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[1] Roots play a major role in reinforcing and stabilizing steep hillslopes. Most studies in
slope stability implement root reinforcement as an apparent cohesion by upscaling the
behavior of static individual roots. Recent studies, however, have shown that much better
predictions of slope stability can be made if the progressive failure of bundles of roots
are considered. The characteristics of progressive failure depend on interactions between
soil deformation and root bundle geometric and mechanical properties. We present a
detailed model for the quantitative description of the mechanical behavior of a bundle of
roots under strain‐controlled mechanical forcing. The Root Bundle Model explicitly
considers typical values of root‐size spatial distribution (number and dimension of roots),
geometric factors (diameter‐length proportion, tortuosity, and branching characteristics),
and mechanical characteristics (tensile strength and Young’s modulus) and interactions
under various soil conditions (soil type, confining pressure, and soil moisture). We provide
systematic analyses of the roles of these factors on the mechanical response of the bundle
and explore the relative importance of various parameters to the macroscopic root‐soil
mechanical response. We distinguish between increased strength imparted by small roots
at small deformations and the resilience imparted by larger roots to the growth of large
tensile cracks, showing that the maximal reinforcement of fine roots is reached within the
first 5 cm of displacement whereas a root of 20 mm diameter may reach its maximal
pullout force after 10 cm displacement. The model reproduces the gradual straining and
ultimate residual failure behavior of root systems often observed in hillslopes, with
progressive growth of tension cracks improving estimations of root reinforcement when
considering the effects of root distribution and the variation of the pullout force as a
function of displacement. These results enhance understanding of root reinforcement
mechanisms and enable more realistic implementation of root reinforcement modeling for
stability calculations of vegetated slopes and for guiding ongoing experimental efforts to
gather critical root‐soil mechanical information.
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1. Introduction

[2] Roots fulfill a diverse array of functions in plant life
ranging from capture and transport of subsurface resources,
to mechanical anchoring and stabilizing of trees in support
of growth, and to resilience to external stresses such as
wind, snow accumulation, rock impact, and soil creep
[Coutts, 1983; Schmidt et al., 2001; Rickli, 2001; Casadei
and Dietrich, 2003; Johnsson et al., 2006]. Roots also sta-
bilize soil on steep slopes by virtue of their extensive pro-
liferation and mechanical properties. Additionally, plant
water uptake by roots decreases soil moisture, thereby

increasing matric suction and mechanical strength. Often,
these disparate mechanical effects have been lumped into an
apparent increase in soil cohesion as defined in Mohr
Coulomb analysis [Genet et al., 2008].
[3] The processes by which roots stabilize slopes depend to

a large extent on their size, spatial distribution, and geometry
(diameter‐length proportion, tortuosity, and branching
characteristics). In some cases roots stabilize a slope by
bridging across preexisting weak zones and basal shear
planes, and thus become loaded during failures of these
zones [Schwarz et al., 2010]. For shallow and laterally
extensive root networks, slope stability may increase when
sufficient roots cross potential tension cracks (scarp) that
define the perimeter of a shallow landslide [Schwarz et al.,
2009].
[4] Various methods to quantify effects of root rein-

forcement along a landslide shear plane have been proposed
[e.g.,Wu et al., 1979; Ekanayake and Phillips, 1999; Pollen,
2008]. Wu et al.’s [1979] approach is widely used as it
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incorporates data on root and soil mechanical properties in
an easy‐to‐apply model. A limiting assumption in Wu
et al.’s [1979] model is that all roots break simultaneously
which is not supported by observations [Pollen et al., 2004;
Wu, 2007; Fan and Su, 2008] and results in a consistent
overprediction of actual root reinforcement function. Early
models typically did not consider geometrical and stress‐
strain behavior of root bundles, a necessary element for
describing complex interactions between roots and soil matrix.
They also overlooked the function of roots of different sizes in
reinforcement as discussed in a recent review by Schwarz
et al. [2009]. These root size and geometrical characteristics
determine how root reinforcement is progressively activated
during gradual loading and soil deformation.
[5] Recently, concepts of fiber bundle models (FBM)

have been applied to root reinforcement and bank stability
problems [Pollen et al., 2004; Pollen, 2008;Mickovski et al.,
2009; Hallett et al., 2009]. The classical FBM model
assumes an incremental stress loading in which an imposed
tensile force is distributed across unbroken fibers. When a
root or fiber breaks, its load is redistributed over the
remaining fibers. During each load step, force is redis-
tributed until either equilibrium is reached or the entire
bundle fails. Fiber bundle models show better fit to exper-
imental data [Pollen et al., 2004; Pollen, 2008; Mickovski
et al., 2009] and rely on simple power law relationships
between root size and mechanical behaviors. However,
details of root‐soil interactions and root failure mechanisms
such as root stretching, size‐stiffness relationship, and root‐
soil friction, which control whether roots slip or fail, are not
included. In particular, existing models do not consider the
mechanical properties of soil in a consistent way. Present
fiber bundle models also do not include models for the
estimation of the root size distribution where geometric and
mechanical properties vary with root size. Moreover, root
reinforcement models are typically not tuned to study lateral
reinforcement (with the notable exception of Schmidt et al.
[2001]).
[6] The mechanical behavior of pulled roots depends on

numerous parameters (detailed below). Previous studies
[e.g., Waldron and Dakessian, 1981; Commandeur and
Pyles, 1991; Dupuy et al., 2005; Mickovski et al., 2007;
Fan and Su, 2008] provide a basis for identifying first‐order
control variables that must be included in any root‐
reinforcement model. One such class of variables is related
to root geometry, which is notoriously difficult to charac-
terize precisely [Danjon and Reubens, 2008], and only a few
studies describe how the various geometrical features of
roots (e.g., variation of diameter with length, branching
points, tortuosity) contribute to the mechanical behavior of
individual roots [Dupuy et al., 2005;Mickovski et al., 2009].
Most research has focused primarily on individual variables
such as root diameter or branching pattern [e.g., Stokes
et al., 1996; Dupuy et al., 2005; Mickovski et al., 2007].
For example, recent studies have shown the importance of
branching points on the stress‐strain behavior of pulled roots
[Dupuy et al., 2005; Mickovski et al., 2007].
[7] An additional set of key variables is related to the

