)-submodules Cf,Fv and Ct,Fv of
C as

Ct,Fv = C ∩ (Tp(TL)/pTp(TL)) ⊂ Cf,Fv = C ∩ (Tp(AL)/pTp(AL)) ⊂ Tp(A)/pTp(A).

By regarding C ′ as a subgroup of Tp(A
′)/pTp(A

′), define C ′
t,Fv
⊂ C ′

f,Fv
⊂ C ′ similarly.

Since A′ and (A′)∗ also have split semistable reduction over L, we can define analogous
schemes to T , A, and B for both A′ and (A′)∗, and we denote these schemes in the evident
analogous fashion. We then have

(34) C/Cf,Fv ≃ Ker (X(T ∗)/pX(T ∗)→ X((T ′)∗)/pX((T ′)∗)) ≃ X((T ′)∗)/X(T ∗)

where the arrow and the embedding X(T ∗) → X((T ′)∗) on the right are induced from
φ : T → T ′,

(35) C ′/C ′
f,Fv
≃ Ker (X((T ′)∗)/pX((T ′)∗)→ X(T ∗)/pX(T ∗)) ≃ X(T ∗)/X((T ′)∗)

where the arrow and the embedding X((T ′)∗) → X(T ∗) on the right are induced from
φ′ : T ′ → T . In the isomorphism (33), Cf,Fv and C ′

t,Fv
annihilate each other, Ct,Fv
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and C ′
f,Fv

kill each other, and (33) induces Cartier dualities of finite commutative group
schemes over Fv:-

(36) Cf,Fv/Ct,Fv ≃ Hom (C ′
f,Fv

/C ′
t,Fv

, µp).

(37) Ct,Fv ≃ Hom (C ′/C ′
f,Fv

, µp)

(38) C/Cf,Fv ≃ Hom (C ′
t,Fv

, µp)

Now assume v divides p, and let the finite extension L/Fv be as in 2.10 (we take Fv
as K in 2.10). Define finite flat commutative group schemes Cf,OL

and Ct,OL
over OL by

Ct,OL
= Ker (T → T ′) ⊂ Cf,OL

= Ker (A→ A′).

We then have isomorphisms

Cf,OL
/Ct,OL

≃ Ker (B → B′), Cf,OL
⊗OL

L = Cf,Fv ⊗Fv L, Ct,OL
⊗OL

L = Ct,Fv ⊗Fv L.

Similarly, define C ′
t,OL

= Ker (T ′ → T ) ⊂ C ′
f,OL

= Ker (A′ → A), where A′ → A

and T ′ → T are the homomorphisms induced by φ′. Since ψ induces an isomorphism
Cf,OL

/Ct,OL

∼
→ Ker ((φ′)∗ : B∗ → (B′)∗), Cartier duality between Ker (ψ : B′ → B) and

Ker ((φ′)∗ : B∗ → (B′)∗) induces the following Cartier duality of finite flat commutative
group schemes over OL:-

(39) Cf,OL
/Ct,OL

≃ Hom (C ′
f,OL

/C ′
t,OL

, µp).

We have also the following Cartier duality (40) and (41) of commutative finite flat
group schemes over OL. Denote by (C/Cf,Fv)OL

the group C/Cf,Fv regarded as a constant
commutative group scheme over OL, and define (C ′/C ′

f,Fv
)OL

similarly. Then, ψ′ induces
X((T ′)∗)/X(T ∗) ≃ X(T ′)/X(T ) where X(T ) → X(T ′) is induced by φ′, and ψ induces
X(T ∗)/X((T ′)∗) ≃ X(T )/X(T ′) where X(T ′) → X(T ) is induced by φ. By (34) and
(35), these induce

(40) Ct,OL
≃ Hom ((C ′/C ′

f,Fv
)OL

, µp),

(41) (C/Cf,Fv)OL
≃ Hom (C ′

t,OL
, µp).

Lemma 2.14. Let the assumptions be as in Theorem 2.1 and let v be a finite place of F .
Then:-

(1) There is a finite Galois extension L/Fv such that the ramification index of L/Fv is
prime to p and A has split semistable reduction over L.

(2) The image of WFv → Aut(gr0V(A)) and the image of WFv → Aut((gr−2V(A))(−1))
are finite groups whose orders are prime to p.
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(3) The image of the inertial subgroup IFv of WFv in Aut(V(A)) is a finite group whose
order is prime to p.

(4) Assume v does not divide p. Then there is a free Zp-module U of rank g endowed with
a continuous action of WFv having the following properties: The inertial subgroup IFv

of WFv acts on U through a finite quotient of order prime to p, the semi-simplifications
of the representations U ⊗Zp Fp and C of WFv over Fp are isomorphic, and the semi-
simplifications of the representations (U⊕U∗(1))⊗Zp Fp and A[p] over Fp are isomorphic.

(5) Assume v divides p. Then there is a representation U of WFv over C of dimension g
such that as representations of WFv , V(A) is isomorphic to U ⊕ U∗(1).

(6) Assume v divides p, let L/Fv be as in paragraph 2.10. Then for σ ∈ IFv , the char-
acteristic polynomial giving the action of σ on the kL-vector space D(Cf,OL

⊗OL
kL) has

coefficients in the residue field kv of Fv; here D(Cf,OL
⊗OL

kL) is the covariant Dieudonné
module of the commutative finite flat group scheme Cf,OL

⊗OL
kL over kL (2.13).

Proof. By Lemma 2.11, (1) follows from (2) and (3). Since the representation of WFv on
gr0V(A) and on (gr−2V(A))(−1) are Q-rational and of dimension ≤ g, (2) follows from
the fact that GLg(Q) has no element of order p if p ≥ g+2 (the last fact is deduced from
[Q(µp) : Q] = p− 1 > g).

We prove (3). By (2), it is sufficient to consider gr−1V(A). If v does not divide p
(resp. if v divides p), the representation of IFv on gr−1V(A) is realized over Qp (resp.
Frac(W (kL))) and is of dimension ≤ 2g. Then (3) follows from the fact that GL2g(Qp)
(resp. GL2g(Frac(W (kL))) has no element of order p if p ≥ 2g+2 (the last fact is deduced
from [Qp(µp) : Qp] (resp. [Frac(W (kL))(µp) : Frac(W (kL))]) = p− 1 > 2g).

We prove (4). Let I ′ = Ker (IFv → Aut(V(A))) and let H = IFv/I
′. Then WFv/I

′

acts on the semi-simplification Css of C. Since the order of H is prime to p by (3), Css

can be regarded as a projective Fp[H ]-module. Take any finitely generated projective
Zp[H ]-module U such that U ⊗Zp Fp = Css. We show that the action of H on U extends
to an action of WFv/I

′ on U . Fix an element σ of WFv whose image in Gal(k̄v/kv) is ϕkv .
For a Zp[H ]-module M , let M(σ) be the Zp[H ]-module whose underlying Zp-module is M
but a ∈ H acts on M(σ) by the original action of σaσ−1 on M . The action σ : Css → Css

is regarded as an isomorphism of Zp[H ]-modules Css
∼
→ (Css)(σ). Hence U ⊗Zp Fp and

U(σ) ⊗Zp Fp are isomorphic as Fp[H ]-modules. From this we conclude that U and U(σ) are
isomorphic as Zp[H ]-modules by Nakayama’s lemma. We therefore fix a Zp-endomorphism
of U , which gives rise to an isomorphism U → U(σ) of Zp[H ]-modules. For simplicity, we
again denote this endomorphism of U by σ. Then this action of σ on U along with the
original action of H on U , defines an action of WFv on U . As a representation of WFv , we
have

(U ⊕ U∗(1))⊗Zp Fp ≃ Css ⊕ C
∗
ss(1) ≃ Css ⊕ C

′
ss ≃ A[p]ss

where the second isomorphism is by 2.13.
We prove (5) and (6). Assume first that A is potentially ordinary at v. Since B is

ordinary, Tp(BL) has a Gal(F̄v/Fv)-stable Zp-submodule S of rank g such that Tp(BL)/S
is torsion free and such that the actions of Gal(F̄v/L) on Tp(BL)/S and on S∗(1) are
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unramified. The perfect duality Tp(BL) × Tp(B
∗
L) → Zp(1) annihilates S × ψ(S), and

hence induces an isomorphism Tp(BL)/S ≃ S∗(1) of representations of Gal(F̄v/Fv). Let
U1 = Tp(BL)/S ⊗Zp Frac(W (kL)). We have an exact sequence of representation of WFv

over Frac(W (kL))

0→ U∗
1 (1)→ D(Bp∞ ⊗OL

kL)⊗W (kL) Frac(W (kL))→ U1 → 0,

where, as always, U∗
1 (1) is the Tate twist of U∗

1 as a representation of WFv . Let U =
U1 ⊕ X(T ∗) ⊗ Frac(W (kL)). Then the representation V(A) of WFv is isomorphic to the
representation U ⊕ U∗(1) over Frac(W (kL)). This proves (5) in this case. Since B is
ordinary, we have an exact sequence of finite commutative group schemes

0→ P → Cf,OL
/Ct,OL

⊗Fp kL → Q→ 0

over kL endowed with actions of Iv, where P is multiplicative and Q is étale. Let P ′ be
the Cartier dual of P which is an étale finite group scheme over kL. We can view P ′ and
Q as Fp-vector spaces endowed with actions of Gal(k̄v/kv). We have an exact sequence

0→ Hom Fp(P
′, kL)→ D(Cf,OL

/Ct,OL
⊗OL

kL)→ (Q⊗Fp kL)→ 0

of representations of Iv over kL. Let Z be the dual representation of the representation
Hom (Ct,Fv , µp) of IFv over Fp. Consider the representation Y of IFv over Fp defined as
Y = Hom (P ′,Fp) ⊕ Q ⊕ Z. Then Y ⊗Fp kL ≃ D(Cf,OL

⊗OL
kL) as representations of

IFv over kL. Hence the characteristic polynomial of the action of an element σ on the
kL-vector space D(Cf,OL

⊗OL
kL) coincides with the characteristic polynomial of the action

of σ on the Fp-vector space Y , and hence is a polynomial over Fp. This proves (6) in this
case.

Next assume that A achieves semistable reduction over a finite abelian extension L of
Fv. We show first that the action of WFv on V(A) factors through the abelian quotient
F×
v of WFv . By Lemma 2.11, the action of IFv in the representation of WFv factors

through the canonical map IFv → Gal(L/Fv). Since L/Fv is abelian, the last map factors
through the canonical surjection IFv → O×

Fv
in local class field theory. But the quotient

of WFv by the kernel of IFv → O×
Fv

is W ab
Fv
≃ F×

v . Write the action of WFv on V(A) as
the direct sum of characters of F×

v . By V(A) ≃ V(A)∗(1) and by the fact dim(V(A))
is even, we can choose χi (1 ≤ i ≤ g) among these characters such that V(A) is the
direct sum (⊕gi=1χi) ⊕ (⊕gi=1χ

−1
i (1)). This proves (5) in this case. By (3), the action of

O×
Fv

on V(A) is trivial on the pro-p part of O×
Fv

and hence the action factors through the

canonical projection O×
Fv
→ k×v . Thus for any σ ∈ IFv , σ

N(v)−1 acts on V(A) trivially,
and therefore acts trivially on D(Ap∞) ⊗OL

kL, and also trivially on D(Cf,OL
⊗OL

kL).
Thus the characteristic polynomial giving the action of σ ∈ IFv on D(Cf,OL

⊗OL
kL) has

coefficients over kv. This proves (6) in this case.

2.15. Let the assumptions be as in Theorem 2.1 and suppose that v divides p. We now
explain the definition of the homomorphism χC,v,crys : O×

Fv
→ k×v .
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Let IFv → k×L be the determinant of the action of IFv on the kL-vector spaceD(Cf,OL
⊗OL

kL). By Lemma 2.14 (6), the image of this homomorphism is contained in k×v ⊂ k×L . Hence
it factors through the unique cyclic quotient of IFv of orderN(v)−1, and therefore through
the homomorphism IFv → O×

Fv
given by local class field theory. We denote the induced

homomorphism O×
Fv
→ k×v by χC,v,f,crys. On the other hand, let

χC,v,f (resp. χC,v,/f ) : Gal(F̄v/Fv)→ F×
p

be the determinant of the action of Gal(F̄v/Fv) on the Fp-vector space Cf,Fv (resp.
C/Cf,Fv). We again denote the homomorphism F×

v → F×
p induced by χC,v,f (resp. χC,v,/f )

via local class field theory, by the same letter χC,v,f (resp. χC,v,/f ). Clearly χC,v is then
the product of the two characters

χC,v = χC,v,fχC,v,/f .

Thus we finally define the crystalline version χC,v,crys of χC,v as the product of two char-
acters

χC,v,crys = χC,v,f,crysχC,v,/f : O×
Fv
→ k×v .

2.16. We prove Proposition 2.8 (1).
For K = R or C, ǫ(WK , V, ψ, dx) for an irreducible representation V of WK is given as

follows ([13]). Take (ψ, dx) as in (a), (b) in 2.9. Let K = C. Then V is a 1-dimensional
representation z 7→ z−N ||z||s (N ∈ Z, s ∈ C, z ∈ WC = C×), and ǫ(WK , V, ψ, dx) = i|N |.
Let K = R. Then V is a 1-dimensional representation x 7→ ||x||s (s ∈ C, x ∈W ab

R = R×)
and ǫ(WK , V, ψ, dx) = 1, or V is a 1-dimensional representation x 7→ x−1||x||s (s ∈ C, x ∈
W ab

R = R×) and ǫ(WK , V, ψ, dx) = i, or V is a 2-dimensional representation induced from
the 1-dimensional representation z 7→ z−N ||z||s (N ∈ Z, N ≥ 1, s ∈ C, z ∈ WC = C×) of
WC ⊂WR and ǫ(WK , V, ψ, dx) = iN+1.

We have wK(A) = (−1)g where g = dim(A). In fact, if K = C, V (A) is the direct
sum of g copies of z 7→ z−1 ⊕ z||z||−1 and hence ǫ(WK ,V(A), ψ, dx) = (i · i)g = (−1)g.
If K = R, V (A) is the direct sum of g copies of the 2-dimensional irreducible represen-
tation induced from the 1-dimensional representation z 7→ z−1 of WC = C×, and hence
ǫ(WK , V (A), ψ, dx) = (i1+1)g = (−1)g.

We prove the statement on (−1)h(v) in Proposition 2.8 (1). First let v be a complex
place of F . Then we have an exact sequence

0→ C → A(C)→ A′(C)→ 0.

Hence χ(A(C)→ A′(C)) = ♯(C)−1 = p−g and hence h(v) = −g. Since χC,v is trivial, this
proves (−1)h(v) = (−1)g = (−1)gχC,v(−1). Next assume v is a real place of F . Let C+

(resp. C−) be the part of C on which the complex conjugation acts by 1 (resp. −1). Let
n(±) = ordp♯(C

±). Then n(+) + n(−) = g. We have an exact sequence

0→ C+ → A(R)→ A′(R)→ J → 0

where J is killed by 2. Hence h(v) = ordpχ(A(R)→ A′(R)) = −n(+). On the other hand,
χC,v(−1) = (−1)n(−). Therefore (−1)gχC,v(−1) = (−1)g−n(−) = (−1)n(+) = (−1)h(v).
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2.17. We prove the formula for wv(A) in Proposition 2.8 (2).
By (32), it is sufficient to prove ǫ(WFv ,V(A), ψ, dx) = χC,v(−1) for (ψ, dx) self-dual.

Let (ψ, dx) be as in (c) in 2.9. Let U be as in Lemma 2.14 (4). Fix an isomorphism
C ≃ Q̄p. Since (U ⊕ U∗(1)) ⊗Zp Fp and A[p] have isomorphic semi-simplifications as
representations over Fp, the theory of the “modified ǫ- factor” ǫ0 of Deligne in [13, §6]
shows that

ǫ(WFv ,V(A), ψ, dx) · det(−ϕkv ; V(A)IFv )

≡ ǫ(WFv , U ⊕ U
∗(1), ψ, dx) · det(−ϕkv ; ((U ⊕ U∗(1))⊗Zp Qp)

IFv ) mod m

where m is the maximal ideal of Q̄p (these ǫ and det are units in Q̄p). Since the actions
of IFv on V(A) and on U ⊕ U∗(1) factor through finite quotients of IFv whose orders are
prime to p,

det(−ϕkv ; V(A)IFv ) mod m = det(−ϕkv ; (A[p]ss)
IFv )

det(−ϕkv ; ((U ⊕ U∗(1))⊗Zp Qp)
IFv ) mod m = det(−ϕkv ; ((U ⊕ U∗(1))⊗Zp Fp)

IFv )

and hence these are equal. Hence

ǫ(WFv ,V(A), ψ, dx) ≡ ǫ(WFv , U ⊕ U
∗(1), ψ, dx) mod m.

By (22), we have

ǫ(WFv , U ⊕ U
∗(1), ψ, dx) = χU(−1), χU(−1) mod m = χC,v(−1).

Since ǫ(WFv ,V(A), ψ, dx) and χC,v(−1) belong to {±1}, these congruences mod m show
that ǫ(WFv ,V(A), ψ, dx) = χC,v(−1), as required.

2.18. We prove the formula for wv(A) in Proposition 2.8 (3). By (32), it is enough to prove
ǫ(WFv ,V(A), ψ, dx) = χC,v,crys(−1) for (ψ, dx) self-dual. Let U be as in Lemma 2.14 (5).
By (22), we have ǫ(WFv ,V(A), ψ, dx) = χU(−1). This shows that for any representation
Y of IFv of dimension g over kL such that

Y ⊕ Y ∗ ≃ D(T [p]⊗OL
kL)⊕D(B[p]⊗OL

kL)⊕X(T ∗)⊗Z kL

as representations of IFv , we have ǫ(WFv ,V(A), ψ, dx) = χY (−1). By the duality described
in 2.13, we can take Y = D(Cf,OL

⊗OL
kL) ⊕ C/Cf,L ⊗Fp kL. For this Y , χY (−1) =

χC,v,crys(−1) by definition.

The next two lemmas will be used in the proof of the formulae for (−1)h(v) in Propo-
sition 2.8 (2) (3).

Lemma 2.19. Let the assumption be as in Theorem 2.1, and let v be a finite place of F,
with h(v) as in (3). In the notation of 2.10, take Fv as K, and let L be a finite Galois
extension of K such that A has split semistable reduction over L and such that the order
of the inertial subgroup of ∆ := Gal(L/K) is prime to p (cf. Lemma 2.14 (1)). Then:-

(1) We have h(v) = a− b+ c, where

a = ordp χ(A(OL)
∆ φ
−→ A′(OL)

∆),
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b = ordp χ(X(T ∗)∆ → X((T ′)∗)∆), c = ordp χ(X(T ′)∆ → X(T )∆).

Here the arrows in the definitions of b and c are induced by φ∗ and φ, respectively.

(2) b+ c = t(v).

(3) ordp(A(kL)
∆) = ordp(A

′(kL)
∆).

Proof. From the exact sequence of ∆-modules

0→ X(T ∗)→ A(L)→ A(L)→ 0,

we obtain the exact sequence

(42) 0→ X(T ∗)∆ → A(L)∆ → A(K)→ H1(∆, X(T ∗)).

We also have the exact sequence of ∆-modules

0→ A(OL)→ A(L)→ Hom (X(T ),Z)→ 0,

which gives rise to a further exact sequence

(43) 0→ A(OL)
∆ → A(L)∆ → Hom (X(T ),Z)∆ → H1(∆,A(OL)).

It is then easy to see that assertion (1) of the lemma follows on applying (42), (43), and
the following claims (i), (ii), and (iii), for both the abelian varieties A and A′:-

(i). H1(∆, X(T ∗)) is a finite group whose order is prime to p.

(ii). H1(∆,A(OL)) is a finite group whose order is prime to p.