intrinsic mechanical properties of individual roots and
bundles. A common measure of root reinforcement is the
maximum tensile strength of a root which primarily depends
on root diameter. Root stiffness (Young’s modulus) is also

known to depend on root diameter [Operstein and Frydman,
2000; Tosi, 2007; Fan and Su, 2008]. Consequently, stiffer
roots mobilize more stress than less stiff roots for the same
amount of strain. Commandeur and Pyles [1991] showed
that root tortuosity is also an important parameter influ-
encing the macroscopic elastic behavior of a pulled root.
Tortuosity should therefore induce an apparent Young’s
modulus smaller than the root’s intrinsic Young’s modulus
due to frictional interactions between the root and the sur-
rounding soil as the root reconfigures during pulling. Fric-
tion at the root‐soil interface is usually considered constant
and frictional forces are calculated assuming a constant root
diameter [Waldron and Dakessian, 1981; Ennos, 1990]. In
reality, root diameter decreases along the root axis, and the
activation of root‐soil friction depends on the pullout force.
Moreover, root‐soil friction changes considerably during
stretching and slippage but this aspect is neglected.
[8] The primary objective of this study was to quantify the

effects of various root geometrical and mechanical para-
meters on the tensile strength of an individual root and on
the mechanical behavior of a bundle of roots under pullout
tests. We included the effects of root length, root diameter
and its variation along the root, maximum tensile strength,
Young’s modulus, root‐soil interfacial friction, branching‐
point frequency, and root tortuosity into a numerical fiber
bundle model that describes the mechanical dynamic pullout
behavior of roots embedded in a soil matrix during strain‐
controlled deformation. The model strikes a compromise
between complexity arising from root‐soil interactions and
oversimplifications of previous models by judicious selec-
tion of a minimum number of parameters needed to describe
key features of the geometry and mechanics of pulled roots.
[9] The specific objectives of this study are therefore to

(1) present a new model (termed the Root Bundle Model or
RBM) for the calculation of the force‐displacement relation
for an individual root, (2) analyze the pullout behavior of a
bundle of roots during strain loading, and (3) analyze root
reinforcement characteristics of a bundle of roots for differ-
ent root‐size distributions and under various soil conditions.
[10] The model considers how a bundle of lateral roots of

different diameters contributes to the global reinforcement at
different strain increments during the failure of a shallow
landslide. Only root sections away from the tree stem are
used in the calculations, with the pullout direction away
from the root tip (Figure 1). The model is built on a hier-
archy of submodels [Schwarz et al., 2010]. In the following
sections we present first a detailed description of the
geometry and mechanics of individual roots (section 2), then
we explain how geometry and mechanics of individual roots
are implemented in a model that computes the pullout
behavior (force displacement) (section 3). Finally, we com-
bine a root frequency‐size distribution model with the pull-
out model of individual root to obtain a strain‐controlled
pullout model of a bundle of roots that includes the effects of
root elongation, root‐soil friction, and root failure (section 4).

2. Geometrical and Mechanical Description
of Individual Roots

[11] Experimental pullout tests on individual roots
embedded in a soil matrix show that following initial
(elastic) root stretching, roots may then either slip out or
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simply fail and break [Norris, 2005]. Figure 2 shows these
different responses on a schematic force‐displacement dia-
gram. The first part of the pullout curve is dominated by the
elastic properties of root and soil. The nonlinear behavior
that follows is documented experimentally [Hamza et al.,
2007; Mickovski et al., 2007] and is due to the progressive
activation of root‐soil interfacial friction (details of this
effect are described later). The maximum pullout force is
reached when either the maximum (intrinsic) tensile strength
of the root is exceeded (Figure 2, light gray dashed line), or
when root‐soil friction drops, reducing the pullout force, and
the root slips out (Figure 2, dark gray dashed line). Once
broken, a root carries no load. During slip, the pullout curve
may display complex behavior resulting from interactions
between root strength, root elongation, and root‐soil friction.

2.1. Individual Root Geometry

[12] Single root geometry is characterized by a length‐
diameter relationship, branching points, and tortuosity.
Various empirical relationships [e.g.,Wu et al., 1988; Pollen,
2008] have been proposed for characterizing root length as
a function of root diameter (Figure 3). Here we use the
relation

L ¼ L0d
g; ð1Þ

where L is the length of the root in mm following its axis,
L0 and g are empirical coefficients, and d is the root
diameter in millimeters measured where the root is pulled
(this corresponds to dn, see equation (5) and Figure 4). In
subsequent calculations, unless noted otherwise, we use

g = 0.63 and L0 = 335, values that fit data of twenty seven
secondary lateral roots of spruce (Picea abies L.) collected
in a forest stand near Zurich, Switzerland (see Vanomsen
[2006] for description of field site). Roots were sampled
from the first 400 mm of the topsoil layer and were hand
washed gently under water to remove residual soil and root
hairs. For each root, we measured root diameter at its base,
tortuous and straight root length, diameter at each branching
points, and branching distances.

Figure 1. Illustration of a pulled bundle of roots modeled
by the RBM at three stages of deformation from (a) plane
and (b) cross‐sectional views. The RBM considers root
bundle uphill of the transverse failure plane.

Figure 3. Measured data of 27 secondary lateral roots of
spruce (Picea abies L.) trees (circles) and fitted empirical
equation (equation (1), solid black line). Dashed and dash‐
dotted gray lines show empirical models used by Wu et al.
[1988] for various tree species and by Pollen [2008] for
herbaceous species, respectively. The fitting of equation (1)
has a residual standard error of 217 on 25 degrees of free-
dom, a sum of squared (SSE) errors of 216, and a R2 value
of 0.63.

Figure 2. Pullout curves of an individual root on a force‐
strain diagram. The initial elastic stretch of a root (solid line)
may be followed by gradual slip out (dark gray dashed line)
or abrupt failure and breakage (vertical light gray dashed
line) [Waldron and Dakessian, 1981].
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[13] A root has n branching points and n + 1 root seg-
ments (Figure 4). The mean branching distance or mean
segment length is

b ¼ L= nþ 1ð Þ: ð2Þ

Each root segment is assumed to have a constant diameter.
In this study we consider the branching distance to be
constant. The root diameter is assumed to increase from a
minimum of 1 mm at the root tip (d0) to a maximum value
of dn at the other end.
[14] The root cross‐sectional area along the root length is

calculated as

Ai ¼ s iþ 1ð ÞA0; 1 � i � n; ð3Þ

where Ai is the cross‐section area of root segment i, A0 is the
cross‐sectional area of root segment 0 (equal to p/4 mm
since d0 = 1 mm), and s is a scaling factor. Since the scaling
factor (or so‐called root diameter proportionality factor)
[Van Noordwijk et al., 1994; Ozier‐Lafontaine et al., 1999;
Vercambre et al., 2003; Collet et al., 2006] is defined as

s ¼
b

L

An

A0

; ð4Þ

the root diameter of segment i is given by [Schwarz et al.,
2009]

di ¼ d0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s iþ 1ð Þ
p

; 1 � i � n: ð5Þ

[15] Root tortuosity is represented by dividing a root
segment into connected subsegments that meet at an angle g
(Figure 4) given by

� ¼ cos�1 1

z

� �

; ð6Þ

where z is a tortuosity factor defined as

z ¼
L

D
; ð7Þ

and D is the straight distance between the root tip and the
pull location (Figure 4). For simplicity we assume that tor-
tuosity is identical for all segments.

2.2. Individual Root Mechanics

[16] Mechanically, each root is characterized by a maxi-
mum tensile strength, T max, and intrinsic Young’s modulus,
Ef, that depend on root diameter. Numerous data indicate
that Tmax is proportional to the root diameter to some power,
namely,

Tmax ¼ � d�; ð8Þ

where a and b are fitted coefficients. This equation is also
valid for individual root segments of diameter di. Table 1
shows values of these coefficients for spruce species (Picea

Figure 4. (a) Root geometry and root analogue. The branching points are represented as spheres with a
dimension proportional to the root segment diameter. (b) Notation for a four‐segment root (n = 3).
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sp.) reported by several authors [Abernethy and Rutherfurd,
2001; Bischetti et al., 2005; Genet et al., 2008].
[17] To estimate Young’s modulus, we use the formula

of Schwarz et al. [2010] that best fits data found in the
literature

Ef ¼ 696 d�1; ð9Þ

where Ef is Young’s modulus in MPa and d is in milli-
meters. This equation also applies to individual root seg-
ments of diameter di. The apparent elasticity of a root results
from the combined effects of elasticity of the root itself (Ef ),
and the root tortuosity (Et). While the extension due to the
root itself is limited by the maximum tensile strain at
strength threshold Tmax, the extension due to tortuosity may
not exceed a strain of z − 1, typically around 10–20%
[Commandeur and Pyles, 1991]. Considering the common
elasticity formulation, we thus define an apparent Young’s
modulus (Eapp) as

Eapp ¼ Ef þ Et: ð10Þ

Assuming that Et is linearly proportional to Ef (where the
ratio l = Et/Ef depends on tortuosity and soil compress-
ibility, the so‐called compression index) [Commandeur and
Pyles, 1991], equation (10) reduces to

Eapp ¼ Ef 1þ �ð Þ: ð11Þ

We assume that, in each root segment i, the resulting strain
"i is the sum of the two strain components due to root
stretching and tortuosity. Using equation (11)

"i ¼
�þ 1

�

f tot
i

AiEf ;i
; ð12Þ

where fi
tot is the total tensile force transmitted by the root

segment i and calculated iteratively in the algorithm (see
Appendix A), Ai is the cross‐section area of the segment,
and Ef,i is the Young’s modulus of the root material.

2.3. Root‐Soil Interfacial Friction

[18] Friction at the root‐soil interface depends on soil
type, soil moisture and confining pressure. We distinguish
two major sources of friction: friction at the root‐soil
interface and friction at branching points. Interfacial friction
changes from static friction during the stretching phase of a
pullout test, to dynamic friction during the slip out phase.
Furthermore, based on studies of fiber‐reinforced concrete
[e.g., Naaman et al., 1991] static friction may be separated
into bonded and debonded friction.
2.3.1. Bonded Friction
[19] In this section we show why bonded friction can be

neglected following the approach of Naaman et al. [1991].

Bonded friction is considered a perfectly elastic response to
local slip between the fiber and the matrix resulting in a
frictional resistance at the fiber‐matrix interface of the form

�b ¼ kS; ð13Þ

where tb is bonded friction, k is the bond modulus, and S is
the local slip which depends on the difference between fiber
and matrix Young’s moduli, Ef − Em (details of this for-
mulation can be found in the work by Naaman et al.
[1991]). When tb reaches the critical value of tb

max, a
debonding crack grows along the fiber‐matrix interface
(Figure 5).
[20] An illustration of how bonded friction varies along a

constant diameter root after a debonding crack has begun to
grow is shown in Figure 6. Integration of friction yields the
total frictional force on a root. Even for parameters values
that maximize the effect of bonded friction (k = 109 Pa m−1,
tbmax = 50 kPa, Ef /Em = 10−3) the component of
bonded friction to the total frictional force is relatively small
(Figure 6).