(iii). The canonical map Hom (X(T ),Z)∆ → Hom (X(T )∆,Z) is injective with finite
cokernel of order prime to p.

We now prove these three claims, beginning with (i). Let ∆1 ⊂ ∆ denote the kernel
of the map ∆→ Aut(X(T ∗)). Then the order of ∆/∆1 is prime to p by Lemma 2.14 (2).
We have the exact sequence

0→ H1(∆/∆1, X(T ∗))→ H1(∆, X(T ∗))→ H1(∆1, X(T ∗)).

But H1(∆1, X(T ∗)) = Hom (∆1, X(T ∗)) = 0, and H1(∆/∆1, X(T ∗)) is finite and of order
prime to p, and so (i) follows. It is also clear that (iii) follows from the fact that the order
of the image of ∆ in Aut(X(T )) is prime to p. Hence we are left to establish the more
delicate claim (ii). We first prove that

(iv). H1(∆,A(kL)) is a finite group of order prime to p.

Let ∆0 ⊂ ∆ be the inertial subgroup, so that the order of ∆0 is prime to p. In view of
the exact sequence

0→ H1(Gal(kL/kK),A(kL)
∆0)→ H1(∆,A(kL))→ H1(∆0,A(kL)),
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in which H1(∆0,A(kL)) is of order prime to p, it is suffices to prove that the left hand
group in this sequence also has order prime to p. Now we have an injection

H1(Gal(kL/kK),A(kL)
∆0)→ H1(Gal(k̄K/kK),A(k̄K)∆0) = Coker (1− ϕkK

; A(k̄K)∆0).

Since A(k̄K) is p-divisible and the order of ∆0 is prime to p, A(k̄K)∆0 is also p-divisible.
Now Ker (1−ϕkK

; A(k̄K)∆0) is a subgroup of A(kL)
∆0 and hence is finite. This shows that

the map 1− ϕkK
: A(k̄K)∆0 → A(k̄K)∆0 is surjective, proving (iv). Next we establish the

following assertion:-

(v). Assuming p = char(kK), we have H1(∆,A(mi
L)/A(mi+1

L )) = 0 for all i ≥ 1, where
A(mi

L) = Ker (A(OL)→ A(OL/m
i
L)).

We have a canonical isomorphism of ∆-modules

(44) A(mi
L)/A(mi+1

L ) ≃ mi
LLie(A)/mi+1

L Lie(A) (i ≥ 1).

Hence it is sufficient to prove that

(45) H1(∆,mi
LLie(A)/mi+1

L Lie(A)) = 0.

Let V be the ∆0-fixed subgroup of mi
LLie(A)/mi+1

L Lie(A). Then

H1(∆,mi
LLie(A)/mi+1

L Lie(A)) ≃ H1(Gal(kL/kK), V ).

But any kL-vector space of finite dimension n endowed with a semi-linear action of
Gal(kL/kK) is isomorphic to knL because of the well known fact thatH1(Gal(kL/kK), GLn(kL)) =
{1}. By applying this to V , and noting again that H1(Gal(kL/kK), kL) = 0, we conclude
that H1(Gal(kL/kK), V ) = 0. This completes the proof of (v). Finally, to deduce (ii),
we observe that, when p = char(kK), (ii) follows from immediately from (iv) and (v).
When ℓ = char(kK) is distinct from p, (ii) is a consequence of (iv) and the fact that
Ker (A(OL) → A(kL)) is a pro-ℓ group. This completes the proof of (ii), and so also of
(1).

We now turn to assertion (2). In the commutative diagram

T ′ φ′

→ T
ψ′ ↓ ↓ ψ

(T ′)∗
φ∗

−→ T ∗,

as the degrees of ψ, ψ′ are prime to p, the vertical arrows induce an isomorphism from
the kernel of the upper horizontal arrow to the kernel of the lower horizontal arrow. This
proves that

Coker (X(T ∗)∆ φ∗

→ X((T ′)∗)∆) ≃ Coker (X(T )∆ φ′

→ X(T ′)∆).

Hence

b+ c = ordpχ(X(T ′)∆ φ
→ X(T )∆) + ordpχ(X(T )∆ φ′

→ X(T ′)∆)
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= ordpχ(p : X(T )∆ → X(T )∆) = t(v).

For the proof of (3), let ∆0 ⊂ ∆ be the inertia subgroup as above, and let W be
the p-primary subgroup of A(k̄K)∆0 . Then W is a divisible Zp-module of cofinite type,
the map 1 − ϕkv is surjective, and the p-primary subgroup of A(kL)

∆ is the kernel of
1−ϕkK

: W → W . Let Tp(W ) be the Tate module of W and let Vp(W ) = Qp⊗Zp Tp(W ).
Then the usual snake lemma argument shows that

ordp ♯(A(kL)
∆) = ordp det(1− ϕkK

: Vp(W )→ Vp(W )).

But the right hand side does not change if we replace A by A′, because we have an isogeny
from A to A′. This completes the proof.

Lemma 2.20. Let the assumption and the notation be as in Lemma 2.19, and assume
that v divides p. Then:-

(1)
ordp♯((Lie(A)⊗OL

kL)
∆) ≡ ordp♯((Lie(A′)⊗OL

kL)
∆) mod 2.

(2) Define χ(expA) as follows. Take a ∆-stable subgroup U of Lie(A) of finite index such
that the exponential map U → A(OL) is defined, and let

(46) χ(expA) := χ(U∆ exp
→ A(OL)

∆) · [Lie(A)∆ : U∆]−1

noting that χ(expA) is independent of the choice of U . We have

χ(expA) = ♯(A(kL)
∆) · ♯((Lie(A)⊗OL

kL)
∆)−1,

and similarly for A′.

(3) ordpχ(expA) ≡ ordpχ(expA′) mod 2.

(4) ordpχ(A(OL)
∆ φ
−→ A′(OL)

∆) ≡ ordpχ(Lie(A)∆ φ
−→ Lie(A′)∆) mod 2.

(5) χ(Lie(A)∆ φ
−→ Lie(A′)∆) = ♯(Lie(Cf,OL

)∆).

(6) Let n = ordp♯(Lie(Cf,OL
)∆). Then (−1)n = χC,v(−1)χC,v,crys(−1).

Here, in connexion with (5), we recall that Lie(Cf,OL
) is defined as follows. For a finite

flat commutative scheme P over a commutative ring R such that p : P → P is the zero
map, let

Lie(P ) = Ker (P ((R/pR)[x]/(x2))→ P (R/pR))

where x is an indeterminate.

Proof. We prove Lemma 2.20 except for part (6), whose proof will be given in the Ap-
pendix. To establish (1), let D be the covariant Dieudonné module of Ap∞ ⊗OL

kL. Then

Lie(A)⊗OL
kL ≃ D/VD,
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where V : D → D is the usual V -operator of the Dieudonné module. We have H1(∆, D) =
0 by the method in the proof of (45). Thus

(Lie(A)⊗OL
kL)

∆ ≃ (D/VD)∆ ≃ D∆/V D∆,

whence it follows easily that

ordp ♯((Lie(A)⊗OL
kL)

∆) = ordp det(V : Qp ⊗Zp D → Qp ⊗Zp D).

The right hand side does not change when A is replaced by A′ because we have an isogeny
from A to A′. Assertion (2) follows from the fact that for a sufficiently large i, expA
induces an isomorphism from mi

LLie(A) onto the kernel of the surjective homomorphism
A(OL)→ A(OL/m

i
L), and from (44). Part (3) follows from (1), (2), and Lemma 2.19, (3).

Assertion (4) follows from (3) and the equality

χ(expA) · χ(A(OL)∆ → A′(OL)
∆) = χ(expA′) · χ(Lie(A)∆ → Lie(A′)∆).

Finally, (5) follows from the exact sequence

0→ Lie(A)→ Lie(A′)→ Lie(Cf,OL
)→ 0

which, in turn, arises from the exact sequence

0→ Cf,OL
→ A→ A′ → 0.

2.21. We can at last prove the formulae for (−1)h(v) given in Proposition 2.8 (2),(3),
where v is any finite place of F . By (1) and (2) of Lemma 2.19, we have h(v) ≡ t(v) + a
mod 2 with a as in Lemma 2.19 (1). Thus it is sufficient to prove that a ≡ 0 mod 2 when
v does not divide p, and (−1)a = χC,v(1)χC,crys(−1) when v divides p. Suppose first that
v does not divide p. Since the surjections A(OL) → A(kL) and A′(OL) → A′(kL) induce

isomorphisms on the pro-p components, we have a = ordp χ(A(kL)
φ
−→ A′(kL)), and this

is zero by Lemma 2.19 (3). Suppose next that v divides p. Then a ≡ ordp ♯(Lie(Cf,OL
)∆)

mod 2 by Lemma 2.20 (4) (5), whence

(−1)a = χC,v(−1)χC,v,crys(−1)

by Lemma 2.20 (6). This completes the proof.

3 Background from Iwasawa theory

The aim of this section is to collect together a number of results, all of which are essentially
well known. However, as they will be used repeatedly later, we wish to set them out clearly
in the form in which they will be needed.
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We begin with an elementary result from K-theory. Quite generally, assume that H
is any compact p-adic Lie group satisfying:- (i) H has no element of order p, (ii) H has a
pro-p open normal subgroup H ′ such that ∆ = H/H ′ is a finite abelian group of exponent
p − 1. Since H ′ is pro-p, and ∆ has order prime to p, a well-known result from group
theory shows that H is in fact the semi-direct product of its normal subgroup H ′ with a
subgroup D isomorphic to ∆. Further, as H has no element of order p and ∆ is finite of
order prime to p, the rings Λ(H) and Zp[∆] both have finite global dimension. We can
therefore identify in both cases, the K0 of these rings with the Grothendieck group of the
category of finitely generated modules. As H ′ is pro-p, it is well known that the map

(47) K0(Λ(H))→ K0(Zp[∆])

which is given, for any finitely generated Λ(H)-module M , by

[M ] 7→ Σ
i≥0

(−1)i [Hi(H
′,M)]

is an isomorphism (see [8, Lemma 4.1]). Put

∆̂ = Hom(∆,Z×
p ).

Each χ in ∆̂ gives rise to a ring homomorphism from Zp[∆] to Zp, whence we obtain an
isomorphism of rings

(48) Zp[∆] ≃
∏

χ∈∆̂

Zp,

which, in turn, gives an isomorphism

(49) K0(Zp[∆]) ≃ ⊕
χ∈∆̂

Z.

Composing (47) and (49), we obtain an isomorphism

(50) l∆ : K0(Λ(H)) ≃ ⊕
χ∈∆̂

Z.

On the other hand, since H ′ is pro-p and has no elements of order p, the ring Λ(H ′) is a
Noetherian integral domain, and hence it has a skew field of quotients which we denote
by Q(Λ′). If M is a finitely generated Λ(H)-module, we recall that

rankΛ(H′)(M) = dimQ(Λ′)(Q(Λ′)⊗Λ(H′) M).

Lemma 3.1. Let M be a finitely generated Λ(H)-module and write l∆([M ]) = (nχ(M)),
where l∆ is the isomorphism (50). Then

(51) rankΛ(H′)(M) = Σ
χ∈∆̂

nχ(M).
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Proof. Since H ′ is pro-p, and has no element of order p, it is well known that

rankΛ(H′)(M) = Σ
i≥0

(−1)i rankZpHi(H
′,M).

For each χ in ∆̂ and each Zp[∆]-module R, write R(χ) for the χ-component of R. Plainly,

nχ(M) = Σ
i≥0

(−1)i rankZp Hi(H
′,M)(χ),

and the assertion (51) follows immediately.

We continue to assume thatH satisfies the conditions (i) and (ii) given at the beginning
of this section. Suppose now that we are given an arbitrary Artin representation

ρ : H → GLdρ(O),

where O is the ring of integers of some finite extension of Qp. We often write Wρ for Odρ ,
endowed with the left action of H given by ρ. We define the Akashi homomorphism

hρ : K0(Λ(H))→ Z

by

(52) hρ([N ]) =
∑

i≥0

(−1)irankO (Hi(H, twρ(N))),

where twρ(N) = Wρ ⊗ N with the diagonal action of H . On the other hand, we have

the isomorphism l∆ given by (50), and for each χ in ∆̂, let Pχ be a projective Λ(H)-
module such that l∆([Pχ]) is the vector with 1 in the χ-th component and 0 elsewhere.
For example, we could take Pχ = Λ(H)eχ, where eχ is the idempotent of χ in Zp[D]. We
define mχ(ρ) = hρ([Pχ]) for each Artin representation ρ of G. Plainly, we then have

(53) hρ([N ]) =
∑

χ∈∆̂

mχ(ρ)nχ,

where l∆([N ]) = (nχ). The following lemma gives a useful alternative expression for these
integers mχ(ρ). Let k denote the residue field of O and

ρ̃ : H → GLdρ(k)

be the reduction of ρ modulo the maximal ideal. We write ρ̃ss for the semisimplification
of ρ̃.

Lemma 3.2. The representation ρ̃ss of H is trivial on H ′ and so gives a representation
of ∆. Further, we have ρ̃ss = ⊕

χ∈∆̂

mχ−1(ρ)χ̃, where χ̃ denotes the reduction of χ modulo

p.
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Proof. To prove the first assertion, let θ be any irreducible representation of H in a finite
dimensional F̄p vector space Vθ over F̄p. Thus Vθ is a simple F̄p[[H ]]-module, and hence it
is annihilated by the Jacobson radical of this ring. In particular, Vθ is annihilated by the
kernel of the natural surjection from F̄p[[H ]] to F̄p[∆] because H ′ is pro-p. Thus Vθ is an

irreducible F̄p[∆]-module, and hence θ = χ̃ for some χ ∈ ∆̂. Thus ρ̃ss must factor through
∆, proving the first assertion.

Next, noting that p lies in the Jacobson radical of Λ(H) and again using that H ′ is
pro-p, we have the isomorphism

η : K0(Λ(H)) ≃ K0(Fp[∆]),

given explicitly by mapping the class [P ] of a projective module P to [(P/pP )H′]. Given
any representation φ : ∆→ Aut(Vφ), where Vφ is a finite dimensional Fp-vector space Vφ,
we can also define a map

rφ : K0(Fp[∆])→ Z

by
rφ([W ]) = dimFp(Vφ ⊗W )∆.

For each χ in ∆, let Wχ denote the Fp -vector space of dimension 1 on which ∆ acts via
χ. Plainly, we have

rχ1
([Wχ2

]) = 1 if χ1χ2 = 1 and = 0 if χ1χ2 6= 1.

Writing ρ̃ss =
∑

χ∈∆̂

aχ(ρ)χ̃, it follows that

rρ̃ss([Wχ]) = aχ−1(ρ).

On the other hand, it is readily verified that

rρ̃ss = hρ ◦ η
−1.

But clearly (hρ ◦ η
−1)([Wχ]) = mχ(ρ) and the proof of the lemma is complete.

We now discuss some important results about Selmer groups of elliptic curves and
their Artin twists. Suppose now that F is a finite extension of Q, and write F cyc for the
cyclotomic Zp-extension of F . Define a Galois extension F∞ of F to be an admissible
p-adic Lie extension if the following conditions are satisfied:- (i) G = Gal(F∞/F ) is a
p-adic Lie group having no element of order p, (ii) only finitely many primes of F ramify
in F∞, and (iii) F∞ contains the cyclotomic Zp-extension F cyc of F . Suppose now that
we are given an admissible p-adic Lie extension F∞ of F . We define

(54) H = Gal(F∞/F
cyc),

but we drop the additional assumptions on H made earlier in this section. Since H
has no elements of order p by hypothesis, a wellknown theorem of Lazard-Serre [41]
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asserts that, for all finitely generated Λ(H)-modules M, we have Hi(H,M) = 0 when i is
strictly greater than the dimension of G. As in [8], MH(G) will denote the category of all
finitely generated Λ(G)-modules M such that M/M(p) is finitely generated over Λ(H).
Throughout the remainder of this paper, E will denote an elliptic curve defined over F .

We suppose that we are given an Artin representation

ρ : G→ GLdρ(O),

where O is the ring of integers of some finite extension of Qp. Let

hρ : K0(Λ(H))→ Z

be the homomorphism defined by (52). If L is any algebraic extension of F , we write
S(E/L) for the Selmer group of E over L, and X(E/L) = Hom (S(E/L),Qp/Zp) for its
Pontryagin dual. Moreover, we write

(55) Y (E/L) = X(E/L)/X(E/L)(p).

Assume now that E has potential good ordinary reduction at all primes v of F dividing
p. Then it is conjectured [8] that we always have

(56) X(E/F∞) ∈MH(G).

Assuming this conjecture, we now explain how to compute hρ([Y (E/F∞)]) in terms of
invariants attached to E and ρ over F cyc. To this end, let T denote any fixed finite set
of primes of F which is so large that it contains (i) all primes dividing p, (ii) all primes
where E has bad reduction, and (iii) all primes which ramify in F∞. We write FT for
the maximal extension of F which is unramified outside T and the archimedean primes
of F . We now recall the definition of Greenberg’s twisted Selmer group S(twρ(E)/L) for
each extension L of F contained in F∞ (see [22]). When ρ is the trivial representation
of dimension 1, it is well known that (i) the classical Selmer group as defined in §2 is a
subgroup of Greenberg’s Selmer group of finite index when L = F , and (ii) the two Selmer
groups coincide whenever L contains F cyc. As always, Greenberg’s Selmer group will be
a subgroup of H1(Gal(FT/L),Wρ⊗Zp Ep∞), specified by local conditions at the primes of
L above T ; here Wρ denotes a free O-module of rank dρ realizing ρ. We now describe
these local conditions. If w is a place of L, we write Lw for the union of the completions
at w of all finite extensions of F contained in L. If w does not divide p, let

λ(w) : H1(Gal(FT/L),Wρ ⊗Zp Ep∞)→ H1(Lw,Wρ ⊗Zp Ep∞)

denote the usual restriction map. Suppose next that v is a place of F dividing p, and let
Iv be the inertial subgroup of Gal(F̄v/Fv). Since E has potential good ordinary reduction
at v, it is well-known [9, p. 15] that there exists a canonical exact sequence of divisible
Gal(F̄v/Fv)-modules

(57) 0→ Cv → Ep∞ → Dv → 0,
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which is characterized by the fact that (i) Cv has Zp-corank equal to 1, and (ii) Iv acts
on Dv via a finite quotient; here Iv is the inertia group at v. Tensoring (57) over Zp with
Wρ, we obtain the exact sequence of Gal(F̄v/Fv)-modules

(58) 0→Wρ ⊗Zp Cv → Wρ ⊗Zp Ep∞ →Wρ ⊗Zp Dv → 0.

Since ρ factors through a finite quotient of G, it is plain that again Iv will act onWρ⊗ZpDv

via a finite quotient. If w is a place of L dividing p, we define

λw : H1(Gal(FT/L),Wρ ⊗Zp Ep∞)→ H1(Lw,Wρ ⊗Zp Dv)

to be the composition of the restriction map followed by the map fromH1(Lw,Wρ⊗ZpEp∞)
to H1(Lw,Wρ ⊗Zp Dv) induced by (57). We can now define

(59) S(twρ(E)/L) = ∩
w|T

Ker λw,

where w runs over all places of L lying above T . We note that S(twρ(E)/L) has a natural
structure as an O-module, and we define

(60) X(twρ(E)/L) = Hom O(S(twρ(E)/L),P/O),

where P denotes the quotient field of O. We also put

Y (twρ(E)/L) = X(twρ(E)/L)/X(twρ(E)/L)(p).

Assume now that ρ is irreducible, and write F for any finite Galois extension of F such
that ρ factors through Gal(F/F ).

Definition 3.3. We define sE,ρ to be the number of copies of the representation Wρ⊗O Q̄p

occurring in the finite dimensional Q̄p-representation of Gal(F/F ) given by X(E/F)⊗Zp

Q̄p.