Table 1. Published Values of Coefficients a and b in Equation (8)

for Tmax in Megapascals and d in Millimeters

Reference a b

Abernethy and Rutherfurd [2001] 49.4 −0.8
Bischetti et al. [2005] 28.1 −0.7
Genet et al. [2008] 37.9 −0.5

Figure 5. (a and b) Hypothetical illustration of the propa-
gation of a debonding crack at the instance when bonds
between the fiber and the surrounding matrix reach a critical
shear displacement.
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[21] When a root is stretched, its radius is reduced due to
radial contraction given by

Dd ¼ "f �f d; ð14Þ

where Dd is radial contraction, "f is the fiber local strain,
and nf is Poisson’s ratio. Since

"f ¼
F

� d=2ð Þ2Ef

; ð15Þ

where F is the pull out force applied to the root in [N], we
can calculate the value ofDd along the root. With d = 2 mm,
Ef = 106 Pa [Schwarz et al., 2010], nf = 0.3 [Dupuy et al.,
2005; Hamza et al., 2007], and F = 10 kN (maximum
value of pullout force based on our analysis), the Poisson
effect is at most 10% of the root diameter. The decrease in
diameter promotes debonding thereby further reducing the
bonded zone between the fiber and the matrix. Thus, we can
safely neglect bonded friction in our calculations as sug-
gested earlier by Ennos [1990] and Li [1994].
2.3.2. Debonded Friction
[22] Some authors have used a constant value for the root‐

soil friction (what we call here debonded friction) in the
range of 1 to 10 MPa [e.g., Waldron and Dakessian, 1981;
Abe and Ziemer, 1991]. In the RBM, the debonded friction
is calculated assuming that failure occurs when the Coulomb
failure criterion is reached, i.e.,

�d ¼ c0 þ 	0 tan
; ð16Þ

where td is debonded friction, c′ is the apparent cohesion, s′
is the effective normal stress, and 
 is the residual root‐soil
friction angle. The effective normal stress on a root segment
depends on tortuosity because the pullout force transferred
to a tortuous root has a component which is always per-

pendicular to the root segment, leading to an asymmetrical
local increase of the normal stress. To include this effect, for
each segment, we replace s′ by s′tort,i, defined as

	0
tort;i ¼ 	0 þ

f toti�1 sin �

�dib

� �

; ð17Þ

where fi−1
tot is the pullout force acting on all activated root

segments with index less than i. This quantity is known
when computing s′tort for segment i.
[23] When only the first root segment is activated, then the

effect of tortuosity is neglected. For vertical pullout tests, the
confining pressure around a root segment also varies as a
function of soil depth.
[24] Considering a single root segment i, the component

of pullout force due to root‐soil interfacial friction ( fi
if ) is

f ifi ¼ �b�ddi: ð18Þ

If instead of root segments of different diameters as assumed
in the RBM, the root diameter is a continuous function of
distance along the root (d = d(x)), then the cumulative root‐
soil interfacial friction (Fif) along the root can be calculated
as

F if ¼ �b�d

Z l

0

d xð Þdx; ð19Þ

where l is distance along the root, and

d xð Þ ¼ d0

ffiffiffiffiffiffi

s

b
x

r

: ð20Þ

Substituting equations (20) into (19) yields

F if lð Þ ¼
2

3
b�dd0

ffiffiffi

s

b

r

l3=2: ð21Þ

2.3.3. Effect of Soil Saturation
[25] The effect of unsaturated soil conditions is imple-

mented using Bishop’s effective stress approach [Lu and
Likos, 2006]:

	0 ¼ 	� ua þ � ua � uwð Þ; ð22Þ

where s′ is the effective normal stress, s is the total normal
stress, ua is the air pressure (assumed equal to 0 in our
calculations), uw is the pore water pressure, and c is the
effective stress parameter assumed to be a function of the
degree of saturation [Lu and Likos, 2006] with values
ranging between 0 (dry) and 1 (fully saturated). Here we
assume a linear relation between matric suction (ua − uw)
and the suction stress c (ua − uw) as shown by Lu and Likos
[2006]. We also assume that once the water content reaches
a minimal threshold value (dry condition), suction stress
drops to 0 for sandy soil or remains constant for clay and
loamy soil at a value corresponding to the effects of
cementation. We recognize that the effects of soil saturation
are more complex, especially for fine‐textured soils. Changes
in saturation in fine‐textured soils modify strength prop-
erties as well as deformation characteristics, leading to onset
of plasticity as summarized in a recent study by Nuth and

Figure 6. Distribution of friction along a root when the
debonded crack extends to half the root length. Calcula-
tions were made with k = 109 Pa m−1, tmax = 50 kPa,
and Ef /Em = 10−3.
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Laloui [2008]. Moreover, it may also introduce time and
pullout rate dependency as described in the rheological
framework of Ghezzehei and Or [2000]. For simplicity we
defer such constitutive relationships to future studies and
focus on standard applications as described next. We use the
following equations to calculate the effect of suction on
apparent cohesion as a function of water content

c0 ¼ cmax
0 �sat � �

�sat � �min

� �

; � � �min; ð23Þ

c0 ¼ c0res; � < �min; ð24Þ

where c′ is the apparent cohesion due to suction and
cementation effects, c′res is the residual cohesion in dry
conditions and c′max is the maximum value of apparent
cohesion that a soil type may reach in optimal water content
conditions. For sand c′max ranges between 1 and 5 kPa
[Goulding, 2006] while for clay c′max may have a wide
range of values which range in the order of tenths of kPa.
2.3.4. Dynamic Friction
[26] If during pullout, the maximum tensile strength of a

root is not exceeded, the root slips out and frictional forces
are initially reduced due to system dynamics. This decrease
is due primarily to breakage and deformation of small lateral
root hairs, rearrangement of soil particles, and changes in
the value of the confining pressure, but also to the reduction
of the length of the root embedded in the soil. To take these
latter effects into account, we introduce a frictional decay
function which depends on embedded root length, as pro-
posed by Naaman et al. [1991] and Cuhna et al. [2008]. The
dynamic component of the root‐soil interfacial friction is
then

�dyn ¼ c�d
D 1þ "maxð Þ �Dx

L

� �

þ 1� cð Þ�d ; ð25Þ

where tdyn is dynamic friction, "max is the maximum strain a
root can sustain, and c and z are empirical coefficients.
Using literature data of pullout tests of willow’s roots in
sand [Mickovski et al., 2007], the best fit to equation (25)
results in values of c in the range of 0 to 1 (with the
range depending on soil type and conditions). The exponent
z takes on values between 1 and 10. These two coefficients
determine the decay of dynamic friction during slip out. For
c = 0 there is no change between the static and the dynamic
root‐soil interfacial friction. For large z, root‐soil interfacial
friction decays exponentially.

2.4. Branching Point Friction

[27] Root branching points are represented as spherical
elements that increase root‐soil interfacial friction. The esti-
mation of this component of friction is based on the fol-
lowing empirical observations and assumptions: (1) the
angle between main and side roots at branching point has no
influence [Dupuy et al., 2005], (2) the mean diameter of the
branching point is larger than any connected root segments
and is a function of the largest root segment diameter, and
(3) the elasticity of lateral roots is neglected and their acti-
vated pullout force is considered constant. Based on infor-

mation found in the literature [e.g., Stokes et al., 1996;Dupuy
et al., 2005], we calculate the additional frictional force due
to branching point i on segment i as

f
bp
i ¼ Y di ð26Þ

where Y is an empirical branching coefficient. Combining
interfacial and branching point friction, the contribution of a
root segment to the maximal pullout force is

fi ¼ � di b �d þ Y di: ð27Þ

The total pullout force transmitted to the root segment i is

f toti ¼
X

i

j¼1

fj: ð28Þ

Again assuming a straight root and activation of all root
segments, the maximum pullout force is

F tot
max ¼ � do b �d þ

X

n

i¼1

fi; ð29Þ

or, substituting equation (27),

F tot
max ¼ � do b �d þ � b �d þ Yð Þ

X

n

i¼1

di: ð30Þ

3. Pullout Model for Individual Roots

[28] The complete pullout force as a function of pullout
displacement is obtained by simulating a quasi‐static pullout
experiment where the pullout force is computed during
stepwise strain increments. A strain loading approach is
necessary to calculate the pullout forces in both the
stretching and slip out phases. Stress loading provokes the
complete failure of the bundle at the maximum pullout force
and hence cannot model the slip out phase. Moreover, dis-
placement can be calculated only for a special case where all
the root diameter classes have the same apparent elasticity.
[29] Here we describe in details the algorithm to compute

the pullout force for an individual root as a function of
incremental displacement. This algorithm is characterized
by two main loops: (1) a stretching and breaking phase loop
and (2) a slipping out phase loop (Figure 7). Initially a root
supports no load. During the initial stretching of a root, the
pullout force required for matching root strain at a given
strain step is calculated through an iterative process that
considers progressive increments of activated root lengths.
The algorithm used during the stretching phase (see
Appendix A) is as follows:
[30] 1. Initialization
[31] (i) Given a root of diameter d compute its length (L,

equation (1)) and its cross‐sectional area (An).
[32] (ii) Given the number of segments (n + 1), compute

the mean branching distance (b, equation (2)).
[33] (iii) Compute the scaling factor (s, equation (4)).
[34] (iv) For each segments, compute segment diameter

(di, equation (5)) and maximum tensile strength (Tmax,
equation (8)).
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[35] 2. Displacement loop with increment Dx. Loop over
activated segments (starting from segment n). Start the loop
which defines the condition for the activation of the root‐
soil interfacial friction. Starting from the root segment n,
verify if the actual value of root elongation is lower than the
imposed displacement. If yes, then consider one more root
segment and recalculate the root elongation (next item) until
the slip out condition (all segments are activated and you
move to a new loop for the calculations of the slipping
phase) or the breakage conditions (total pullout forces big-
ger than the maximal tensile force of the root, calculated
with Tmax), otherwise print out the calculated/initialized
values and go back to the beginning of the beginning of the
loop for the next strain step.
[36] 3. Start the loop for the calculation of root elongation.

The loop cumulate the frictional forces and the root segment
elongation calculated from the smallest activated root seg-
ment (defined in point f) to the bigger root segment (n).
Within this loop (1) root segment diameter (di) is calculated
with equation (5); (2) root segment interfacial friction is
calculated with equation (18), where the debonded friction
(td) is calculated with equations (16), (17), (22)), (23) and
(24)); (3) root segment branching friction (fi

bp) is calculated
with equation (26); (4) the apparent Young’s modulus of the
root segment is calculated with equation (10), in function of
the root segment diameter (di); and (5) the root elongation is
calculated with equation (12) using the cumulative force fi

tot

calculated considering all the frictional forces and branching
point forces.