Lemma 3.4. For each Artin representation ρ of G, we have

(61) twρ(X(E/F∞)) = X(twρ̂(E)/F∞),

where ρ̂ is the contragredient representation. Moreover, if ρ is irreducible, we have

(62) sE,ρ = rankO(Y (twρ(E)/F )).

Proof. If M is any Zp-module, write MO = M ⊗Zp O. Since ρ factors through a finite
quotient of G, we have

S(twρ̂(E)/F∞) = S(E/F∞)O ⊗O Wρ̂.

Hence

X(twρ̂(E)/F∞) = HomO(Wρ̂, X(E/F∞)O) = Hom O(Hom O(Wρ,O), X(E/F∞)O).
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But as Wρ is a free O-module, by [5, Proposition 5.2], the module on the right above can
be identified with

Hom O(O, X(E/F∞)O)⊗O Wρ = twρ(X(E/F∞)),

thereby proving (61).
Suppose next that ρ is irreducible and factors through a finite Galois extension F of

F , and put

∆ = Gal(F/F ), W ′
ρ = Wρ ⊗O Q̄p, A = Y (twρ(E)/F)⊗O Q̄p.

An entirely similar argument to the one given above shows that

A = Hom Q̄p
(W ′

ρ, Y (E/F)⊗Zp Q̄p).

On the other hand, the restriction map on cohomology gives rise to an isomorphism of
Q̄p-vector spaces

Y (twρ(E)/F )⊗O Q̄p ≃ A∆ = A∆

where the last displayed equality is true by the semi-simplicity of the ∆-action. Hence

Y (twρ(E)/F )⊗O Q̄p ≃ Hom Q̄p[∆](W
′
ρ, A),

and the last assertion (62) now follows from Schur’s lemma. Indeed, since ρ is irreducible,
Schur’s lemma shows that Hom Q̄p[∆](W

′
ρ,W

′
ρ) is Q̄p.

To proceed further, we must impose the following additional assumptions on our admis-
sible p-adic Lie extension F∞ of F , which are well known to be true for the extensions con-
sidered later in the paper. For each finite prime v of F cyc, we write Hv = Gal(F∞,v/F

cyc
v )

for the decomposition group of some fixed prime of F∞ above v.

Hypothesis H1. For every open subgroup H ′ of H , H i(H ′, Ep∞(F∞)) is finite for all
i ≥ 1.

Hypothesis H2. For each prime v of F cyc dividing p, and each open subgroup H ′
v of Hv,

H i(H ′
v, Dv(F∞,v)) is finite for all i ≥ 1, where Dv is given by the exact sequence (57).

We remark that, since E has potential good reduction at primes of F above p, Imai’s
theorem shows that the group H0(H ′, Ep∞(F∞)) is finite. Write P (F cyc) for the set of
primes of F cyc which do not divide p, and whose inertial subgroups in Gal(F∞/F

cyc) are
infinite.

Theorem 3.5. Let F∞/F be an admissible p-adic Lie extension, with p an odd prime.
Assume that E has potential good ordinary reduction at all primes v of F dividing p and
that Hypotheses H1 and H2 are valid. Further assume that X(E/F∞) ∈ MH(G). Then
for all Artin representations ρ of G, we have that Hi(H, twρ(Y (E/F∞))) is finite for all
i ≥ 1, and

hρ([Y (E/F∞)]) = rankO(Y (twρ̂(E)/F cyc)) +
∑

v

corankO(H1(Hv, Ep∞(F∞,v)⊗Wρ̂)),

where the sum on the right is taken over all places of F cyc lying in P (F cyc).
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Proof. The proof is very similar to the arguments given in [10] and hence we omit the
details.

Lemma 3.6. Assume v in P (F cyc), and write Jv for the absolute Galois group of F cyc
v .

Then
H1(Hv, Ep∞(F∞,v)⊗Wρ̂) = H1(Jv, Ep∞ ⊗Wρ̂)

and its Pontryagin dual is H0(Jv, Tp(E)⊗Wρ).

Proof. The first assertion is true since the hypothesis that v is infinitely ramified in F∞

shows that Gal(F̄v/F∞,v) has no quotient of order divisible by p because F∞,v contains
the maximal tamely ramified p-extension of Fv. For the second assertion, we use the well
known fact that, for any finite Jv-module M of order prime to the residue characteristic of
v, H1(Jv,M) is dual to H0(Jv,M

D), where MD = Hom (M,µm) with m = #M. Taking
M = Epn ⊗Wρ, (n = 1, 2, · · · ), the result follows on passing to the limit over all n.

Let v be a place of F cyc such that ordv(jE) < 0. If E does not have split multiplicative
reduction at v, then it achieves split multiplicative reduction over a uniquely determined
quadratic extension of F cyc

v , which we denote by Lv. We then define χv to be either the
trivial character of Jv, or the quadratic character of Jv defining the extension Lv, according
as E does or does not have split multiplicative reduction at v. Let ωv : Jv → Z×

p be the
character giving the action of Jv on the group of all p-power roots of unity.

Lemma 3.7. Let v be any finite place of F cyc such that ordv(jE) < 0. Then

rankO(H0(Jv, Tp(E)⊗Wρ)) = corankO(H1(Jv, Ep∞ ⊗Wρ̂)) = 〈χvω
−1
v , ρv〉,

where 〈χvω
−1
v , ρv〉 denotes the multiplicity of χvω

−1
v occurring in the restriction ρv of ρ to

Jv.

Proof. By the theory of the Tate curve, we have the exact sequence of Jv-modules

0→Wχv(1)→ Tp(E)→Wχv → 0,

where Wχv denotes the free Zp-module of rank 1, on which Jv acts via χv. Let Lv denote a
fixed finite Galois extension of F cyc

v such that both χv and ρv factor through Gal(Lv/F
cyc
v ),

and write Jv for the absolute Galois group of Lv. Then, since E has split multiplicative
reduction over Lv, it follows from the theory of the Tate curve (cf. [12], p. 138) that we
have an isomorphism of Jv-modules

H0(Jv,Wχv(1)) = H0(Jv, Tp(E)),

whence, on tensoring both sides with Wρ and taking invariants under Jv, we obtain an
isomorphism of O-modules

H0(Jv,Wχv(1)⊗Wρ) = H0(Jv, Tp(E)⊗Wρ).

The assertion of the lemma is now clear because Jv acts on Wχv(1) ⊗ Wρ via a finite
quotient, and hence by semisimplicity its O-rank is equal to 〈χvω

−1
v , ρv〉.
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We next state an important result of Greenberg, which is proven in [23, Prop. 11.8],
and which generalizes earlier work of Greenberg and Guo [21]. We shall use this result
repeatedly in our subsequent arguments. If ρ is an irreducible Artin representation of G,
we recall that ρ is said to be orthogonal if Wρ admits a non-degenerate G-invariant sym-
metric bilinear form. An irreducible orthogonal Artin representation of G is automatically
self-dual.

Theorem 3.8. Assume that ρ is an irreducible orthogonal Artin representation of G such
that X(twρ(E)/F cyc) is Λ(ΓF )-torsion, where ΓF = Gal(F cyc/F ). Then

(63) sE,ρ ≡ λρ(E/F
cyc) mod 2,

where λρ(E/F
cyc) = rankO(Y (twρ(E)/F cyc)).

We end this section by stating the standard hypotheses for an elliptic curve E and
our admissible p-adic Lie extension F∞/F , which we will need to impose in much of the
remainder of the paper.

Hypothesis A1. E has potential good ordinary reduction at each place of F dividing p.

Hypothesis A2. X(E/F∞) belongs to the category MH(G).

We believe that Hypothesis A2 should always be a consequence of Hypothesis A1. This is
indeed true if there exists a finite extension F ′ of F contained in F∞ such that the Galois
group Gal(F∞/F

′) is pro-p and X(E/F ′cyc) is a finitely generated Zp-module. We also
note that Hypothesis A2 implies that X(twρ(E)/F cyc) is Λ(ΓF )-torsion for each Artin
representation ρ of G. Indeed, it is easily seen (cf. the proof of Lemma 5.3 of [8]) that
Hypothesis A2 implies that X(E/Lcyc) is Λ(ΓL)-torsion for each finite extension L of F
contained in F∞. If ρ is an Artin representation of G, we now take L to be a finite Galois
extension of F contained in F∞ such that ρ factors through Gal(L/F ). We then have

S(twρ(E)/Lcyc) = S(E/Lcyc)⊗O Wρ,

where, as earlier, Wρ denotes a free O-module of finite rank realizing ρ. As X(E/Lcyc) is
Λ(ΓL)-torsion, it follows that the same is true for X(twρ(E)/Lcyc). In particular, we see
that X(twρ(E)/F cyc) must be Λ(ΓF )-torsion, as claimed.

4 False Tate extension

Let E be an elliptic curve defined over a finite extension F of Q, and assume throughout
this section that p is an odd prime. Our goal is to strengthen the results of the Appendix
of [16], using a more K-theoretic approach, combined with Theorem 3.8. Unlike the
arguments in much of the remainder of the paper, we do not have to assume that our
elliptic curve E admits a p-isogeny over the base field F .

To define our false Tate extension, we fix an element α of F× and assume for the rest
of this section that it satisfies the following conditions:-

31



Hypotheses on α. (i) There exists a finite place v of F such that ordv(α) 6= 0, and (ii)
ordv(α) is not divisible by p for all finite places v of F where ordv(α) 6= 0, (iii) E does
not have additive reduction at any place v of F with ordv(α) 6= 0.

Define
Fn = F (µpn, α1/pn

), F∞ = ∪
n≥1

Fn.

Let F cyc denote the cyclotomic Zp-extension of F , and write

G = Gal(F∞/F ), H = Gal(F∞/F
cyc).

We also define

K = F (µp), Kcyc = F (µp∞), HK = Gal(F∞/K
cyc).

Note that HK is isomorphic to Zp, and is the maximal pro-p subgroup of H . We shall
also need to consider the extensions of F defined by

Ln = F (xn), L∞ = ∪
n≥1

Ln

where xn := α1/pn
denotes some fixed pn-th root of α such that xpn+1 = xn for all n ≥ 1.

It is also covenient to put L0 = F. Our hypotheses on α above imply that the degree
[Ln : F ] = pn for all n ≥ 0. Put

∆ = Gal(K/F ), e = #(∆).

Since e is prime to p, we have the identifications

∆ = Gal(Kcyc/F cyc) = Gal(F∞/L
cyc
∞ )

under the restriction maps. As in §3, we write X(E/L) for the Pontryagin dual of Green-
berg’s Selmer group, and put Y (E/L) := X(E/L)/X(E/L)(p).

Put HLm = Gal(F∞/L
cyc
m ). We then have the homomorphism

hLm : K0(Λ(H))→ Z

defined by
hLm([M ]) = Σ

i≥0
(−1)i rankZp Hi(HLm,M).

Proposition 4.1. Assume M is a finitely generated Λ(H)-module, and let (nχ(M)) be
the image of the class [M ] under the isomorphism (47). Then, for all m ≥ 1, we have

(64) hLm([M ]) = n1(M) + (pm − 1)e−1 Σ
χ∈∆̂

nχ(M),

where e = #(∆).
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Proof. We recall that we identify ∆ with the subgroup Gal(F∞/L
cyc
∞ ) of H . We put

R = Zp[∆], and can in this way view R as a subring of Λ(H). For each χ ∈ ∆̂, let
Zp(χ) denote Zp with the action of ∆ given by χ. Then Λ(H)⊗R Zp(χ) maps under the
isomorphism (50) to the vector with component 1 at χ and 0 elsewhere (in other words, in
terms of the discussion after (52), we can take Pχ = Λ(H)⊗RZp(χ)). Since Λ(H)⊗RZp(χ)
is a projective Λ(HLm)-module, we have Hi(HLm,Λ(H)⊗RZp(χ)) = 0 for all i ≥ 1. Hence,
to prove the proposition, it suffices to show that H0(HLm ,Λ(H) ⊗R Zp(χ)) has Zp-rank
equal to (pm − 1)e−1 or 1 + (pm − 1)e−1, according as χ 6= 1 or χ = 1 (cf. (53)).

We first observe that, by the associativity of the tensor product, we have

H0(HLm ,Λ(H)⊗R Zp(χ)) = Um ⊗R Zp(χ),

where Um is the induced module Zp ⊗Λ(HLm ) Λ(H). But Um is the free Zp-module on the
set of right cosets HLm \H endowed with the natural right action of ∆ = Gal(F∞/L

cyc
∞ ).

There is a bijection from HLm \H to µpm defined by mapping HLmσ to σ(xm)/xm, where
xm = α1/pm

. Moreover, this is a bijection of sets with a right ∆-action provided we let ∆
act on µpm via the inverse of its usual action. It is therefore plain that every orbit of ∆
acting on HLm \H , apart from the singleton {HLm}, has (p − 1)e−1 elements. For each
orbit Z of ∆ acting on HLm \H , define

ΦZ = ( ⊕
σ∈Z

Zpσ)⊗R Zp(χ)

so that Um ⊗R Zp(χ) is the direct sum of the ΦZ for Z varying over all the orbits. If Z
has one element, it is clear that ΦZ = Zp if χ = 1 and ΦZ = 0 otherwise. If Z has more
than one element, then the above remarks show that ΦZ = W ⊗R Zp(χ), where W is a
free R-module of rank 1, and so it is plain that ΦZ is a free Zp-module of rank 1. This
completes the proof.

We remark that F∞/F is an admissible p-adic Lie extension as defined in the previous
section, and it is well-known that it satisfies Hypotheses H1 and H2 (see [26]). We suppose
for the rest of this section that Hypotheses A1 and A2 are valid for E over F∞. It is easy to
see (cf. [8, Lemma 5.3]) that Hypotheses A1 and A2 imply that, for each finite extension
J of F contained in F∞, X(E/Jcyc) is a Λ(Gal(Jcyc/J))-torsion module.

We define

(65) τ = rankΛ(HK) Y (E/F∞), λm = rankZp Y (E/Lcyc
m ).

We also recall that sE/Lm = rankZp X(E/Lm).

Theorem 4.2. Assume Hypotheses A1 and A2. Then for all integers m ≥ 1, we have (i)
λm−λm−1 = pm−1(p− 1)e−1τ ; (ii) if (p− 1)e−1 is odd, then sE/Lm ≡ sE/Lm−1

+ τ mod 2;
(iii) If (p− 1)e−1 is even, then sE/Lm ≡ sE/Lm−1 mod 2.

Proof. We first establish (i). We write Σ for the set of all places v of F cyc which do not
divide p and for which ordv(α) 6= 0. Since ordv(α) 6≡ 0 mod p by hypothesis, each v in Σ
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is totally ramified in Lcyc
m for all m ≥ 1. We write v(m) for the unique prime of Lcyc

m lying
above v, and Jv(m) for the absolute Galois group of Lcyc

m . We claim that

(66) rankZp(Tp(E)Jv(m)) is constant for all m ≥ 1.

Note that assuming (66) and applying Lemma 3.1 and Proposition 4.1 to M = Y (E/F∞),
we conclude from Theorem 3.5 that

(67) λm − λm−1 = (pm − pm−1)e−1τ,

which is the assertion (i). We now prove (66). Suppose first that E has good reduction
at v. Then the action of Jv on Tp(E) is unramified, and hence the image of Jv(m) in
Aut(Tp(E)) is independent of m, since v(m)/v is totally ramified. Next assume that E
has multiplicative reduction at v. Then, writing Iv(m) for the inertial subgroup of Jv(m),
we know that Tp(E)Iv(m) has Zp rank 1 and is independent of m. As the action of Jv(m) is
unramified, and v(m)/v is totally ramified, it follows again that Tp(E)Jv(m) is independent
of m. The proof of the theorem is now complete since assertions (ii) and (iii) follow by
combining assertion (i) with Theorem 3.8 for the trivial Artin representation of G.

Corollary 4.3. Assume Hypotheses A1 and A2, and that both (p− 1)e−1 and τ are odd.
Then, for all m = 1, 2, · · · , we have

(68) sE/Lm ≥ m+ sE/F , sE/Fm ≥ pm − 1 + sE/K .

The proof relies on the following delicate group theoretic lemma.

Lemma 4.4. For all n ≥ 1, the group Gal(Fn/F ) has precisely one Qp-irreducible repre-
sentation, which does not factor through Gal(Fn−1(µpn)/F ), where F0 = F . The degree of
this representation is φ(pn).

Proof. Put Kn = F (µpn), and let An = Gal(Fn/Kn). Since H1(Gal(Kn/F ), µpn) = 0,
Kummer theory and our hypotheses on α show that An is cyclic of order pn, and that
the natural action of Gal(Kn/F ) on An via inner automorphisms is given by the char-
acter giving the action of Gal(Kn/F ) on µpn. It follows that Ln ∩ Kn = F , and that
Gal(Fn/F ) is a semi-direct product of Gal(Fn/Ln) and An. Using the arguments of
[40, §8.2]. one can then easily deduce the following explicit description of the set of all
Q̄p-irreducible representations of Gal(Fn/F ), which do not factor through Gal(F ′

n−1/F ),
where F ′

n−1 = Fn−1(µpn). Let Xn be the subset of Hom (An, µpn) consisting of all characters
of exact order pn, and writeMn for the set of Q̄p-representations of Gal(Fn/F ) obtained
from Xn by induction. It is shown in [40, Proposition 2.5] that (i) the φ(pn) representations
inMn are all irreducible, (ii) there are precisely φ(pn)/[Kn : F ] non-isomorphic represen-
tations amongst them, and (iii) every irreducible Q̄p-representation of Gal(Fn/F ), which
does not factor through Gal(F ′

n−1/F ), is in Mn. Put ∆n = Gal(Qp(µpn)/Qp), which
we can identify with Gal(Q(µpn)/Q). Let Dn be the subgroup of ∆n corresponding to
Gal(Q(µpn)/Q(µpn)∩ F ), and let Φn be the fixed field of Dn. Now the representations in
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Xn can be realized over Qp(µpn), and so the same is true for the representations in Mn.
In fact, since Kummer theory shows that the conjugation action of Gal(Fn/Ln) on An is
given by the cyclotomic character, it follows from the proof of Proposition 25 of [40] that
each representation in Mn can be realized over the field Φn. Also, ∆n acts transitively
onMn because it does on Xn. As Mn contains precisely φ(pn)/[Kn : F ] non-isomorphic
irreducible Q̄p-representations, and [Φn : Qp] = φ(pn)/[Kn : F ], we conclude that, on tak-
ing the direct sum of one representation from each isomorphism class in Mn, we obtain
an irreducible Qp-representation of Gal(Fn/F ) of degree φ(pn), which we denote by Vn in
the rest of this section. Moreover, our arguments show that there is no other irreducible
Qp-representation which does not factor through Gal(Fn−1(µpn)/F ). This completes the
proof.

We now prove the corollary. The first assertion of the corollary is an immediate
consequence of Theorem 4.2 (ii). To prove the second assertion, we define

U = X(E/K)⊗Zp Qp, Wn = X(E/Fn)⊗Zp Qp.

Thus U and Wn are finite dimensional Qp-representations of Gal(Fn/F ). As above, let Vn
be the Qp-irreducible representation of Gal(Fn/F ), whose existence is proven in Lemma
4.4. We shall prove by induction on n, that

(69) Wn ⊃ U ⊕ V1 ⊕ · · · ⊕ Vn (n ≥ 1)

as Gal(Fn/F )-representations. Since Vn has dimension pn−1(p− 1), this will clearly prove
the second assertion of the corollary.

We shall use the following general observation. Let L1 and L2 be finite extensions of
F such that L2 is Galois over L1 with Galois group Θ. Then, as Qp-representations of ∆,
we have isomorphisms

(70) (X(E/L2)⊗Zp Qp)
Θ = (X(E/L2)⊗Zp Qp)Θ = X(E/L1)⊗Zp Qp.