[37] The algorithm is repeated until either the root fails or
slips. If cumulative friction exceeds the maximal tensile
force of a root segment (estimated using equation (8)), the
root breaks. If all root segments have been activated and the
maximal tensile strength is not reached, then the root starts
to slip out and the algorithm in Figure 7 is used. This
algorithm calculates the pullout force of the root in the
slipping phase considering the progressive reduction of root
length embedded in the soil and the axial contraction of the
root due to the decreased tensile stress transmitted through
the root segments.
[38] The reduction of embedded root length is calculated

as

DLem ¼ D 1þ "maxð Þ �Dx; ð31Þ

where DLem is the change of the embedded root length at
the displacement Dx, and "max is the maximal strain reached
by a root at the instance where slip begins. We assume that
prior to root slippage, embedded root length is equal to L (in
reality, part of the root is already out of the soil because of
tortuosity). Root contraction is calculated using the differ-
ence between the strains reached at maximal and minimal
pullout force according to

DLcon ¼ L "max � "slip
� �

; ð32Þ

where "f
slip is calculated iteratively using equations (12) and

(28), considering an initial number of embedded root seg-
ments equal to Lslip/b, where at the beginning Lslip = L −

DLem. The resulting root length along which frictional for-
ces remain active during slippage (Lslip) is calculated for a
prescribed number of iterations (usually 10), according to

Lslip ¼ L�DLem �DLcon: ð33Þ

[39] With the new embedded root length (Lslip), we
recalculate friction and total pull out force (equation (29))
over n activated root segments where n = Lslip/b. As the total
pull out force acting on a root decreases (smaller embedded
root length), the root contracts, further decreasing the length
of embedded root and thus total friction. The macroscopic
consequence of this iterative force balance is also known as
stick‐slip effect.

4. Pullout Model for Root Bundles

4.1. Root Distribution Model

[40] The global mechanical behavior of a root bundle is
strongly influenced by the distribution and size of roots.
Data on distribution of roots of different diameter classes are
scarce [e.g., Moroni et al., 2003; Wu et al., 1988; Zhou
et al., 1998]. Thus, we parametrize root distribution using
the noncumulative Weibull probability function

p d;m; kð Þ ¼
m

km
dm�1 exp �

d

k

� �m� �

ð34Þ

with p(d) is the probability that a mapped root in a profile
belongs to the root diameter class d, and m and k are the
shape and scale parameters of the Weibull probability den-
sity function, respectively. We chose the Weibull probabil-

Figure 7. Flowchart of the module of the model used to
calculate the pullout force in the slip out phase of the
force‐displacement behavior of an individual root.
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ity function due to its well‐established analytical formula-
tion which may be adapted to various shapes of experi-
mental distributions (in this case better than the lognormal
distribution), and because it tends to fit better the distribu-

tion of big root diameter classes that are more important for
mechanical considerations.
[41] This application of the Weibull probability function

for the parametrization of the root distribution assume that
the shape of the probability function remains identical for
roots at different radial distances from the tree stem; the only
parameter that changes with distance from the tree stem is
the total number of roots found at each distance.

4.2. Root Bundle Model

[42] Recent studies [Pollen and Simon, 2005] show the
potential utility of the Fiber Bundle Model (FBM) as a
realistic framework for estimation of root reinforcement in
river banks. The classical approach of the FBM consists of
simulation of a stress loading step of a bundle of fibers,
where each fiber has different maximal tensile strength. In
the simplest application, the fibers are considered to have
identical length, which makes it possible via a global load
sharing rule (uniform transfer of loads of broken fibers to all
other fibers in the bundle) to compute analytically the entire
stress‐strain behavior. However, differences in geometries
and in mechanical properties of individual roots may be
important and complicate global pullout mechanical behav-
ior of real root bundles. For these reasons, the assumptions of
constant Young’s modulus and constant root length are
unrealistic and may distort the mechanical response of root
systems and their failure dynamics as related to triggering a
landslide. By calculating mean values of pullout force‐
displacement behavior of different root diameter classes, we
may relax some of the assumptions and consider roots of
variable lengths and mechanical properties. The resulting
total pullout force of a bundle of roots as a function of
displacement can be expressed as a sum of pullout forces of
individual roots,

Fbundle Dxð Þ ¼
X

N

j¼1

Fj Dxð Þnj; ð35Þ

where Fj (Dx) is the pull out force of a root belonging to
diameter class j, and nj is the number of roots present in the
bundle of diameter class j. N is the number of diameter
classes. Fj (Dx) is calculated for each root diameter class
using the individual root pullout module. This formulation
of the Root Bundle Model (RBM) may be defined as a strain
step loading model. In effect, we assume that roots bridging
a crack are loaded under tension with no interaction between
neighboring roots. We also assume that the orientation of
roots has no effect on pullout forces.

5. Results

5.1. Individual Root Behavior

5.1.1. Pullout Phases
[43] Figure 8 shows the different pullout phases calculated

for a root without branching points during slip out. In the
first part of the force displacement curve the stretching
phase is nonlinear due to the progressive increase of acti-
vated root length. This nonlinear elastic behavior has also
been observed in field and laboratory experiments [e.g.,
Ennos, 1990; Hamza et al., 2007]. The point labeled 1 in
Figure 8 indicates a point when only part of the root‐soil

Figure 8. (a) Force‐displacement behavior of a 2 mm diam-
eter root calculated using the RBM. The three numbered
points indicate the positions which correspond to (b) the three
illustrations of the slipping root and (c) the three curves show-
ing the cumulative force distribution along the root length.
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interface friction has been activated. At the point labeled 2,
all the root is activated and the maximum pullout force is
reached. The dotted gray line in Figure 8c shows that the
maximal tensile strength along the root is never reached,
thus the root slips out rather then breaks. Had the black
continuous line associated with the point labeled 2 crossed
above the gray dotted line, the root would have been broken
(this could have happened had the root been longer, root‐
soil interfacial friction been higher, or root strength been
weaker). The force distribution at point labeled 2 shows that
root failure is most likely where the root is pulled. Under
natural conditions this may not always be true due to het-
erogeneity of root material, root geometry, and root‐soil
interactions. Finally, the point labeled 3 indicates the
moment where the embedded root length during the slip out
phase is equal to the activated root length at the point
labeled 1. Figure 8c shows that the total pullout force at
these two instances is different. This is because during the
stretching phase the diameters of the activated root segments
are larger than those activated during the slip out phase; with
more root‐soil interfacial area, the total friction is larger.
The reduction of root diameter along the root partly explains
the exponential decay of the pullout force during the slip out
phase.

5.1.2. Sensitivity Analyses of Pullout
Mechanical Behavior
[44] Theoretical calculations of pullout behaviors of three

roots of three different diameter classes (1, 2, and 3 mm) are
shown in Figure 9. In Figure 9a the force‐displacement
curves show that small roots tend to slip out while larger
roots tend to break. This result, however, depends on the
nature of the relations used for estimating root length from
root diameter. Figure 9b shows force‐displacement curves
obtained with two different root‐length models found in
the literature. In the case of Wu et al.’s [1988] model (see
Figure 3), root‐length estimates are small and roots do not
break. In contrast, Pollen’s [2008] model (Figure 3) for
herbaceous plants yields relatively long roots that tend to
break. Figure 9 also shows that the maximal pullout force
and the displacement at maximal pullout force vary non-
linearly with root diameters, thus showing that the apparent
Young’s modulus change as a function of the root diameter.
[45] Figure 10 shows the influence of root diameter along

its length on the pullout behavior of individual roots. Roots
with constant diameters have higher total friction due to
their larger surface areas than roots whose diameters
decrease toward their tips. This difference in the total root‐
soil interfacial friction influences both the threshold of the

Figure 9. Pullout forces versus displacement of representative individual roots with diameters of 1, 2,
and 3 mm, used for the calculation of root bundle behaviors. (a) Results with 2 kPa of confining pressure,
25° of root‐soil interfacial friction angle, saturation of 0.9, tortuosity of 1.1, and branching coefficient of
0.4 (also used as standard values in the sensitivity analysis). (b) A comparison of pullout behavior of indi-
vidual roots using two different equations to estimate root length (Wu et al.’s [1988] and Pollen’s [2008]
models). The diameters of the individual roots are listed in the legend.

Figure 10. Comparison between numerical simulation considering (a) constant or (b) variable root
diameter along the root axes. Calculations were done for 2 kPa confining pressure, soil saturation degree
of 0.9, root‐soil friction angle of 25°, and a factor of tortuosity of 1.1.
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slipping out root diameter class (see the 4 mm diameter root
in Figure 10), and the apparent cohesion of the breaking root
classes.
[46] To complete the picture of individual root mechanical

behavior, we performed sensitivity analyses of some key
mechanical and geometrical parameters to identify the most
sensitive ones. Parameters such as confining pressure and
root‐soil interfacial friction angle had low influence on the
global pullout behavior of individual roots. The maximal
pullout force changed by less than 10% when considering
extreme range of values for these two parameters (15–45°
for the root‐soil interfacial friction angle, and 0–10 kPa for
the confining pressure). Results in Figure 11 show strong
influences of two other parameters: root branching coeffi-
cient (Y) and root tortuosity (z). As base values for the
calculations we have used 2 kPa for soil confining pressure
(equivalent to 10–20 cm soil depth), tortuosity value of 1.1,
friction angle of 25°, branching point coefficient (Y) of 0.4
(calibrated with field pullout tests of roots with diameters
ranging from 1 to 3 mm in diameter), and degree of satu-
ration value of 90% (close to saturation). In Figure 11a, we
observe that an increase in the value of the branching
coefficient leads to an increase of the total friction of the
roots. Consequently, the activated root length decreases and
so does the apparent elasticity. A strong variation of the
global friction influences the type of pullout out behavior, as
illustrated in Figure 11a: for a branching coefficient greater
than 0.4 roots tend to break while for a branching coefficient
of 0.1 roots tend to slip out.
[47] Commandeur and Pyles [1991] illustrated the

importance of tortuosity on the material (Young’s) moduli.
Figure 11b shows the influence of this parameter on the
pullout behavior of individual roots when root‐soil interfa-
cial friction is also considered. An increase in tortuosity
leads to an increase from 5 to 14 cm of displacement at
failure while the maximal pullout force remains constant at
350 N.
[48] The influence of soil moisture depends on soil type.

For loamy soils the maximal soil cohesion is about 10 kPa at
10% saturation, and residual cohesion is 5 kPa for dry

conditions (less than 10% saturation) [Schwarz et al., 2010].
In this case, the variation of maximal pullout force is about
10%, while the variation of displacement at maximal pullout
force is about 20%.

5.2. Root Bundle Mechanical Response

5.2.1. Comparison Between Single and Root Bundle
[49] Erosion mitigation and slope stabilization studies

often consider small roots as more effective than larger roots
in slope stability [e.g., Reubens et al., 2007]. Results in
Figure 12 provide new insights into this question and show
that to obtain mechanical reinforcement equivalent to one
20 mm diameter root, 23 roots with diameters of 2 mm are
needed. Other differences between the behaviors of the
two types of root reinforcement are (1) the displacement
at the maximal pullout force differs by about 50 mm and
(2) because a 20 mm diameter root is considerably longer
than a 2 mm diameter root (2.5 m against 0.46 m, using our

Figure 11. Influence of two parameters on pullout behaviors of an individual root (with 9 mm diameter):
(a) branching point coefficient and (b) tortuosity. Low values of branching coefficient indicate low
friction due to branching points, whereas increasing values of tortuosity indicate increased tortuosity
of the root.