The first equality is clear because the action of Θ on the finite dimensional Qp-vector
space X(E/L2)⊗Zp Qp is semisimple. The second equality is induced by the dual of the
restriction map on cohomology. We first establish (69) for n = 1. We cannot have

W
Gal(F1/K)
1 = W1,

as Qp-representations of Gal(F1/F ). Indeed, if this were the case, then on taking invariants
under Gal(F1/L1) ≃ Gal(K/F ), it would follow that

X(E/L1)⊗Qp = X(E/F )⊗Qp.

This contradicts the first assertion of (68) for n = 1. Thus V1 must occur in W1 and
also, by semisimplicity U is a direct summand of W1 as a Gal(F1/F )-representation. This
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proves (69) for n = 1. Suppose now by induction that it is true for n− 1 with n ≥ 2, and
put F ′

n−1 = Fn−1(µpn). Then we cannot have

W
Gal(Fn/F ′

n−1)
n = Wn

as Qp-representations of Gal(Fn/F ). Indeed, if this were the case, then, on taking invari-
ants under Gal(Fn/Ln) ≃ Gal(F ′

n−1/Ln−1), it would follow that

X(E/Ln)⊗Qp = X(E/Ln−1)⊗Qp.

This again contradicts the first assertion of (68). Hence Vn must occur in Wn, and the
inductive proof of the corollary is complete.

We remark that T. Dokchitser and V. Dokchitser [18, Proposition 4.13] have estab-
lished Corollary 4.3 in much greater generality than we have here. In particular, their
method also applies when E has potential supersingular reduction at primes above p.

Proposition 4.5. Assume Hypotheses A1 and A2. Then the parity of τ = Λ(HK)-rank
of Y (E/F∞) is given by

τ ≡ sE/K + sE/K mod 2,

where sE/K is the number of primes v of K such that ordv(α) > 0 and E has split
multiplicative reduction at v.

Proof. Since H1(HK , Y (E/F∞)) is finite (see [8, Lemma 5.3]), we have

τ = rankZp(Y (E/F∞))HK
.

By Theorem 3.5, we conclude that

τ = rankZp(Y (E/Kcyc)) +
∑

v

rankZp Tp(E)Jv ,

where v runs over all places of Kcyc, which do not divide p, and for which ordv(α) 6= 0.
Again, Jv denotes the absolute Galois group of Kcyc

v . First, note that the number of
places of Kcyc above any finite prime of K must be odd because Kcyc/K is a pro-p
extension. Similarly, if u is any prime of K where E has multiplicative reduction, then E
has split multiplicative reduction at each prime of Kcyc above u, if and only if it has split
multiplicative reduction at u. We now proceed to show that rankZp Tp(E)Jv is odd if and
only if E has split multiplicative reduction at v.

SinceK contains µp, the action of Jv on Zp(1) is trivial. Suppose first that ordv(j(E)) <
0. By Lemma 3.7, we conclude that the Zp-rank of H0(Jv, Tp(E)) is the multiplicity of χv
occurring in the trivial representation of Jv, i.e. this Zp-rank is 0 or 1 according as E does
or does not have split multiplicative reduction at v. Next assume that ordv(j(E)) ≥ 0.
Then the image of Jv in Aut(Vp(E)) is finite. Hence the restriction of the Weil pairing

H0(Jv, Vp(E))×H0(Jv, Vp(E)) −→ Qp(1)
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gives a non-degenerate pairing. This shows that H0(Jv, Vp(E)) is endowed with a non-
degenerate alternating bilinear form, and hence has even dimension.

Finally, we note that Theorem 3.8 shows that

rank Zp(Y (E/Kcyc)) ≡ sE/K mod 2.

This completes the proof of the proposition.

We next establish an analogue of Theorem A.32 of the Appendix of [16]. For each
character χ of Gal(Fn/Ln) of exact order pn, write ρn,χ for the Q̄p-representation obtained
by inducing χ to Gal(Fn/F ). When e = [F : K] is odd, Gal(Fn/Ln) has no non-trivial
irreducible self-dual representation. When e = [F : K] is even, the irreducible self-dual
representations of Gal(Fn/F ) of dimension > 1 are given by the ρk,χ for 1 ≤ k ≤ n, and all
possible χ. Moreover, by the formula of V. Dokchitser given in the proof of the following
theorem, the value of w(E, ρn,χ) is independent of n and χ.

Theorem 4.6. Assume Hypotheses A1 and A2, and that (i) (p − 1)/e is odd, and (ii)
w(E/K) = (−1)sE/K . Then Y (E/F∞) has odd Λ(HK)-rank if and only if the root numbers
w(E, ρn,χ) = −1 for all n ≥ 1 and all characters χ.

Proof. Since (p − 1)/e is odd, the extension K/F is cyclic of even degree, and hence
contains a unique quadratic extension J of F . Let v be any prime of F which does not
divide p, and write Rv for the fixed field of the decomposition group of v for K/F . Thus
the number nv of primes of K above v is even if and only if J ⊂ Rv. In other words, nv is
even if and only if v splits in J . Let S be the set of primes v of F with ordv(α) > 0 and
E having multiplicative reduction at v (note that Hypothesis A1 shows that S does not
contain any prime above p). Let S1 be the subset of S consisting of all primes v in S such
that E has split multiplicative reduction at all places of K above v. Thus, recalling that
E does not have additive reduction at any prime which divides α, we have sE/K =

∑

v∈S1

nv.

If v lies in S and is inert in J , then E certainly has split multiplicative reduction at all
primes of K above v. Thus, writing S2 for the set of all v in S, which are inert in J , we
have S2 ⊂ S1. Moreover, nv is even for for v ∈ S \ S2. Hence we have

sE/K ≡
∑

v∈S2

1 mod 2,

and so by Proposition 4.5,

(71) τ ≡ sE/K +
∑

v∈S2

1 mod 2.

On the other hand, we have the following explicit formula for the root numbers w(E, ρn,χ),
which is valid under our assumption that (p−1)/e is odd (we are grateful to V. Dokchitser
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for kindly informing us of this result). For each place v of F , let qv denote the cardinality

of the residue field of v. Also, write
(

p

)

for the Legendre symbol of p. Then

(72) w(E, ρn,χ) = w(E/K)
∏

v∈S

(

qv
p

)

.

Let J ′ denote the unique quadratic extension of Q contained in Q(µp). Since (p− 1)/e is
odd, we have that J = FJ ′, and the restriction map gives an isomorphism from Gal(J/F )
onto Gal(J ′/Q). For v in S, let (v, J/F ) be its Artin symbol for the quadratic extension
J/F and note that the restriction of (v, J/F ) to J ′ is the Artin symbol of the norm
NF/Q(v) for the extension J ′/Q. Hence (v, J/F ) is the non-trivial element of Gal(J/F )

if and only if
(

qv
p

)

= −1. Comparing (71) and (72), and recalling our hypothesis that

w(E/K) = (−1)sE/K , the proof of the theorem is complete.

We next discuss the case when Y (E/F∞) has Λ(HK)-rank 1. The results in this case
are striking because Iwasawa theory enables us to prove that the lower bounds given in
Corollary 4.3 are exact for all n ≥ 1. If v is a prime of F where E has good reduction,
let Ẽv denote the reduction of E modulo v. We also write lv for the residue field of any
prime of K above v. Consider the following sets of primes v of F :-

P1 = {v | v ∤ p such that E has good reduction at v and Ẽv(lv)(p) 6= 0.}

P2 = {v |E has split multiplicative reduction at all primes w of K above v.}

Proposition 4.7. Assume Hypotheses A1 and A2. A necessary condition that Y (E/F∞)
has Λ(HK)-rank 1 is that ordv(α) = 0 for all v in P1. This condition is also sufficient if,
in addition, we assume that either (i) Y (E/Kcyc) has Zp-rank zero and ordv(α) > 0 for
precisely one prime v in P2 which is inert in Kcyc or, (ii) Y (E/Kcyc) has Zp-rank 1 and
ordv(α) = 0 for all primes v in P2.

Proof. The proof, which we omit, is entirely parallel to that of Proposition A.38 in [16,
Appendix].

Theorem 4.8. Assume Hypotheses A1, A2 and that (p − 1)/e is odd. Further assume
that Y (E/F∞) has Λ(HK)-rank 1. Then for all n ≥ 1, we have

(73) sE/Ln = n + sE/F , sE/Fn = pn − 1 + sE/K .

Proof. We first establish the theorem for the Galois extensions Fn of F . Put M =
X(E/F∞) and Hn = Gal(F∞/F

cyc
n ). Since H1(Hn,M) = 0 and Y (E/F∞) has Λ(HK)-

rank 1, it follows easily that

rankZpH0(Hn,M) = pn.
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On the other hand, a standard analysis of the fundamental diagram (see [26]) shows that

rankZpX(E/F cyc
n ) = rankZpH0(Hn,M)− δn

where δn denotes the number of primes v of F cyc
n dividing α and such that E has split

multiplicative reduction at v. It is clear from Proposition 4.7 that δn = 0 or 1, according
as X(E/Kcyc) has Zp-rank 1 or 0. Hence δn = 1− sE/K for all n ≥ 1, and thus

(74) rankZpX(E/F cyc
n ) = pn − 1 + sE/K (n ≥ 1).

But the restriction map from S(E/Fn) to S(E/F cyc
n ) has finite kernel, whence it follows

on combining (68) and (74) that

(75) sE/Fn = pn − 1 + sE/K (n ≥ 1),

as required.

We now consider the non-Galois extensions Ln of Q. Combining (69) with (75), we
conclude that

(76) X(E/Fn)⊗Zp Qp = U ⊕ V1 ⊕ · · · ⊕ Vn

as Qp-representations of Gal(Fn/F ). Hence

X(E/Ln)⊗Zp Qp = (U ⊕ V1 ⊕ · · · ⊕ Vn)
Gal(Fn/Ln).

On the other hand, the following results from group theory are readily verified by induction
on n = 0, 1, · · · . Put

Rn = Qp[Gal(Fn/F )]⊗Qp[Gal(Fn/Ln)] Qp,

where it is understood that Gal(Fn/Ln) acts trivially on Qp on the right hand side of this
tensor product. Then

Rn = Qp ⊕ V1 ⊕ · · ·Vn,

and, by Frobenius reciprocity,

dimQp(R
Gal(Fn/Ln)
n ) = n+ 1.

It follows that

(77) dimQp V
Gal(Fn/Ln)
i = 1 (1 ≤ 1 ≤ n).

Since
UGal(Fn/Ln) = X(E/F )⊗Zp Qp,

we conclude from (76) and (77) that

sE/Ln = n + sE/F (n ≥ 1).

This completes the proof of (73).
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Remark 4.9. Under the same hypotheses of Theorem 4.8, the proof given above shows
that for all n ≥ 1, a characteristic power series for X(E/F cyc

n ) is

panT p
n−1+sE/K (n ≥ 1),

for some integer an ≥ 0. Hence this module is semisimple at T = 0, in the sense that
the Zp-rank of H0(Gal(F cyc

n /Fn), X(E/F cyc
n )) is also equal to pn − 1 + sE/K , which is

the multiplicity of the zero at T = 0 of this characteristic power series. Here, as usual,
we have identified Λ(Gal(F cyc

n /Fn)) with Zp[[T ]] by mapping a topological generator to
1 + T . In particular, this semisimplicity implies that the canonical p-adic height pairing
on X(E/Fn)⊗Zp Qp is non-degenerate for all n ≥ 1.

Since the extension F∞/K
cyc is pro-p, the hypothesis that X(E/Kcyc) is a finitely

generated Zp-module automatically implies that X(E/F∞) belongs to MH(G).

Proposition 4.10. Assume (i) Hypothesis A1, (ii) X(E/Kcyc) is a finitely generated
Zp-module, (iii) (p − 1)/e is odd, (iv) E(K)(p) = 0, and (v) X(E/F∞) has Λ(HK)-rank
1. Then, for all n ≥ 1, S(E/Fn) is divisible.

Proof. Let jn denote the restriction map from S(E/Fn) to S(E/F cyc
n ). Now the proof

of Theorem 4.8 shows that jn maps the divisible subgroup S(E/Fn) onto the divisible
subgroup of S(E/F cyc

n ). By the theorem of Hachimori and Matsuno [25], our hypothe-
sis that X(E/Kcyc) is a finitely generated Zp-module implies that the same is true for
X(E/F cyc

n ) for all n ≥ 1. Moreover, Matsuno’s theorem [29] shows that X(E/F cyc
n ) is in

fact a free Zp-module, or equivalently that S(E/F cyc
n ) is divisible, for all n ≥ 1. . But

E(Fn)(p) = 0 since E(K)(p) = 0 and Fn/K is a p-extension, whence it follows that jn
is injective. Combining these assertions, it follows easily that S(E/Fn) is divisible for all
n ≥ 1, completing the proof.

We next show that our arguments yield a simple proof of the ρ-parity conjecture for
all absolutely irreducible self-dual Artin representations ρ of G having dimension > 1.
Recall from 3.3 that, for any irreducible Artin representation ρ of G, sE,ρ denotes the
number of copies of ρ occurring in X(E/L)⊗Zp Q̄p, where L is any finite Galois extension
of Q such that ρ factors through Gal(L/Q).

Theorem 4.11. Assume that (i) Hypotheses A1 and A2 are valid, (ii) (p − 1)e−1 is
odd, and (iii) w(E/K) = (−1)sE/K . Then, for all absolutely irreducible self-dual Artin
representations ρ of G with dimension > 1, we have w(E, ρ) = (−1)sE,ρ.

Proof. As remarked earlier, ρ must be equal to one of the representations ρn,χ, where n is
some positive integer, and χ is some character of Gal(Fn/Ln) of exact order pn. Let Vn be
the Qp-irreducible representation of Gal(Fn/F ) whose existence is proven in Lemma 4.4.
Since Vn ⊗Qp Q̄p is the direct sum of all conjugates of ρn,χ over Qp, it is clear that sE,ρn,χ

is equal to the number of copies of Vn occurring in X(E/Fn)⊗Zp Qp, and we denote this
number by an. In view of Lemma 4.4, we must have

X(E/Fn)⊗Zp Qp = (X(E/F ′
n−1)⊗Zp Qp)⊕ V

an
n ,
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where, as before, F ′
n−1 = Fn−1(µpn). Now take the subspaces fixed by Gal(Fn/Ln) on

both sides of this equality. Recalling that the restriction of Gal(Fn/Ln) to F ′
n−1 is equal

to Gal(F ′
n−1/Ln−1), we conclude that

X(E/Ln)⊗Zp Qp = (X(E/Ln−1)⊗Zp Qp)⊕ Z
an
n ,

where Zn is the subspace of all elements of Vn which are fixed by Gal(Fn/Ln). But, as
was shown in the proof of Theorem 4.8, Zn has Qp-dimension equal to 1. Thus we deduce
that

sE/Ln = sE/Ln−1 + an,

whence, by (ii) of Theorem 4.2, we conclude that τ ≡ an modulo 2, where, as before, τ
denotes the Λ(HK)-rank of Y (E/F∞). Thus the assertion of the theorem is now clear
from Theorem 4.6. This completes the proof.

In the next theorem, we assume for simplicity that the base field F is equal to Q. We
write Ψ for the group of all 1- dimensional characters of Gal(Q(µp∞)/Q).

Theorem 4.12. Assume that F = Q and that Hypotheses A1 and A2 are valid. Let
τ = Λ(HK)-rank of Y (E/F∞). Then for all absolutely irreducible Artin representations ρ
of G, we have

∑

ψ∈Ψ

sE,ρψ ≤ τ p/(p− 1).

Before giving the proof of the theorem, we make the following remark. For each abso-
lutely irreducible Artin representation ρ of G, let L(E, ρ, s) be the complex L-function of
E twisted by ρ. Since E/Q is now known to be modular, it follows from automorphic base
change that L(E, ρ, s) is entire. A refinement of the conjecture of Birch and Swinnerton-
Dyer then asserts that sE,ρ should be the order of the zero of L(E, ρ, s) at s = 1. Hence
our theorem suggests that, for every absolutely irreducible Artin representation ρ of G,
we have

∑

ψ∈Ψ

ords=1L(E, ρψ, s) ≤ τ p/(p− 1).

This uniform upper bound, which is independent of ρ, seems surprising from the point of
view of complex L-functions.

We now prove Theorem 4.12. Since F = Q, write ρn (n ≥ 1), for the representation
of Gal(Fn/Q) which is induced by any character of exact order pn of Gal(Fn/Kn) (these
representations do not depend on the choice of such a character). Let ρ0 denote the trivial
one dimensional representation of G and put F0 = Q(µp). Since F = Q, all absolutely
irreducible characters of G are of the form ρnψ for some ψ in Ψ and some integer n ≥ 0.
Moreover, the dimension of ρnψ is equal to φ(pn). Recall that λn = rankZp(Y (E/F cyc

n )).
Since all the representations ρnψ factor through some finite layer of the Zp-extension
F cyc
n /Fn, we have

(78)
∑

ψ∈Ψ

φ(pn)sE,ρnψ ≤ λn (n ≥ 0).
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On the other hand, let Hn = Gal(F∞/F
cyc
n ). By Theorem 3.5, we have

λn ≤ rankZp H0(Hn, Y (E/F∞)) = rankΛ(Hn)(Y (E/F∞)),

the last equation being true because H1(Hn, Y (E/F∞)) is finite. But since Hn has index
pn in H , it follows that

rankΛ(Hn)(Y (E/F∞)) = pn τ.

Thus λn ≤ pn τ and the assertion of the theorem now follows from the inequality (78).
This completes the proof of the theorem.

We now illustrate the results of this section by the elliptic curve

E = X1(11) : y2 + y = x3 − x2

with F = Q. Assume that p is a prime 6= 2, 11, and that α is a p-power free integer > 1.
Then w(E/K) =

(

p
11

)

, and Dokchitser’s formula (72) shows that w(E, ρn) = −1 for n ≥ 1
if and only if either

(79) 11 | α and p ≡ 3 mod 4, or (11, α) = 1 and
( p

11

)

= −1.

Suppose now that p is an odd prime of good ordinary reduction for E = X1(11) satisfying
(79). Then, by Corollary 4.3 and Theorem 4.6,

sE/Ln ≥ n, sE/Fn ≥ pn − 1 + sE/K (n ≥ 1),

provided X(E/F∞) belongs to MH(G). The work of [27] shows that X(E/Kcyc) is a
torsion Λ(Gal(Kcyc/K))-module for all good ordinary primes p 6= 2, and it is very probable
that X(E/Kcyc) is a finitely generated Zp-module for all such p. Whenever this last
assertion is true, X(E/F∞) does indeed belong to MH(G). However, in our present state
of knowledge, we can only verify this numerically for small primes p. For example, if
p = 3, then X(E/Kcyc) = 0 by the calculations of [16]. Taking α = 11, it follows from
Proposition 4.7 that X(E/F∞) has Λ(HK)-rank 1, and thus Theorem 4.8 shows that in
this case

sE/Ln = n, sE/Fn = 3n − 1 (n ≥ 1).

Now take p = 7. We are grateful to C. Wuthrich for the numerical computations in this
case which show that X(E/Kcyc) is a free Z7-module of rank 1. It may be of interest to
record here that Wuthrich found the following point P of infinite order in E(K), where
K = Q(µ7) and ζ denotes a primitive 7-th root of unity:-

P = (1 + ζ + ζ2 + ζ4,−ζ − ζ2 − ζ4).

It follows that X(E/F∞) belongs to MH(G) for all 7-power free α > 1, and hence for all
such α, we have

sE/Ln ≥ n, sE/Fn ≥ 7n (n ≥ 1).
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By Proposition 4.7, X(E/F∞) has Λ(HK)-rank 1 if and only if (α, 11) = 1 and no prime
divisor of α lies in the set P1, which is defined just before Proposition 4.7. In particular,
one verifies easily that 2 and 3 do not belong to P1, but 5 does. For example, there are
two primes v1 and v2 of Q(µ7) lying above 2 and the reduction of E modulo 2 has five
points in the residue fields of these primes. Hence if we choose the prime divisors of α to
be any non-empty subset of {2, 3, 7}, we conclude that X(E/F∞) has Λ(HK)-rank 1, and
so Theorem 4.8 shows that

sE/Ln = n, sE/Fn = 7n (n ≥ 1).

We remark that it does not seem easy numerically to find a point of infinite order in the
field L1 for any of these choices of α. Note finally that when p = 5, X(E/Kcyc) = 0
so that X(E/F∞) lies in MH(G) for all choices of α. However, Theorem 4.6 shows that
X(E/F∞) always has even Λ(HK)-rank. If α = 5, it is known [26] that X(E/F∞) = 0,
and

sE/Ln = sE/Fn = 0 (n ≥ 1).

If α = 11, X(E/F∞) has Λ(HK)-rank 4, and it is known that sE/L1
= sE/F1

= 0, but it is
unknown whether sE/Fn ≥ 1 for some n ≥ 1.

We end this section by remarking that our methods prove nothing about the rank of
the Mordell-Weil groups E(Ln) and E(Fn), since we cannot show that the p-primary part
of the Tate-Shafarevich groups of E/Ln and E/Fn are finite. However, in a remarkable
piece of work, Darmon and Tian have proven strong results in this direction [14] for the
case when F = Q, X(E/Kcyc) = 0, and X(E/F∞) has Λ(HK)-rank 1.

5 Rank calculations in the p-power division case

We now study the arithmetic of E over the p-adic Lie extension of F given by F∞ =
F (Ep∞). Thus G = Gal(F∞/F ) is a closed subgroup of Aut(Tp(E)) = GL2(Zp). For
simplicity, we shall assume that p ≥ 5.

Let Ω denote the intersection of G with the torsion subgroup of the centre Z×
p of

GL2(Zp). Fix any pro-p, open normal subgroup G′ of G, and define G to be the subgroup
of G generated by Ω and G′. Let F ′ be the fixed field of G′ and L be the fixed field of
G. In addition, let H ′ = H ∩G′. Note that H ′ is pro-p and has no element of order p, so
that Λ(H ′) has a skew-field of fractions and hence one can define the Λ(H ′)-rank of any
finitely generated Λ(H ′)-module. Also, we write Ω̂ = Hom(Ω,Z×

p ). If M is any finitely
generated Λ(G)-module, then we have the decomposition

M = ⊕
α∈Ω̂

M (α),

where M (α) is the Λ(G)-submodule consisting of all m in M such that σm = α(σ)m for
all σ in Ω.
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We recall that X(E/F∞) denotes the dual of the Selmer group of E over F∞ and that

Y (E/F∞) = X(E/F∞)/X(E/F∞)(p).

By Hypothesis A2, Y (E/F∞) is a finitely generated Λ(H)-module. For each α in Ω̂, we
define τ(α) to be the Λ(H ′)-rank of Y (E/F∞)(α). Since p is odd, the parity of τ(α) does
not depend on the choice of G′. For each extension K of F , we write Ps(K) for the set
of primes of K where E/K has split multiplicative reduction. Finally, as before w(E/K)
denotes the sign in the functional equation of L(E/K, s), and we recall that

w(E/K) =
∏

v

wv(E/K)

where wv(E/K) is the local root number of E/Kv.

Theorem 5.1. Assume that p ≥ 5 and that Hypotheses A1 and A2 are valid. Then
τ(α) = τ(α−1) for all α in Ω̂. Moreover, if α = α−1, we have

(80) τ(α) ≡ r(E/L) + #(Ps(L)) mod 2,

where L, as above, is the fixed field of G, and r(E/L) mod 2 is defined by w(E/L) =
(−1)r(E/L).

We now give a series of preparatory lemmas needed for the proof of Theorem 5.1. Let
HL = Gal(F∞/L

cyc). Viewing each α in Ω̂ as an Artin character of Gal(F∞/L), we recall
that

hα : K0(Λ(HL))→ Z,

is the homomorphism defined by (52).

Lemma 5.2. For each α ∈ Ω̂, we have τ(α−1) = hα([Y (E/F∞)]).

Proof. If N is any finitely generated Λ(HL)-module, recalling that the order of Ω is prime
to p, we see easily that for all i ≥ 0,

Hi(HL, twα(N)) = Hi(H
′, N)(α−1) = Hi(H

′, N (α−1))

where we have identified Ω with Gal(F ′cyc/Lcyc). The assertion of the lemma is now clear
since H ′ is pro-p, using the usual homological formula for ranks.

For each α in Ω̂, let Wα be a free Zp-module of rank 1 on which Ω acts via α. We also
note that a finite place v of F which does not divide p is infinitely ramified in F∞ if and
only if ordv(jE) < 0, where jE denotes the j-invariant of E. Hence, writing now P (Lcyc)
for the set of primes w of Lcyc with ordw(jE) < 0, and defining

(81) λα(E/L
cyc) = rankZp(Y (twα(E)/Lcyc)),
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it follows from Theorem 3.5 and Lemma 3.6 that

(82) hα−1(Y (E/F∞)) = λα(E/L
cyc) +

∑

u∈P (Lcyc)

rankZp(Tp(E)⊗Zp Wα)
HL,u ;

here we have fixed an extension of the prime u to F∞, and put HL,u = Gal(F∞,u/L
cyc
u ).

For each place u of Lcyc, define

(83) bα,u = rankZp(Tp(E)⊗Wα)
HL,u.

Lemma 5.3. Let u be any place of Lcyc with ordu(jE) < 0 and let α be any element of
Ω̂. If E/Lcyc has split multiplicative reduction at u, then u splits completely in F ′cyc and
bα,u = 1. Suppose next that E/Lcyc does not have split multiplicative reduction at u. Then
Ω has even order and writing θ for the unique element of order 2 in Ω, we have bα,u = 1
or bα,u = 0, according as α(θ) = −1 or α(θ) = 1.

Proof. Note first that since G′ is pro-p, we must have µp ⊂ F ′, and so F ′cyc = F ′(µp∞).
Also, it is clear that we can identify Ω with the Galois group Gal(F ′cyc/Lcyc). We write
Ωu for the decomposition group of u in the extension F ′cyc/Lcyc.

Suppose first that E has split multiplicative reduction at u. We claim that we then
have Ωu = {1}, or equivalently that u splits completely in F ′cyc. Indeed, by the theory of
the Tate curve, we have an exact sequence of HL,u-modules

0→ Zp(1)→ Tp(E)→ Zp → 0.

Hence any homothety σ in Ωu must act trivially on the quotient Zp of Tp(E), and so we
must have σ = 1, as claimed. We now apply Lemma 3.7 to compute bα,u. Since Ωu = 1,
we conclude immediately that bα,u = 1.

Assume next that E does not have split multiplicative reduction at u. Then it is
well-known that E achieves split multiplicative reduction over a quadratic extension Ku
of Lu, which must be contained in F∞,u. Therefore Kcyc

u is a quadratic extension of Lcyc
u ,

which is contained in F ′cyc
u . It follows that Ωu must have even order, whence the same is

also true for Ω. Moreover, by the argument of the previous paragraph, Ωu then has order
2, and we write Ωu = {1, θ}. But then, since Ωu acts on µp via the determinant character,
Ωu must fix µp. Thus we must have µp ⊂ L

cyc
u , and so HL,u acts trivially on Zp(1). Hence,

by Lemma 3.7, we have

bα,u = 〈χu, αu〉,

which is 1 if χu = αu, or equivalently if αu(θ) = −1, and is 0 otherwise. This completes
the proof of the lemma.

Lemma 5.4. There exists an isogeny of degree p for E defined over L. Moreover, L is
totally imaginary.
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Proof. Since G′ is pro-p, there exists a 1-dimensional subspace U of Ep on which G′ acts
trivially. But then it is clear that G must leave U stable, and so there exists an isogeny
defined over L with kernel precisely U . This proves the first assertion. If there was a real
place u of L, the complex conjugation attached to some infinite place of F∞ lying above
u, would have to have determinant −1, because the determinant map on G coincides with
the cyclotomic character, where G = Gal(F∞/L). But G has no element of order 2 whose
determinant is −1. This completes the proof.

If J is any quadratic extension of L and v is any prime of L, we define

(84) δv(E/J) =
∏

v′|v

wv′(E/J),

where wv′(E/J) denotes the local root number of E/J at v′ (see §2).

Lemma 5.5. Suppose that there exists a character α of Ω of exact order 2, and let L′

be the quadratic extension of L defined by α. Then δv(E/L
′) = 1 for all places v of

L, excepting those primes v of L with ordv(jE) < 0 such that E/L does not have split
multiplicative reduction at v, but achieves split multiplicative reduction at a place v′ of L′

above v. In this latter case , δv(E/L
′) = −1.

Proof. Since E has an isogeny of degree p defined over L, we can use the explicit formulae
for the local root numbers given in Proposition 2.8. As these local root numbers are all
±1, it is clear that δv(E/L

′) = 1 whenever v splits in L′; in particular, since L is totally
imaginary, this proves the lemma for all archimedean primes of L. Suppose therefore that
v does not split in L′, so that the norm of −1 from L′ to L is 1. It follows by class field
theory that χC,v′(−1) = 1 or χC,v′,crys(−1) = 1, according as v does not or does divide p.
Hence it only remains to consider the term (−1)t(v

′). By Lemma 5.3,E cannot have split
multiplicative reduction at v, since otherwise v would split in L′. Hence (−1)t(v

′) = −1 if
and only if E achieves split multiplicative reduction over L′

v′. This completes the proof
of the lemma.

We now prove Theorem 5.1. The theorem of Greenberg (see [22]), shows that for each
α ∈ Ω̂, the characteristic ideals in Λ(Gal(Lcyc/L)) ofX(twα(E)/Lcyc) andX(twα−1(E)/Lcyc)•

are equal. Here, for a finitely generated Λ(Gal(Lcyc/L))-module M , M• denotes the same
underlying module but with the Gal(Lcyc/L) action inverted. In particular, it follows that

(85) λα(E/L
cyc) = λα−1(E/Lcyc).

Moreover, it is plain from Lemma 5.3 that, for each α in Ω̂, we have bα,u = bα−1,u. Hence

by Lemma 5.2 and (82), it follows that r(α) = r(α−1) for all α in Ω̂. Since E has an
isogeny of degree p defined over L, the results of §2 prove that w(E/L) = (−1)sE/L for
every finite extension L of L. Applying Theorem 3.8 with ρ = 1, we obtain

(86) sE/L ≡ λ1(E/L
cyc) mod 2.
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Thus the assertion (80) for α = 1 is an immediate consequence of (82),(86) and Lemmas
5.2 and 5.3, noting that #(Ps(L)) is congruent to #Ps(L

cyc) modulo 2. Now assume that
α is a character of Ω of exact order 2, and let L′ be the quadratic extension of L defined
by α. Then

(87) λ(E/L′cyc) = λ1(E/L
cyc) + λα(E/L

cyc),

where λ(E/L′cyc) denotes the Qp-dimension of X(E/L′cyc) ⊗Zp Qp. On the other hand,
Lemma 5.5 shows that

(88) w(E/L′) = (−1)#(Pns(Lcyc)),

where Pns(L
cyc) denotes the set of places v of Lcyc satisfying (i) E/Lcyc does not have split

multiplicative reduction at v, and (ii) E/L′cyc does have split multiplicative reduction at
a prime v′ (necessarily unique) of L′cyc above v. Further, Theorem 3.8 also shows that

sE/L′ ≡ λ(E/L′cyc) mod 2.

Noting finally that, for this choice of α, we have

#Pns(L
cyc) + #(Ps(L

cyc)) =
∑

u∈P (Lcyc)

bα,u,

we conclude from Lemma 5.2 and (82) that

τ(α) ≡ τ(1) mod 2.

This completes the proof of the theorem.

Corollary 5.6. Under the same hypotheses as Theorem 6.1, the Λ(H ′)-rank of Y (E/F∞)
is even when Ω has even order.

Proof. Let τ denote the Λ(H ′)-rank of Y (E/F∞), so that τ =
∑

α∈Ω̂

τ(α). But Theorem 5.1

shows that τ(α) = τ(α−1), and also that τ(1) ≡ τ(α) mod 2, when α2 = 1, from which
the assertion follows.

It is not always true that Y (E/F∞) has even Λ(H ′)-rank, as is shown by the following
numerical example. Take F = Q, p = 7, and E to be the elliptic curve

(89) y2 + xy = x3 − x− 1

of conductor NE = 2.3.72 [11, Chap. 4, §4.3]. Then E achieves good ordinary reduction
over Q(µ7) at the unique prime above 7. Moreover, µ7 ⊂ E7, so that F∞ = Q(E7∞) is
pro-7 over Q(µ7). Finally, the Selmer group of E over Q(µ7∞) is equal to 0. Moreover,
E has split multiplicative reduction at the unique prime of Q(µ7) above 3, and the two
primes of Q(µ7) above 2. Taking F ′ = Q(µ7), we have H ′ = Gal(F∞/Q(µ7∞)), and it
follows easily from the above facts that X(E/F∞) is finitely generated over Λ(H ′) and has
Λ(H ′)-rank equal to 3. We remark that in this example we also have X(E/F∞)(7) = 0.
The corollary of course does not apply in this case because one sees easily that Ω = {1}.
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Corollary 5.7. Under the same hypotheses as Theorem 5.1, suppose in addition that
[L : F ] is even. Then for each α in Ω̂ with α = α−1, we have

τ(α) ≡ [L : Q]/2 mod 2.

Proof. We will show that, under the hypothesis that [L : F ] is even, we have

(90) r(E/L) ≡ [L : Q]/2 + #(Ps(L)) mod 2,

from which the corollary is clear in view of (80). Now

(−1)r(E/L) = w(E/L) =
∏

v|∞

wv(E/L)
∏

v<∞

wv(E/L)

where the latter product is taken over all finite places v of L. Since L is totally imaginary
by Lemma 5.4, we have

∏

v|∞

wv(E/L) = (−1)[L:Q]/2.

Hence it remains to show that

(91)
∏

v<∞

wv(E/L) = (−1)#(Ps(L)).

By Proposition 2.8 (2), (3), it is enough to prove that for each finite place v of F , the
product

∏

v′|v

χC,v′(−1) = 1, when v does not divide p

and
∏

v′|v

χC,v′,crys(−1) = 1, when v divides p;

here, in both cases, v′ runs over all places of L lying over v. By local class field theory, if
v does not divide p, the product

∏

v′|v

χC,v′(−1) = χC,v(−1)[L:F ] = 1.

Similarly, if v divides p, we have

∏

v′|v

χC,v′,crys(−1) = χC,v,crys(−1)[L:F ] = 1.

This completes the proof.
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6 Parity results for Artin twists

Throughout this section, we assume that F∞ = F (Ep∞), where E/F is an elliptic curve
without complex multiplication. This last assumption on E is imposed because we shall
use results of Rohrlich [38] on root numbers, which he only establishes in the more difficult
case of elliptic curves without complex multiplication. Moreover, we suppose always that
p ≥ 5 and that E admits an isogeny of degree p, which is defined over F . As always
G = Gal(F∞/F ) and H = Gal(F∞/F

cyc).

Definition 6.1. The integer uG is defined to be the order of the image of G under the
natural surjection from GL2(Zp) to PGL2(Fp).

Rohrlich [38] has shown that there exist irreducible self-dual Artin representations of
G of dimension > 1 if and only if uG is even. Hence we shall assume for the rest of this
section that uG is indeed even. Let ρ : G → GL(Vρ) be an irreducible self-dual Artin
representation of G, which is realized by the vector space Vρ over some finite extension
of Qp. Since ρ is self-dual, we can regard its character as being real valued, and by
the theory of finite group representations, precisely one of the following two possibilities
occurs:- (a) Vρ admits a non-degenerate symmetric bilinear form which is invariant under
the action of ρ(G), or (b) Vρ admits a non-degenerate symplectic bilinear form, which
is invariant under the action of ρ(G). If case (a) occurs, ρ is said to be orthogonal and
if case (b) occurs, ρ is said to be symplectic. Our principal goal in this section is to
prove the following parity result, in which we recall that sE,ρ is the number of copies of
ρ occurring in X(E/K)⊗Zp Q̄p, where ρ factors through the finite Galois extension K of
F . As earlier, w(E, ρ) denotes the root number occurring in the conjectural functional
equation of L(E, ρ, s).

Theorem 6.2. Assume that (i) E does not admit complex multiplication, (ii) p ≥ 5, (iii)
E admits an isogeny of degree p defined over F , (iv) uG is even and (v) Hypotheses A1 and
A2 are valid. Then, for each irreducible orthogonal representations ρ of G of dimension
> 1, we have

(92) w(E, ρ) = (−1)sE,ρ .

See [19] for much stronger results in this direction, which are proven by quite different
methods, when E is defined over Q and is semistable at 2 and 3. We note that the
hypotheses of Theorem 6.2 imply that, for each v of F dividing p, E achieves good
ordinary reduction over a finite abelian extension of Fv. Indeed, since p is at least 5,
all the hypotheses of Lemma 2.14 are valid for E/Fv. Hence by (5) of Lemma 2.14,
and the fact that U now has dimension 1, it follows that the image of the Weil group
of Fv in the automorphism group of V(E) must be a finite abelian group. Hence, for
some finite abelian extension of Fv, the image of the inertial subgroup of the Weil group
becomes trivial. But Lemma 2.11 shows that E achieves good ordinary reduction over the
fixed field of the kernel of the homomorphism of the inertial subgroup into Aut(V(E)),
justifying our claim. Hence Theorem 6.2 follows immediately by combining Rohrlich’s

49



formula for w(E, ρ) given in [38, Proposition 5] with the following Theorem 6.3, whose
proof by Iwasawa theoretic methods will take up the rest of this section.

For each finite place v of F with ordv(jE) < 0, let χv be the character of the absolute
Galois group of Fv, with χ2

v = 1, defined as follows:- (i) If E has split multiplicative
reduction at v, then χv = 1, (ii) if E does not have split multiplicative reduction at v, then
χv defines the unique quadratic extension of Fv over which E achieves split multiplicative
reduction. In fact, χv is a character of the decomposition group of any prime of F∞ above
v. Finally, ρv will denote the restriction of ρ to the decomposition group of some fixed
prime of F∞ above v.

Theorem 6.3. Assume the same hypotheses as in Theorem 6.2. For all irreducible or-
thogonal representations ρ of G of dimension > 1, we have

(93) sE,ρ ≡ uG[F : Q]/2 +
∑

v

〈χv, ρv〉 mod 2,

where the sum is taken over all places v of F with ordv(jE) < 0, and 〈χv, ρv〉 denotes the
multiplicity of χv occurring in the representation ρv.

We now establish several lemmas prior to the proof of Theorem 6.3. Assume from
now on that we have fixed a Zp-basis of Tp(E) such that the image of G in GL2(Fp) is
contained in the Borel subgroup

B =

{(

a b
0 c

)

| a, b, c ∈ Fp, ac 6= 0

}

,

where the character in the top left hand corner gives the action of G on Ker φ. Let

F ′ = F (Ker φ, µp), G′ = Gal(F∞/F
′), H ′ = Gal(F∞/F (µp∞,Ker φ)).

Let κ be the homomorphism

B −→ F×
p × F×

p

which sends an element

(

a b
0 c

)

to (a, c). Then G′ is the kernel of the composite map

G→ B
κ
−→ F×

p × F×
p

and is the unique p-Sylow subgroup of G. Putting

∆ = G/G′,

we clearly have an isomorphism H/H ′≃G/G′. As earlier, let Ω denote the intersection
of G with the torsion subgroup of the centre Z×

p of GL2(Zp). Plainly Ω is a cyclic group
whose order divides p− 1, and hence it injects into the quotient G/G′.
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Lemma 6.4. (i) The image of the canonical injection Ω→ ∆ coincides with the inverse
image of the diagonal of F×

p × F×
p under the injection ∆→ F×

p × F×
p .

(ii) The quotient group ∆/Ω is a cyclic group whose order d divides p − 1. Moreover,
either uG = d, or uG = pd.

Proof. Assertion (ii) follows from (i) because the quotient of F×
p × F×

p by its diagonal is
cyclic. Hence it suffices to prove (i). Let σ be an element of G which maps to a diagonal
element x of F×

p × F×
p . Let α be the unique (p − 1)-th root of unity in Z×

p with α ≡ x
mod p, and let

zα =

(

α 0
0 α

)

.

We then have σ = zαy, where

y ≡

(

1 ∗
0 1

)

mod p.

Clearly σp−1 = yp−1. This shows that yp−1 belongs to G, whence the same must be true
for y itself, since yp−1 is also a topological generator of the subgroup yZp. Hence y is in
G, and thus zα is in G, completing the proof of the lemma.

Before beginning the proof of Theorem 6.3, we note a further connection between our
work and that of Rohrlich [38]. Define

ϑ−n =
∑

ρ

dimVρ

where the summation is taken over all irreducible self-dual representations ρ of Gal(Fn/F ),
where Fn = F (Epn), with w(E, ρ) = −1. Rohrlich [37] has shown that all ρ occurring in
the sum for ϑ−n are necessarily orthogonal. Hence Theorem 6.2 shows that we have

(94) sE/Fn ≥ ϑ−n , (n ≥ 1).

On the other hand, Rohrlich has shown in [38] that

(95) ϑ−n ≥ a.p2n (n ≥ 1)

for some a > 0 if and only if p ≡ 3 mod 4 and [F : Q] is odd. In fact, Rohrlich proves the
stronger result that, as n tends to infinity, ϑ−n is asymptotic to a positive constant times
p2n when p ≡ 3 mod 4 and [F : Q] is odd, and is at most a constant times pn otherwise.
Let L be the fixed field of the subgroup of G generated by G′ and Ω. It is proven in [38]
(see formula 1.10 of the proof of Proposition 5), that we have

[L : Q] = uG[F : Q] ≡ (p− 1)[F : Q] mod 4.

Hence, it follows from Corollary 5.7 that (95) holds if and only if the Λ(H ′)-rank of
Y (E/F∞)(α) is odd for each character α of Ω with α2 = 1. In particular, we have proven
the following result.
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Corollary 6.5. In addition to the hypotheses of Theorem 6.2, assume that p ≡ 3 mod 4
and [F : Q] is odd. Then there exists a > 0 such that

(96) sE/Fn ≥ a · p2n (n ≥ 1),

where Fn = F (Epn).

A numerical example for which both Theorem 6.2 and Corollary 6.5 hold is given by the
elliptic curve E of conductor 294 whose equation is (89), with F = Q and p = 7. We
remark that for this example, Rohrlich [38] has proven that the cases w(E, ρ) = +1 and
w(E, ρ) = −1 both occur for infinitely many self-dual irreducible Artin representations ρ
of G.

The following remark shows that, at least conjecturally, this lower bound may be
essentially the best possible. Let C ′ denote the intersection of G′ with the centre of
GL2(Zp), and put G = G′/C ′. Let F∞ be the fixed field of C ′, and define Fn = F∞ ∩ Fn.
Since p is odd, any irreducible self-dual representation of Gal(Fn/F ) factors through
Gal(Fn/F ). Hence, under the same hypotheses as Corollary 6.5, our arguments prove the
stronger result that

sE/Fn ≥ a.p2n (n ≥ 1).

On the other hand, when E satisfies Hypothesis A1, it has long been conjectured that
X(E/F∞) is a torsion module over the Iwasawa algebra of G, but unfortunately this con-
jecture has still not been proven for a single numerical example. Nevertheless, assuming
the conjecture to be true, it follows easily that there exists a constant b > 0 such that

sE/Fn ≤ b.p2n (n ≥ 1).

Naturally this leads one to speculate that perhaps, analogously to Theorem 4.12, sE,ρ
has a uniform upper bound, independent of ρ, when ρ runs over all irreducible Artin
representations of G.

We now begin the proof of Theorem 6.3. Let ρ : G → GL(Vρ) be any irreducible,
self-dual, orthogonal Artin representation of G. Fixing a lattice in Vρ stable under the
action of ρ(G), we can view ρ as a representation

ρ : G→ Aut(Wρ)

where Wρ is a free module of rank dρ over the ring of integers O of some finite extension
of Qp. Following the strategy of our earlier arguments, we establish Theorem 6.2 by
computing hρ[Y (E/F∞)] where hρ is the Akashi homomorphism from K0(Λ(H)) to Z
defined by (52). Let P (F cyc) denote the set of all places u of F cyc with ordu(jE) < 0 (note
that this is precisely the set of places of F cyc which are infinitely ramified in F∞). For
each u in P (F cyc), we write Hu for the decomposition group of some fixed prime of F∞

above u. Then Theorem 3.5 asserts that

(97) hρ([Y (E/F∞)]) = λρ(E/F
cyc) +

∑

u∈P (F cyc)

bρ,u,

52



where

(98) λρ(E/F
cyc) = rankOX(twρ(E)/F cyc)), bρ,u = rankO(Tp(E)⊗Zp Wρ)

Hu .

Moreover, since ρ is assumed to be orthogonal, Theorem 3.8 gives

(99) sE,ρ ≡ λρ(E/F
cyc) mod 2.

Combining (97) and (99), we conclude that

(100) sE,ρ ≡ hρ([Y (E/F∞)]) −
∑

u∈P (F cyc)

bρ,u mod 2.

Since ∆ = H/H ′ is a finite abelian group of exponent p − 1, the K-theoretic arguments
explained at the beginning of §4 apply in this situation. Recalling that ∆̂ = Hom (∆,Z×

p ),
we have

l∆([Y (E/F∞)]) = (nχ)χ∈∆̂,

where l∆ is the isomorphism given by (50). We then obtain from (53) that

hρ([Y (E/F∞]) =
∑

χ∈∆̂

mχ(ρ)nχ,

with integers mχ(ρ) defined immediately before (53). Since ρ is irreducible, and Ω is
contained in the centre of G, the restriction of ρ to Ω is dρ copies of a single character of
Ω, which we denote by α. Hence, viewed as representations of Ω, we have

(101) Wρ = Zdρ
α ,

where Zα denotes a free O-module of rank 1 on which Ω acts via α. Note that α2 = 1

since ρ is self-dual.

Lemma 6.6. Let χ ∈ ∆̂. Then mχ(ρ) = 0 unless χ|Ω = α, where α is as in (101).

Proof. By definition,

mχ(ρ) = hρ(Pχ) = rankO(Wρ ⊗Zp Λ(H)eχ)H .

But the O-module on the right hand side is a quotient of (Wρ⊗Λ(H)eχ)Ω and this latter
group is clearly zero unless χ|Ω = α.

We recall that we can write G as a semi-direct product of its normal pro-p subgroup G′

and a subgroup D isomorphic to ∆. We identify the character groups of D and ∆. Let
K be the quotient field of O and we write Uχ for the K-vector space of dimension 1 on
which D acts via the character χ of ∆.

Lemma 6.7. Viewed as a representation of D via restriction, we have

Vρ = ⊕
χ∈∆̂

U
mχ−1 (ρ)
χ
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Proof. The restriction of ρ to D is semisimple and hence is of the form ⊕U
aχ
χ for integers

aχ ≥ 0 and χ running over ∆̂. Taking the evident O-lattice in this representation, it
is clear that the reduction of this D-representation modulo the maximal ideal of O is
the semisimple representation ⊕aχχ̃, where χ̃ denotes the reduction of χ modulo the
maximal ideal of O. The assertion of the lemma now follows from Lemma 3.2 and the
Brauer-Nesbitt theorem.

Proposition 6.8. Let G be the subgroup of G generated by G′ and Ω. Then every self-dual
irreducible Artin representation ρ of G of dimension > 1 is induced from an irreducible
representation of G.

Corollary 6.9. Let α be the character of Ω arising from the restriction of ρ to Ω as in
(101). Then mχ(ρ) is the same for all χ in ∆̂ such that χ

|Ω
= α.

Proof. Assuming Proposition 6.8, it follows that Vρ = IndGG (V ′
ρ), where V ′

ρ is some irre-
ducible representation of G. Now G is the semi-direct product of its Sylow p-subgroup G′

and D. Since Ω lies in the centre of G, and has order dividing p− 1, it follows easily that
Ω must be a subgroup of D. Moreover, we have G/G ≃ D/Ω. Hence, restricting ρ to D,
we see that

(102) Vρ|D ≃ IndDΩ (V ′′
ρ ),

where V ′′
ρ denotes the restriction of V ′

ρ to Ω. But, since V ′
ρ is an irreducible G-representation

and Ω lies in the centre of G, we see that V ′′
ρ must consist of d′ρ copies of α, where d′ρ is

the dimension of V ′
ρ . Hence, as D is abelian, we conclude from (102) that the restriction

of ρ to D is given by

(103) Vρ|D ≃ ⊕
χ∈∆̂

χ
|Ω

=α

U
d′ρ
χ .

Therefore, by Lemma 6.7, we must have mχ−1(ρ) = d′ρ for every χ in ∆̂ such that χ
|Ω

= α.
This completes the proof of the corollary.

Before giving the proof of Proposition 6.8, we need to establish two group theoretic
lemmas. Put R0 = GL2(Zp), and for n ≥ 1, define Rn to be the subgroup of all matrices
in R0 which are congruent to the identity matrix modulo pn. Let Gn = G ∩ Rn for all
n ≥ 0. For each n ≥ 0, we define a chain of subgroups

Gn ⊃ Bn ⊃ An ⊃ Gn+1

where, writing

(104) σ =

(

a b
c d

)

,
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we have

An = {σ ∈ Gn : a ≡ d ≡ 1 mod pn+1, c ≡ 0 mod pn+1}, Bn = {σ ∈ Gn : c ≡ 0 mod pn+1}.

If K, K ′ are any two subgroups of G, [K,K ′] will denote the subgroup of G generated by
all commutators kk′k−1k′−1, with k in K and k′ in K ′. We omit the proof of the following
lemma, as it is straightforward.

Lemma 6.10. For all n ≥ 0, we have (i) [G′, Gn] ⊂ Bn, (ii) [G,Bn] ⊂ An, and (iii)
[G′, An] ⊂ Gn+1.

It follows from (ii) that both An and Bn are normal subgroups of G for all n ≥ 0. Let us
define

in : G→ Aut(An/Gn+1), jn : G→ Aut(Gn/Bn)

to be the homomorphisms defined by conjugation by elements of G.

Lemma 6.11. For all n ≥ 0, both An/Gn+1 and Gn/Bn are cyclic groups of order dividing
p. Moreover, if An/Gn+1 (resp. Gn/Bn) has order p, then the kernel of in (resp. jn) is
precisely G.

Proof. One verifies immediately that the maps

fn : An/Gn+1 → Z/pZ, gn : Gn/Bn → Z/pZ

given by
fn(τGn+1) = p−nv mod pZ, gn(τBn) = p−nw mod pZ,

where

τ =

(

u v
w z

)

,

yield injective group homomorphisms. This proves the first assertion of the lemma. More-
over, it is clear that G is contained in the kernel of both in and jn. Further, if σ given by
(104) above denotes any element of G, a straightforward calculation with matrices shows
that
(105)
fn(στσ

−1Gn+1) = ad−1fn(τGn+1) mod pZ, gn(στσ
−1Bn) = a−1dgn(τBn) mod pZ.

The assertion of the lemma is now clear since Lemma 6.4 shows that the maps

G/G → F×
p

given by σ 7→ ad−1 mod p (respectively a−1d mod p) are injective.

We now prove Proposition 6.8. Fix an element ξ of G such that ξ mod G is a generator
of G/G = ∆/Ω, and put r = #(∆/Ω). Suppose that V ′

ρ is an irreducible component of Vρ
restricted to G. Since Vρ is irreducible, we must have

(106) Vρ =

r−1
∑

i=0

ξiV ′
ρ ,
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as the right hand side of (106) is a non-zero subspace, which is stable under the action of
G. We must show that the subspaces ξiV ′

ρ (i = 0, · · · , r − 1) are linearly independent to
establish the proposition.

Define n0 to be the smallest integer ≥ 1 such that Ker ρ ⊃ Gn0 . We first prove that
either Proposition 6.8 is valid or

(107) Ker ρ ⊃ An0−1 .

Assume therefore that (107) does not hold. In particular, we then have that An0−1 6= Gn0,
and so An0−1/Gn0 is a cyclic group of order p, by Lemma 6.11. Pick a generator τ of
An0−1/Gn0. By (iii) of Lemma 6.10, the image of An0−1 lies in the centre of G′/Gn0. Since
V ′
ρ is an irreducible representation of (G′/Gn0)×Ω, we conclude from Schur’s lemma that
τ must act on V ′

ρ by a scalar t in µp. By the second assertion of Lemma 6.11, τ acts on

χiV ′
ρ by tk

i
, where k is an element of F×

p of order r. We can assume that t 6= 1, since
otherwise (107) would be valid. Thus the subspaces ξiV ′

ρ (i = 0, · · · , r − 1) are linearly

independent since the tk
i
(i = 0, · · · , r − 1) are all distinct, proving Proposition 6.8

Thus we can assume that (107) is valid. Also, since G/A0 is abelian, we can suppose
that n0 ≥ 2. It follows from (ii) of Lemma 6.10 that the image of Bn0−1 in G/An0−1 lies
in the centre of G/An0−1. But it is easily seen that Bn0−1/An0−1 has exponent p. In view
of (107) and the irreducibility of Vρ, we conclude from Schur’s lemma that Bn0−1 acts on
Vρ by scalars in µp. As p 6= 2 and ρ is self-dual, we deduce that Bn0−1 must act trivially
on Vρ, whence

(108) Ker ρ ⊃ Bn0−1.

If Gn0−1 = Bn0−1, we have a contradiction by virtue of the minimality of n0. Thus we may
assume that Gn0−1 6= Bn0−1, and we choose τ to be a generator of Gn0−1/Bn0−1, which is
cyclic of order p. By (i) of Lemma 6.10, the image of Gn0−1 in G′/Bn0−1 lies in the centre
of this group. Thus, by Schur’s lemma, τ must act on V ′

ρ by a p-th root of unity t. By

the second assertion of Lemma 6.11, τ acts on ξiV ′
ρ by th

i
, where h is an element of F×

p of
order r. If t = 1, we would then have Gn0−1 acting trivially on Vρ, which contradicts the
minimality of n0. Hence we must have t 6= 1, and it is again clear that the subspaces ξiV
(i = 0, · · · , r− 1), must be linearly independent. This completes the proof of Proposition
6.8.

Remark 6.12. David Rohrlich kindly pointed out to us a somewhat different proof of
Proposition 6.8.

Definition 6.13. We write m(ρ) = mχ(ρ) for all χ in ∆̂ with χ
|Ω

= α.

The next result does not require the hypothesis that ρ be orthogonal.

Proposition 6.14. Assume that hypotheses (i)-(v) of Theorem 6.2 are valid. Then for
every irreducible, self-dual Artin representation ρ of G of dimension > 1, we have

(109) hρ([Y (E/F∞)]) ≡ uG[F : Q]/2 mod 2.
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Proof. In view of (53), Lemma 6.6 and Corollary 6.9, we have

hρ([Y (E/F∞)]) = m(ρ)
∑

χ∈∆̂
χ
|Ω

=α

nχ.

On the other hand, we have (cf. Lemmas 3.1 and 5.2),

(110) τ(α) =
∑

χ∈∆̂
χ
|Ω

=α

nχ.

Now our hypothesis that uG is even implies that [L : F ] = #(∆/Ω) is even (see Lemma
6.4). Hence, by Corollary 5.7, we have

τ(α) ≡ [L : Q]/2 mod 2.

Also, since p is odd, and uG is even, we clearly have

[L : Q]/2 ≡ uG[F : Q]/2 mod 2.

Thus to complete the proof, we must show that

(111) m(ρ)uG[F : Q]/2 ≡ uG[F : Q]/2 mod 2.

If F is totally imaginary, then [F : Q] is even, and so (111) clearly holds because both
sides are even. Assume therefore that F has a real place v, and write iv ∈ G for the
complex conjugation attached to some fixed place of F∞ above v. Writing det(ρ) for the
determinant of ρ, we then have

(112) (det(ρ))(iv) =











∏

χ∈∆̂
χ
|Ω

=α

χ(iv)











m(ρ)

.

Indeed, since both sides of (112) are roots of unity of order prime to p, it suffices to
prove that (112) holds modulo the maximal ideal of O. But this last assertion is clear
from Lemmas 3.2 and 6.6, and Corollary 6.9. Also, since ρ has dimension greater than 1,
Rohrlich [38] has shown that

(113) (det(ρ))(iv) = (−1)uG/2.

If m(ρ) is odd, (111) is clearly true. If m(ρ) is even, (det(ρ))(iv) = 1 by (112), and this
shows that uG/2 is even by (113), whence again (111) holds. This completes the proof of
the proposition.
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In view of (100) and Proposition 6.14, it suffices to establish the following purely local
result to complete the proof of Theorem 6.3. For the rest of this section, v will denote any
prime of F with ordv(jE) < 0, and we fix some place u of F∞ above v. For simplicity, we
shall also write u for the restriction of u to F cyc. We write Gv for the decomposition group
of u over v, and let Hu be the intersection of H and Gv. If ρ is an Artin representation of
G, ρv (resp. ρu) will denote the restriction of ρ to Gv (resp. Hu). Let χv be the character
of order dividing 2 of Gv which is defined immediately before Theorem 6.3.

Proposition 6.15. For each prime v of F with ordv(jE) < 0, we have

〈χv, ρv〉 ≡ rankO(Tp(E)⊗Zp Wρ)
Hu mod 2.

By Lemma 3.7, the assertion of Proposition 6.15 is equivalent to the congruence

(114) 〈χv, ρv〉 ≡ 〈χuω
−1
u , ρu〉 mod 2,

where, as before, ωu is the character giving the action of Hu on the group of all p-power
roots of unity. Hence to prove (114), it suffices to establish the following two equations

(115) 〈χv, ρv〉 ≡ 〈χu, ρu〉 mod 2,

(116) 〈χu, ρu〉 = 〈χuω
−1
u , ρu〉.

We first deal with (115). Noting that χ−1
v ρv is also self dual because χv has order dividing

2, we see that (115) is an immediate consequence of the following lemma.

Lemma 6.16. Let θ be any self-dual Artin representation of Gv, and let θu denote its
restriction to Hu. Then

〈1, θ〉 ≡ 〈1, θu〉 mod 2.

Proof. It suffices to consider the cases when either (i) θ is the direct sum of a represen-
tation τ of Gv and its contragredient representation, or (ii) θ is an irreducible self-dual
representation of Gv. In the first case, we have

〈1, θ〉 = 2〈1, τ〉, 〈1, θu〉 = 2〈1, τu〉,

and the assertion of the lemma is clearly true. Assume next that we are in case (ii), and
let V be a finite dimensional vector space realizing θ. It is clear that if 〈1, θu〉 = 0, then
〈1, θ〉 = 0. If 〈1, θu〉 is non-zero, the subspace of V fixed by Hu is non-zero and stable
under Gv, whence it must be the whole of V since θ is irreducible. Thus θ is in fact an
irreducible self-dual Artin representation of Gv/Hu which is isomorphic to the additive
group of p-adic integers. As p is odd, we must clearly have θ = 1, and the assertion of
the lemma is again clear.
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We now turn to the proof of (116). We recall that G is the subgroup of G generated
by G′ and Ω, and that L is the fixed field of G. As always, u will denote our fixed prime
of F∞ lying above our place v of F with ordv(jE) < 0. We have the tower of fields

F∞,u ⊃ F ′cyc
u ⊃ Lcyc

u ⊃ F cyc
u .

We recall that Gv = Gal(F∞,u/Fv), and

Hu = H ∩Gv, Du = D ∩Hu, Ωu = Ω ∩Hu.

We also write ∆u = Gal(F ′cyc
u /F cyc

u ). It is easily seen that Hu is the semi-direct product
of Du and Gal(F∞,u/F

′cyc
u ). Moreover, we can identify Ωu with Gal(F ′cyc

u /Lcyc
u ). As is

explained in the proof of Lemma 5.3, Ωu always acts trivially on µp∞, and hence the
characters χu and χuω

−1
u of ∆u have the same restriction to Ωu. Also, as p is odd, there

is always an odd number of places of F cyc lying above our given place v of F . Following
our earlier notation, if θ is any representation of Du, and ν is a 1-dimensional character
of Du, we write 〈ν, θ〉 for the multiplicity of ν occurring in θ. Thus the proof of (116),
and so also the proof of Proposition 6.15 and Theorem 6.2, will be complete once we have
established the following result.

Lemma 6.17. Let ρ be any irreducible self-dual Artin representation of G of dimension
> 1, and put ρu = ρ|Hu

. Then, as ν runs over all 1-dimensional characters of ∆u with
ν|Ωu

a fixed character of Ωu, 〈ν, ρu〉 is constant.

Proof. We can regard ∆u as a subgroup of ∆, and we write ξu = ξ|∆u
when ξ belongs

to ∆̂. Let α be the character of Ω given by (101). We shall assume from now on that
ν|Ωu

= α|Ωu
, since otherwise 〈ν, ρu〉 = 0. When it is convenient, we shall identify characters

of ∆u with characters of Du.
We now use the fact that ρ is a global representation to conclude that

(117) 〈ν, ρ|Du
〉 is constant

for all characters ν of ∆u with ν|Ωu
= α|Ωu

. Indeed, given any such ν, it is easy to see that
there are precisely #(D/ΩDu) distinct characters ψ of D such that ψu = ν and ψ|Ω = α.
The assertion (117) is then plain from Lemma 6.7 and Corollary 6.9.

Now ρu will factor through some finite Galois extension L of F cyc
u with L ⊃ F ′cyc

u . We
put

A = Gal(L/F ′cyc
u ), B = Gal(L/F cyc

u ),

so that A is a cyclic normal subgroup of p-power order of B. Moreover, as Gal(F∞,u/L) is
pro-p, we can identify Du with its image in B, and B will then be the semi-direct product
of A and Du.

Let R(B) denote the set of all irreducible representations of the finite group B, which
do not factor through the abelian quotient ∆u of B, and whose restriction to Ωu is a finite
number of copies of α|Ωu

. Identifying ρu with a representation of B, it is then clear that
we have

〈ν, ρu〉 = 〈ν, ρ|Du
〉 − Σ

µ∈R(B)
〈µ, ρu〉〈ν, µ|Du

〉.
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Thus, in view of (117), the proof of the lemma will be complete provided we can show
that

(118) 〈ν, µ|Du
〉 = 1 for all µ in R(B).

Let A′ be the subgroup of B generated by A and Ωu, so that A′ = Ωu × A. Put
C = B/A′ ≃ ∆u/Ωu, and let ru = #C. If C is trivial, then ∆u = Ωu, and R(B) is empty,
and so (118) holds vacuously. Hence we may assume that C is a non-trivial cyclic group.
The essential point then is that the centraliser of A in B is precisely A′. Indeed, if ξ is any
element of B whose image in C is a generator, then the theory of the Tate curve shows
that

(119) ξγξ−1 = γωu(ξ),

where γ is a generator of A. By an entirely similar argument to that given in the proof
of Corollary 6.9, we see that (118) is implied by the fact that

(120) µ = IndBA′(W ′
µ),

where W ′
µ is a 1-dimensional vector space on which A acts via a character θ of p-power

order (of course, Ωu acts on W ′
µ via α|Ωu

). Thus to complete the proof of Lemma 6.17, we
must establish (120). Write Wµ for the vector space realizing the representation µ, and
let W ′

µ be a non-zero irreducible subspace for the action of A′. Since A′ is abelian, W ′
µ

must have dimension 1, and A will act on it via a character θ of p-power order. Moreover,
θ 6= 1, because µ does not factor through the quotient ∆u of B. Since Wµ is irreducible,
we must have

Wµ =
ru−1
∑

i=0

ξiW ′
µ,

and, as in the proof of Proposition 6.8, we must show that the subspaces ξiW ′
µ (i =

0, · · · , ru − 1) are linearly independent. Put θ(γ) = ζ , so that ζ is a non-trivial p-power
root of unity. But, by (119), γ acts on ξiW ′

µ by ζωu(ξ)−i
(i = 0, · · · , ru − 1). But, as ωu

has exact order ru, all of these roots of unity are distinct. This proves that the subspaces
ξiW ′

µ (i = 0, · · · , ru − 1) are linearly independent and the proof is now complete.

7 Appendix. Some results on finite flat commutative

group schemes

In this Appendix, by using the work [3] of Breuil, we prove a result (Proposition 7.3)
on finite flat commutative group schemes defined over a finite tame Galois extension of
a discrete valuation ring of mixed characteristic. From this Proposition, we will deduce
Lemma 2.20 (6) in §2.
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7.1. In this Appendix, p denotes an odd prime number, andK denotes a complete discrete
valuation field of characteristic 0 with algebraically closed residue field k of characteristic
p. Fix an algebraic closure K̄ of K, let L ⊂ K̄ be a finite tame Galois extension of K,
and let ∆ = Gal(L/K). By our assumption, the order of ∆ is prime to p.

Let C(L/K) be the following category. An object of C(L/K) is a finite flat commutative
group scheme P over OL, which is killed by p, and which is endowed with an action of ∆,
for which the diagram

P
σ
→ P

↓ ↓

Spec(OL)
σ
→ Spec(OL)

is commutative for any σ ∈ ∆, and which is compatible with the group scheme structure
of P . Here for σ ∈ ∆, the action σ : Spec(OL)→ Spec(OL) is the morphism corresponding
to σ−1 : OL → OL.

If Q is a finite flat commutative group scheme over OK killed by p, we obtain an
object P of C(L/K) as P = Q⊗OK

OL on which ∆ acts in the natural way. In this case,
Q = Spec(O(Q)) is recovered from P by O(Q) = O(P )∆. However, if L 6= K, there are
objects of C(L/K) which are not obtained in this way. For example;

( 7.1.1) Let L be the unique quadratic extension ofK, let P = µp,OL
= Spec(OL[t]/(t

p−
1)) and define the action of the non-trivial element σ of ∆ = Gal(L/K) on P by

OL[t]/(t
p − 1)→ OL[t]/(t

p − 1) ;
∑

i

ait
i 7→

∑

i

σ(ai)t
−i (ai ∈ OL).

Then OL ⊗OK
O(P )∆ → O(P ) is not an isomorphism and hence P does not come from

Q as above.

7.2. Let
R = Z[Q/Z[1/p]],

that is, R is the group ring over Z of the group Q/Z[1/p]. For a ∈ Q/Z[1/p], we denote
by γ(a) the corresponding group element of R.

We identify R with the Grothendieck group of the category of all finite dimensional
continuous representations of Gal(K̄/K) over k in the following way, and for such rep-
resentation M , we denote by [M ] the class of M in R. For a ∈ Q, we identify γ(a
mod Z[1/p]) with the class of the 1-dimensional representation πaKOK̄/

∑

b∈Q,b>a π
b
KOK̄

of Gal(K̄/K) over k. Here πK denotes a prime element of K. The product structure of
R corresponds to the tensor product of representations over k. The Grothendieck group
of representations of ∆ over k is identified with the subring of R consisting of Z-linear
combinations of γ(a) with a ∈ [L : K]−1Z/Z.

Define maps

ϕ : R→ R, α : R→ Q/Z[1/p], α̃ : R→ Q, δ0 : R→ Z, deg : R→ Z

as follows.
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Let ϕ : R→ R be the automorphism of the ring R which sends γ(a) to γ(pa).
Let α : R→ Q/Z[1/p] be the Z-linear map which sends γ(a) to a.
Define the Z-linear map α̃ : R → Q as follows. For a ∈ Q/Z[1/p], α̃ sends γ(a)

(a ∈ Q/Z[1/p]) to the unique element b of Z(p) such that 0 < b ≤ 1 and such that b
mod Z[1/p] = a. Then α = (α̃ mod Z[1/p]).

Let δ0 : R→ Z be the Z-linear map which sends γ(a) to 1 if a = 0, and to 0 if a 6= 0.
Let deg : R→ Z be the Z-linear map which sends γ(a) to 1 for any a.
The following proposition is the main result of this Appendix.

Proposition 7.3. Let P be an object of C(L/K), and let D(P ⊗OL
k) be the covariant

Dieudonné module of P ⊗OK
k. Regard Lie(P ) as a k-vector space via the Teichmuller

lifting k → OK/pOK. Regard D(P ⊗OL
k) and Lie(P ) as representations of ∆ over k, and

regard P (K̄) as a representation of Gal(K̄/K) over Fp.

(1) α̃(ϕ−1([D(P ⊗OL
k]))− α̃([D(P ⊗OL

k]) = deg([Lie(P )])[L : K]−1− δ0([Lie(P )]) in
Q.

(2) Assume p ≥ r + 2 where r = dimFpP (K̄). Then

α([P (K̄)⊗Fp k])− α([D(P ⊗OL
k)]) = deg([Lie(P )])p(p− 1)−1[L : K]−1 in Q/Z[1/p].

Note that deg([Lie(P )]) coincides with the length of the OL-module Lie(P ), and
δ0([Lie(P )] coincides with the OL-length of the fixed part of Lie(P ) by ∆.

The assumption p ≥ r + 2 in (2) may be unnecessary, but our method of the proof
has to use it.

(7.3.1) Example. Let P = µp,OL
with the natural action of ∆. Then [D(P ⊗OL

k)] =
γ(0), [P (K̄)⊗Fp k] = γ(e(K)(p−1)−1), and [Lie(P )] = e(K)

∑

a γ(a) where a ranges over
all elements of [L : K]−1Z/Z ⊂ Q/Z[1/p]. In this example, the above (1) has the shape
0− 0 = e(K)− e(K), and (2) has the shape e(K)(p− 1)−1− 0 = e(L)p(p− 1)−1[L : K]−1

in Q/Z[1/p].

(7.3.2) Example. Let L be the unique quadratic extension of K and let P be the
object of C(L/K) considered in (7.1.1). Then [D(P ⊗OL

k)] = γ(2−1), [P (K̄) ⊗Fp k] =
γ(e(K)(p − 1)−1 + 2−1), [Lie(P )] = e(K)γ(0) + e(K)γ(2−1), and the above (1) has the
shape 2−1−2−1 = 2e(K) ·2−1−e(K), and (2) has the shape (e(K)(p−1)−1 +2−1)−2−1 =
2e(K)p(p− 1)−1 · 2−1 in Q/Z[1/p].

7.4. We define a category C′(L/K) following the method of Breuil [3].
Note that L is generated over K as a field by an [L : K]-th root of a prime element of

K. Fix a prime element πL of L such that πK := π
[L:K]
L is a prime element of K. Consider

the ring
S = k[u]/(ue(L)p)

where u is an indeterminate and e(L) is the absolute ramification index of L. We have
an isomorphism over k

θ : S/(ue(L))
∼
→ OL/pOL ; u 7→ πL
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where k is embedded in OL/pOL via the Teichmuller lifting. Consider the following action
of ∆ on the ring S: For σ ∈ ∆, the action of σ on S is the automorphism of the ring S
over k characterized by σ(u) = au, where a = σ(πL)/πL which is an [L : K]-th root of 1
regarded as an element of k. Then the action of ∆ on S and that on OL are compatible
via the isomorphism θ.

Define C′(L/K) to be the category of triples (M, F 1M, ϕ1), where M is a free S-
module of finite rank endowed with an action of ∆ satisfying σ(x+ y) = σ(x) + σ(y) and
σ(ax) = σ(a)σ(x) (σ ∈ ∆, x, y ∈M, a ∈ S), F 1M is a ∆-stable S-submodule ofM such
that ue(L)M⊂ F 1M, and ϕ1 is a map F 1M→M satisfying the following (i) - (iii).

(i) ϕ1(x + y) = ϕ1(x) + ϕ1(y) for any x, y ∈ F 1M, and ϕ1(ax) = apϕ1(x) for any
a ∈ S and x ∈ F 1M.

(ii) σ ◦ ϕ1 = ϕ1 ◦ σ for any σ ∈ ∆.

(iii) ϕ1(F
1M) generates the S-module M.

By [3], the following (7.4.1) and (7.4.2) hold for any object (M, F 1M, ϕ1) of C′(L/K).

(7.4.1) We have an isomorphism

S ⊗ϕ,S/(ue(L)) F
1M/ue(L)F 1M

∼
→M ; b⊗ x 7→ bpϕ1(x).

Here ⊗ϕ,S/(ue(L)) means the tensor product over S/(ue(L)) with respect to the p-th power

map ϕ : S/(ue(L))→ S.

(7.4.2) There are an S-basis (vi)1≤i≤r of M and integers ℓi (1 ≤ i ≤ r) such that
0 ≤ ℓi ≤ e(L) for any i and such that the S-module F 1M is generated by uℓivi (1 ≤ i ≤ r).

If there is no possibility of confusion, we will sometimes denote an object (M, F 1M, ϕ1)
of C′(L/K) simply by M.

By Breuil [3], we have an equivalence of categories

C(L/K) ≃ C′(L/K).

In fact, what is constructed in [3] is an equivalence C(L/L) ≃ C′(L/L), but it is seen
easily that his equivalence can carry the action of ∆.

This equivalence has the following properties. Let P be an object of C(L/K) and let
(M, F 1M, ϕ1) be the corresponding object of C′(L/K).

(a) The Dieudonné module of the special fiber. Let D(P ⊗OL
k) be the covariant

Dieudonné module of the special fiber P ⊗OL
k of P . Then

D(P ⊗OL
k) ≃M/uM

as representations of ∆ over k.

(b) The tangent space. As an OL[∆]-module, we have

Lie(P ) ≃M/F 1M.
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Here OL acts onM/F 1M via θ−1 : OL/pOL ≃ S/(u
e(L)).

(c) Cartier duality. Define an object (M′, F 1M′, ϕ′
1) of C′(L/K) as follows: M′

is the dual S-module Hom S(M,S) of M. F 1M′ ⊂ M′ is the inverse image under
M′ →M′/ue(L)M′ of the annihilator of F 1M/ue(L)M in the perfect duality

M/ue(L)M×M′/ue(L)M′ → S/ue(L)S

of S/ue(L)S-modules. For y ∈ F 1M, ϕ′
1(y) :M→ S is the composition

M
∼
→ S ⊗ϕ,S/(ue(L)) F

1M/ue(L)F 1M→ S

where the first isomorphism is the inverse of the isomorphism in (7.4.1), and the next
arrow is the unique additive map which sends b⊗x to bcp where c is an element of S such
that y sends x to cue(L). Then the object of C(L/K) corresponding to M′ is isomorphic
to the Cartier dual of P .

(d) The relation with the Galois representation P (K̄). Fix a p-th root π
1/p
L ∈ K̄ of

πL. Let
θ̃ : S → OK̄/pOK̄ ; u 7→ π

1/p
L

be the ring homomorphism which sends any element a of k to the Teichmuller lifting
of a1/p. Note that for any a ∈ S, we have θ(a mod ue(L)) = θ̃(a)p in OK̄/pOK̄. Let

π
1/p
K := (π

1/p
L )[L:K]. Then via θ̃, for σ ∈ Gal(K̄/K(π

1/p
K )), the action of σ on OK̄/pOK̄

commutes with the action of σ on S via the canonical projection Gal(K̄/K(π
1/p
K ))→ ∆.

Let

T (M) = Ker (OK̄/pOK̄ ⊗θ̃,S F
1M→ OK̄/pOK̄ ⊗θ̃,SM ; a⊗ x 7→ a⊗ x− apϕ1(x)),

where ⊗θ̃,S means the tensor product over S with respect to θ̃ : S → OK̄/pOK̄ , and endow

T (M) with the action of Gal(K̄/K(π
1/p
K )) defined by σ⊗σ (σ ∈ Gal(K̄/K(π

1/p
K ))). Then

as a representation of Gal(K̄/K(π
1/p
K )), we have

P (K̄) ≃ T (M).

We have rank S(M) = dimFp(P (K̄)).

(7.4.3) Example. The object of C′(L/K) corresponding to the standard object Z/pZ
of C(L/K) is described as follows. M = F 1M = S. ϕ1(a) = ap for a ∈ S. The action of
∆ is the natural one.

(7.4.4) Example. Let L be the object of C′(L/K) defined as follows. L = S. F 1L =
(ue(L)). ϕ1(au

e(L)) = ap for a ∈ S. The action of ∆ on L is the natural one. Then the
object of C(L/K) corresponding to L is isomorphic to µp,OL

with the natural action of ∆.

Lemma 7.5. LetM be an object of C′(L/K). Define an increasing filtration onM/uM
and a decreasing filtration on F 1M/uF 1M as follows. For i ≥ 0, let (M/uM)i be
the image of {x ∈ M | uix ∈ F 1M} in M/uM, and let (M/uM)i = 0 for i < 0.
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For i ≥ 0, let (F 1M/uF 1M)i be the image of F 1M ∩ uiM in F 1M/uF 1M, and let
(F 1M/uM)i = F 1M/uF 1M for i < 0. Note that (M/uM)i =M/uM if i ≥ e(L), and
(F 1M/F 1M)i = 0 if i > e(L).

(1) For 0 ≤ i ≤ e(L), ui induces an isomorphism gri(M/uM)
∼
→ gri(F 1M/uF 1M).

(2) For 0 ≤ i ≤ e(L), we have an exact sequence

0→ (M/uM)i →M/uM
ui

→ (uiM+ F 1M)/(ui+1M+ F 1M)→ 0.

Proof. (1) The surjectivity is clear. We prove the injectivity: The point is that the kernel
of u : M → M is contained in F 1M. Assume x ∈ M, uix ∈ F 1M, and assume that
the class of uix in gri(F 1M/uF 1M) is 0. We can write uix = ui+1y + uz with y ∈ M,
z ∈ F 1M. The element ui−1x − uiy − z is killed by u and hence is contained in F 1M.
Hence ui−1x − uiy ∈ F 1M. Since ui−1(x − uy) ∈ F 1M, x mod uM is contained in
(M/uM)i−1.

(2) is clear.

Lemma 7.6. Let M be an object of C′(L/K). For 0 ≤ i ≤ e(L), write [gri(M/uM)] =
∑

a d(i, a)γ(a) where a ranges over all elements of [L : K]−1Z/Z and d(i, a) ∈ Z. Let I
be the set of all pairs (i, a) such that i is an integer satisfying 0 ≤ i ≤ e(L) and a is an
element of [L : K]−1Z/Z. We have

(1) [M/uM] =
∑

(i,a)∈I d(i, a)γ(a).

(2) [F 1M/uF 1M] =
∑

(i,a)∈I d(i, a)γ(a+ i[L : K]−1).

(3) [M/F 1M] =
∑

(i,a)∈I d(i, a)
∑i−1

j=0 γ(a+ j[L : K]−1).

(4) [F 1M/uF 1M]) = ϕ−1([M/uM]).

Proof. (1) is clear. (2) follows from Lemma 7.5 (1).

We prove (3). We have [M/F 1M] =
∑e(L)−1

j=0 [(ujM+ F 1M)/(uj+1M+ F 1M)]. By

Lemma 7.5 (2), this element is equal to
∑e(L)−1

j=0 γ(j/[L : K])
∑

j<i≤e(L)[gri(M/uM)] and

hence is equal to
∑

(i,a)∈I d(i, a)
∑i−1

j=0 γ(a + j[L : K]−1).

(4) follows from the isomorphism

k ⊗ϕ,k F
1M/uF 1M

∼
→M/uM ; b⊗ x 7→ bpϕ1(x)

(ϕ : k → k is a 7→ ap) which is obtained from the isomorphism (7.4.1).

7.7. We prove Proposition 7.3 (1). LetM be the object of C′(L/K) corresponding to P .
By (a)-(c) in 7.4, it is sufficient to prove

α̃(ϕ−1([M/uM]))− α̃([M/uM]) = deg([M/F 1M])[L : K]−1 − δ0([M/F 1M]).

Let the notation be as in 7.6. By 7.6 (2) and (4), we have

α̃(ϕ−1([M/uM])) = α̂([F 1M/uF 1M]) =
∑

(i,a)∈I

d(i, a)α̃(γ(a + i[L : K]−1)).
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By 7.6 (3),

deg([M/F 1M]) =
∑

(i,a)∈I

d(i, a)i.

By these and by 7.6 (1), we have

deg([M/F 1M])[L : K]−1 + α̃([M/uM])− α̃(ϕ−1[M/uM]))

=
∑

(i,a)∈I

d(i, a){i[L : K]−1 + α̃(γ(a))− α̃(γ(a+ i[L : K]−1))}.

On the other hand, for each (i, a) ∈ I, i[L : K]−1 + α̃(γ(a))− α̃(γ(a+ i[L : K]−1)) is 1 or 0,
and if it is 1 (resp. 0), 0 appears exactly once (resp. 0 does not appear) in a+ j[L : K]−1

(0 ≤ j ≤ i− 1). Hence

i−1
∑

j=0

δ0(γ(a + j[L : K]−1)) = i[L : K]−1 + α̃(γ(a))− α̃(a + i[L : K]−1)).

By 7.6 (3), this shows

δ0([M/F 1M]) =
∑

(i,a)∈I

d(i, a){(i[L : K]−1 + α̃(γ(a))− α̃(γ(a+ i[L : K]−1))}.

7.8. We give some preparations for the proof of Proposition 7.3 (2).
LetM be an object of C′(L/K), let r be the rank ofM over S, and let ∧rM be the r-th

exterior power ofM over S. We define a representation T (∧rM) of Gal(K̄/K(π
1/p
K )) over

Fp in the following way. Let ℓ = dimk(M/F 1M). Then by (7.4.2), uℓ∧rM coincides with
S-submodule of M generated by all elements of the form x1 ∧ · · · ∧ xr with x1, · · · , xr ∈
F 1M. If r ≤ p − 1, there is a unique additive map ϕr : uℓ ∧rM → ∧rM such that
ϕr(x1 ∧ · · · ∧ xr) = ϕ1(x1) ∧ · · · ∧ ϕ1(xr) for any x1, · · · , xr ∈ F

1M. In fact, if we fix an
S-basis (vi)1≤i≤r ofM for which there are integers ℓi (1 ≤ i ≤ r) such that 1 ≤ ℓi ≤ e(L)
for any i and such that uℓivi (1 ≤ i ≤ r) generate the S-module F 1M as in (7.4.2), then
ℓ =

∑r
i=1 ℓi and ϕr is defined as

auℓv1 ∧ · · · ∧ vr 7→ apϕ1(u
ℓ1v1) ∧ · · · ∧ ϕ1(u

ℓrvr) (a ∈ S).

This map is well defined since

ℓ ≤ e(L)r ≤ e(L)p− e(L).

We have ϕr(ax) = apϕr(x) for any a ∈ S and x ∈ uℓ ∧rM.
Define

T (∧rM) = Ker (OK̄/pOK̄ ⊗θ̃,S u
ℓ ∧rM→ OK̄/pOK̄ ⊗θ̃,S ∧

rM

; a⊗ x 7→ a⊗ x− apϕr(x)),

and endow T (∧rM) with the action of Gal(K̄/K(π
1/p
K )) given by σ⊗σ (σ ∈ Gal(K̄/K(π

1/p
K ))).
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Lemma 7.9. Let M be an object of C′(L/K) of S-rank r with r ≤ p− 2.

(1) T (∧rM) is 1-dimensional over Fp.

(2) Let a = ℓ(p− 1)−1[L : K]−1 where ℓ = dimk(M/F 1M). Then there is an isomor-

phism of representations of Gal(K̄/K(π
1/p
K )) over k

T (∧rM)⊗Fp k ≃ (πaKOK̄/ ∪b∈Q,b>a π
b
KOK̄)⊗ϕ−1,k ∧

r
k(M/uM)

where ⊗ϕ−1,k means that k acts on the left factor of the tensor product via a 7→ a1/p.

(3) The canonical map ∧rFp
T (M)→ T (∧rM) is an isomorphism.

Proof. We prove (1) and (2). Let v be an R-basis of ∧rM. Then ϕr(u
ℓv) = cv for

some c ∈ S×. As a subset of OK̄/pOK̄ ⊗θ̃,S ∧
rM, OK̄/pOK̄ ⊗θ̃,S u

ℓ ∧rM coincides with

(π
1/p
L )ℓOK̄/pOK̄ ⊗θ̃,S ∧

rM. Hence T (∧rM) is identified with the kernel of

(7.9.1) (π
1/p
L )ℓOK̄/pOK̄⊗θ̃,S∧

rM→ OK̄/pOK̄⊗θ̃,S∧
rM ; a(π

1/p
L )ℓ⊗v 7→ (a(π

1/p
L )ℓ−

apc)⊗ v (a ∈ OK̄/pOK̄).
Let c̃ ∈ (OK̄)× be a lifting of θ̃(c) ∈ OK̄/pOK̄, and let b ∈ OK̄ be a (p− 1)-th root of

(π
1/p
L )ℓc̃−1. Then as is easily seen, the kernel of (7.9.1) coincides with the kernel of

(7.9.2) b(π
1/p
L )ℓOK̄/pOK̄ ⊗θ̃,S ∧

rM→ b(π
1/p
L )ℓOK̄/pOK̄ ⊗θ̃,S ∧

rM ; xb(π
1/p
L )ℓ⊗ v 7→

(x− xp)b(π
1/p
L )ℓ ⊗ v (x ∈ OK̄/pOK̄).

Hence this kernel is a 1-dimensional Fp vector space generated by b(π
1/p
L )ℓ⊗v. This proves

(1) and (2).
Next we prove (3) in the special case where M = L⊕r with L as in (7.4.4). Denote

T (∧r(L⊕r)) by T (L⊗r). By definition, T (L⊗r) is identified with the kernel of the map

pr/pOK̄/pOK̄ → OK̄/pOK̄ ; a(π
1/p
L )e(L)r 7→ a(π

1/p
L )e(L)r − ap (a ∈ OK̄/pOK̄).

By a similar computation as in the above proofs of (1) (2), we see that T (L⊗r) is the

1-dimensional Fp-vector space generated by π
e(L)r/(p−1)
L mod pOK̄ . In particular, T (L)

is the 1-dimensional Fp-vector space generated by π
e(L)/(p−1)
L mod pOK̄. This shows the

bijectivity of T (L)⊗r → T (L⊗r).
Finally we prove (3) in general.
Let M′ be the dual of M defined in (c) in 7.4, and let P , P ′, Q be the objects of

C(L/K) corresponding to M, M′, L, respectively. We have Q ≃ µp,OL
. We have a

commutative diagram where the upper row and the middle row are induced from the
canonical pairingsM×M′ → L and P × P ′ → Q, respectively.

∧rFp
P (K̄)⊗ ∧rFp

P ′(K̄) → Q(K̄)⊗r

‖ ‖
∧rFp

T (M)⊗ ∧rFp
T (M′) → T (L)⊗r

↓ ↓
T (∧rM)⊗ T (∧rM′) → T (L⊗r)

67



The right vertical arrow is an isomorphism as we have just shown, and the upper hori-
zontal arrow is an isomorphism by Cartier duality. This proves that the canonical map
∧rFp

T (M) → T (∧rM) is injective. Since both ∧rFp
T (M) and T (∧rM) are 1-dimensional

over Fp, this canonical map is bijective.

7.10. Proof of Proposition 7.3 (2). Note that the natural map from the Grothendieck
group R of all finite dimensional continuous representations of Gal(K̄/K) over k to that of

Gal(K̄/K(π
1/p
K )) induced by the restriction of the representation is bijective. This follows

from the fact that all semi-simple representations factor through the tame quotient of the
Galois group, and the canonical map from the tame quotient of Gal(K̄/K(π

1/p
K )) to the

tame quotient of Gal(K̄/K) is an isomorphism. We regard R as the Grothendieck group

of all finite dimensional continuous representations of Gal(K̄/K(π
1/p
K )) over k.

Let α : R → Q/Z[1/p] be as before. The following (7.10.1) and (7.10.2) are proved
easily.

(7.10.1) For any finite dimensional continuous representation M of Gal(K̄/K(π
1/p
K ))

over k, if r denotes the dimension of M , then α([M ]) = α([∧rM ]).

(7.10.2) If M and M ′ are 1-dimensional continuous representations of Gal(K̄/K(π
1/p
K ))

over k, then α([M ⊗k M
′]) = α([M ]) + α([M ′]).

Let M be the object of C′(L/K) corresponding to P and let r = dimFp(P (K̄)) =
rank S(M). Then α([P (K̄)⊗Fp k)]) = α([T (M)⊗Fp k]) by (d) in 7.4, and this is equal to
α([(∧rT (M))⊗Fp k]) = α([T (∧rM)⊗Fp k]) by (7.10.1) and by Lemma 7.9 (3). By Lemma
7.9 (2) and by (7.10.1) (7.10.2), the last element is equal to

deg([M/F 1M])(p− 1)−1[L : K]−1 + α(ϕ−1([M/uM])).

Hence

α([P (K̄)⊗Fp k)]) = deg([Lie(P )])(p− 1)−1[L : K]−1 + α(ϕ−1([D(P ⊗OK
k)])).

By α ◦ ϕ±1 = p±1α and by ϕ([P (K̄) ⊗Fp k]) = [P (K̄) ⊗Fp k] (since the representation
P (K̄) is over Fp), we obtain the formula in Proposition 7.3 (2).

We give a preliminary lemma for the proof of Lemma 2.20 (6) in §2.

Lemma 7.11. Let ι : R→ R be the automorphism of R which sends γ(a) to γ(−a). Let
x ∈ R, and let f ≥ 1 be an integer.

Assume the following (i) and (ii).

(i) ϕf(x) = x.

(ii) ϕ(x+ ι(x)) = x+ ι(x).

Then we have:

(1) Assume f is odd. Then

α̃(x)− α̃(ϕ(x)) ∈ 2Z(2).
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(2) Assume f is even. Then
pf − 1

2
α(x) = 0.

Proof. By a p-orbit in Q/Z[1/p], we mean a subset of Q/Z[1/p] which has the form
{pia | i ∈ Z} for some element a ∈ Q/Z[1/p]. An orbit is a finite set. If I is a p-orbit in
Q/Z[1/p], −I = {−a | a ∈ I} is also a p-orbit in Q/Z[1/p]. For x ∈ R and for a p-orbit I
in Q/Z[1/p], let xI be the I-component of x (that is, for x =

∑

a∈Q/Z[1/p] naγ(a) (na ∈ Z),

xI denotes
∑

a∈I naγ(a)).
Let x be an element of R satisfying (i), (ii). If I is a p-orbit in Q/Z[1/p] and if I = −I,

then xI also satisfies (i) and (ii). If I is a p-orbit in Q/Z[1/p] and if I 6= −I, then xI +x−I
also satisfies (i) and (ii). Hence to prove the lemma, we may assume that either x belongs
to ⊕a∈IZγ(a) for some p-orbit I such that I = −I or x belongs to ⊕a∈I∪(−I)Zγ(a) for
some p-orbit I such that I 6= −I.

The subset {0} of Q/Z[1/p] is a p-orbit. If x ∈ Zγ(0), then (1) and (2) for x are true
clearly. Hence we may assume I 6= {0}.

Assume first f is odd, I = −I, and x is an element of ⊕a∈IZγ(a) satisfying the
conditions (i) (ii). We prove ϕ(x) = x. Let a ∈ I and take an integer s such that
−a = psa. Then ϕ2s(x) = x. Since ϕf(x) = x and s ∈ Z2s + Zf by the assumption f
is odd, this shows ϕs(x) = x. Since ϕs and ι coincides on ⊕a∈IZγ(a), we have ι(x) = x.
Hence from ϕ(x+ ι(x)) = x+ ι(x), we obtain 2ϕ(x) = 2x. This proves ϕ(x) = x.

Next assume f is odd, I 6= −I, and x is an element of ⊕a∈I∪(−I)Zγ(a) satisfying (i)
and (ii).

Claim 1. α̃(x)− α̃(ϕ(x)) = 2(α̃(xI)− α̃(ϕ(xI))).

We prove Claim 1. We have

α̃(x)− α̃(ϕ(x))− 2(α̃(xI)− α̃(ϕ(xI))) = −α̃(xI) + α̃(x−I) + α̃(ϕ(xI))− α̂(ϕ(x−I)).

Since α̃(γ(a)) + α̃(γ(−a)) = 1 for any a ∈ Q/Z[1/p] \ {0}, this element is equal to
−α̃(xI) − α̃(ι(x−I)) + α̃(ϕ(xI)) + α̃(ϕ(ι(x−I))). The last element is zero because xI +
ι(x−I) = (x+ ι(x))I is invariant under ϕ by the assumption ϕ(x+ ι(x)) = x+ ι(x).

By Claim 1, it is sufficient to prove α̃(xI) − α̃(ϕ(xI)) ∈ Z(2). The image of α̃(xI) −
α̃(ϕ(xI)) in Q/Z(2) is the image of α(xI) − pα(xI) ∈ Q/Z[1/p]. Note that α(xI) =
α(ϕf(xI)) = pfα(xI). Since the order of the automorphism of the abelian group 2−mZ(2)/Z(2)

for m ≥ 0 is a power of 2, and since f is odd, the fact α(xI) ≡ pfα(xI) mod Z(2) shows
that α(xI) ≡ pα(xI) mod Z(2).

Assume next f is even, I = −I, I 6= {0}, and x is an element of ⊕a∈IZγ(a) satisfying
(i) (ii). Let a ∈ I and take the smallest integer s > 0 such that −a = psa. Then the
order of I is 2s. Let g = GCD(2s, f). Then ϕg(x) = x. This shows that x is a Z-linear

combination of elements of the form
∑2sg−1−1

i=0 γ(pgib) with b ∈ I. We have

pf − 1

2
α(

2sg−1−1
∑

i=0

γ(pgib)) =
pf − 1

2
·
p2s − 1

pg − 1
· b =

pf − 1

pg − 1
·
ps − 1

2
· (ps + 1)b = 0.
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Finally assume f is even, I 6= −I, and x is an element of ⊕a∈I∪(−I)Zγ(a) satisfying (i)
(ii). Then

α(x) = α(xI) + α(x−I) = α(xI)− α(ι(x−I)) = 2α(xI)− α(xI + ι(x−I)).

Since ϕf(xI) = xI ,
pf − 1

2
· 2α(xI) = (pf − 1)α(xI) = 0.

On the other hand, xI + ι(x−I) is fixed by ϕ, and hence

pf − 1

2
· α(xI + ι(x−I)) =

pf − 1

2(p− 1)
· (p− 1)α(xI + ι(x−I)) = 0

(note that (pf − 1)/(2(p− 1)) is an integer since f is even).

7.12. Finally we prove Lemma 2.20 (6).
As K of this Appendix, take the completion of the maximal unramified extension

F̂ ur
v of Fv in Lemma 2.20. As L of this Appendix (we denote this field by L′), take the

composite field of F̂ ur
v and L in Lemma 2.20. In the following, L is the L of Lemma

2.20. We apply Proposition 7.3 by taking P = Cf,OL
⊗OL

OL′, and Lemma 7.11 by taking
x = [D(Cf,OL

⊗OL
F̄p)], f = [kv : Fp].

We show that this element x of R satisfies the assumption of Lemma 7.11. By Lemma
2.14 (6), ϕf(x) = x. Hence it is sufficient to prove ϕ(x + ι(x)) = x + ι(x). We denote
Cf,OL

⊗OL
F̄p by Cf,F̄p

. We have x = y+z with y = [D(Cf,F̄p
/Ct,F̄p

)], z = [D(Ct,F̄p
)]. Since

the representation of IFv on D(Ct,F̄p
) is Fp-rational, we have ϕ(z) = z and hence ϕ(z +

ι(z)) = z + ι(z). We have ι(y) = [D(C ′
f,F̄p

/C ′
t,F̄p

)] and hence y + ι(y) = [D(Bp∞ ⊗OL
F̄p)].

For any σ ∈ IFv , from the fact the operator ϕp on D(Bp∞)⊗W (kL) Frac(W (kL)) commutes
with the action of σ, we can deduce that the characteristic polynomial of the action of
σ on the vector space D(Bp∞)⊗W (kL) frac(W (kL)) over frac(W (kL)) is a polynomial over
Qp. Hence the characteristic polynomial of the action of σ on the W (kL)-module D(Bp∞)
is a polynomial over Zp, and this shows that the characteristic polynomial of the action of
σ on the kL-module D(Bp∞⊗OL

F̄p) is a polynomial over Fp. Hence ϕ(y+ ι(y)) = y+ ι(y).
We can write

α([Cf,OL
(K̄)⊗Fp F̄p]) = i(p− 1)−1, α([D(Cf,OL

⊗OL
F̄p]) = j(pf − 1)−1 with i, j ∈ Z.

(the latter is due to Lemma 2.14 (6)), and we have

χC,v,f(−1) = (−1)(pf−1)i/(p−1) = (−1)fi, χC,v,f,crys(−1) = (−1)j.

Assume first f is even. Then ordp♯(Lie(Cf,OL
)∆) is even because Lie(Cf,OL

)∆ is a
module over OFv and [Fv : Fp] is even. We have χC,v(−1) = (−1)fi = 1, and χC,v,crys(−1) =
(−1)j = 1 by Lemma 7.11 (2).

Next assume f = [kv : Fp] is odd. By Proposition 7.3 (2), we have

i(p− 1)−1 + j(pf − 1)−1 = ℓ(p− 1)−1[L′ : K]−1 in Q/Z[1/p]
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where ℓ is the length of the OL-module Lie(Cf,OL
). Multiply this by pf − 1. Then using

the fact f is odd, we obtain

i+ j ≡ ℓ[L′ : K]−1 mod 2Z(2).

By Proposition 7.3 (1) and Lemma 7.11 (1), ℓ[L′ : K]−1 ≡ δ0 mod 2Z(2) where δ0 is
the length of Lie(Cf,OL

)∆ as an OFv-module. Since χC,v(−1)χC,v,crys(−1) = (−1)i+j, this
proves Lemma 2.20 (6).
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[36] Raynaud, M., Variétés abéliennes et géométrie rigid, Actes du Congrès Interna-
tional des Mathématiciens (Nice 1970), Tome 1, 473–477.

[37] Rohrlich, D.E., Galois theory, elliptic curves, and root numbers, Compositio
Math. 100 (1996), 311–349.

[38] Rohrlich, D. E., Scarcity and abundance of trivial zeros in division towers, Journal
of Algebraic Geometry, (To appear).

[39] Serre, J.-P., Propriétés galoisiennes des points d’ordre fini des courbes elliptiques,
Invent. Math. 15 (1972), 259–331.

[40] Serre, J.-P., Linear representations of finite groups, GTM 42, Springer.

[41] Serre, J.-P., Sur la dimension cohomologique des groupes profinis, Topology 3

(1965), 413–420.

[42] Grothendieck, A. et al., Groupes de monodromie en géométrie algébrique (SGA
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