Figure 12. Pullout behaviors for the same maximum pull-
out force for an individual 20 mm diameter coarse root and
23 fine roots with diameters of 2 mm.
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equation (1) with fitted coefficients) the longer root can
redistribute forces over greater distances in the soil.
[50] Figure 13 shows the breakage‐slippage threshold on a

length‐diameter plot for different values of branching
coefficient and tortuosity. In general, short roots (small
values of L0) with low friction tend to slip, while long roots
with high friction almost always break. Results also show
that once the values of branching coefficient and tortuosity
are fixed the threshold is determined primarily by root
length and does not depend on root diameter.
5.2.2. Effect of Root Size Distributions
[51] Here we compare the influence of different root dis-

tributions on root reinforcement of a bundle of roots using
measured root distributions and fitted Weibull distributions.
Measured root distributions were obtained at three different
distances from root stems (0.5, 1.5, and 2.5 m) for nine
spruce trees (Picea abies L.) in the educational forest of

ETH Zurich (Switzerland) (see Vanomsen [2006] for study
area description). Tree stem diameter at 1.3 m height was in
the range of 20 to 30 cm. Trenches 50 cm deep and 50 cm
wide were dug tangentially to concentric circles around
selected trees and the position of the trench was chosen to
minimize overlapping root systems with neighboring trees.
Figures 14 and 15 show root size data measured in the field
and found in the literature [Wu et al., 1988; Zhou et al.,
1998] and Weibull fits. We used the relative percentage of
distribution of each root diameter class for each distance
from tree stem for the fit of the Weibull distribution. The
best fit was found for m = 1.2 and k = 1.9 using least square
error minimization. The variance of the model results is 0.19
with a standard error less than 0.01. Using the same Weibull
function, we fitted the data of Wu et al. [1988] and Zhou
et al. [1998], obtaining m = 1 and k = 0.8 for Wu et al.
and m = 1 and k = 3.3 for Zhou et al. (see Figure 15).
[52] Field measured root distribution data exhibit a linear

relation between distance from tree stem and the total
number of roots present in a soil profile. Figure 16 shows
that (0.5 m away from the tree stem) there were on average
88 roots per square meter in the top 0.5 m of soil profile.
The extrapolation of the linear regression indicates that, for
trees with 20–30 cm in stem diameter, the maximal rooting
distance is about 4.3 m. Such information is important for
realistic estimation of root reinforcement at the scale of an
individual tree allowing implementation of the RBM at
different distances from the tree stem.
[53] Finally, Figure 17 shows how maximal root rein-

forcement varies with distance from the tree stem for a
measured field distribution and its Weibull fit. The Weibull
fit underestimates the pullout force particularly close to the
tree stem. This is because fitted Weibull distribution results
in less coarse roots than measured, which contribute most to
root reinforcement.

6. Discussion

[54] The proposed modeling approach quantifies the
influence of key root parameters on the force at failure of an
individual root (see Table 2) and of a bundle of roots during
pullout conditions. The model also yields an estimate of the
force‐displacement behavior of root reinforcement that
could be used in soil strength or slope stability calculations.

Figure 13. Computed map of breakage versus slippage as a
function of root length and root diameter. Colored curves
show the transition from slip to failure for different values
of root tortuosity and branching point coefficients. Superim-
posed are lines of length versus diameter for different values
of L0 (equation (1)). For a branching point coefficient of 0.4
and tortuosity of 1.1 (red curve), all roots break if L0 = 500
while only roots of diameter greater than about 4 mm break
if L0 = 200.

Figure 14. Fitted field data of mean root density distribution for nine spruce trees at three different
distances from the stem (0.5, 1.5, and 2.5 m) using a Weibull probability function. For this fit the
SSE is 0.03.
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The innovative elements of this approach are the imple-
mentation of natural geometrical factors such as root tortu-
osity and branching point friction in the analysis of the
individual root pullout behavior, the use of an analytical root
distribution model, and the use of a fiber bundle model
approach to describe the global behavior of a bundle of roots
that includes different types of failure mechanisms
(stretching, breakage, and slip out), an aspect not considered
in other existing models.

6.1. Individual Root Behavior

[55] Due to their geometrical and mechanical properties
small roots tend to slip out first and then break, while under

similar conditions larger roots (>2 mm diameter) tend to
break without slipping out (Figure 13). One of the important
outcomes of the proposed model is an estimation of the
displacement at the maximal tensile force, as discussed by
Schwarz et al. [2009]. This is particularly important for
better understanding how roots contribute to the stabiliza-
tion of a slope and how they influence the triggering of
shallow landslides. Results show that the maximal tensile
force of a root is attained at different displacements for
different root diameter classes. This result represents a
fundamental output needed for the application of the Fiber
Bundle Model approach to real roots. The estimation of root
length has a major influence on model prediction, as already
mentioned by Ennos [1990]. The small number of studies on
this topic and the wide range of values this parameter can
assume depending on plant species and stand, make esti-
mation of root length quite challenging. Nevertheless, the
use of empirical relations calibrated fitted to field or litera-
ture data still provide a plausible estimation of root rein-
forcement. Results show that including variations in root
diameter along its length influences failure mechanisms for
smallest root diameter classes and the displacement at which
maximal pull out force occurs by about 10%. In general,
higher friction (due to either more branching points,
increased tortuosity, or enhanced root‐soil interfacial fric-
tion) leads to an increase in both the maximal pullout force
and the displacement at maximal pullout force if a root slips
out. When the maximal pullout force exceeds root tensile
strength, maximal pullout force remains constant (at
breakage threshold) and displacement at maximal pullout
force decreases. The decrease in displacement at maximal
pullout force is due to the reduction in activated root length
needed to attain total friction equaling maximal root tensile
strength.
[56] The most sensitive geometrical and mechanical

parameters are tortuosity and branching point friction
coefficient. While mean tortuosity of roots may be quanti-
fied in a consistent way with real values ranging from 1.0 to
1.2, the quantification of branching point friction coefficient
is more difficult. Only a few experimental data are reported
where attempts to quantify this parameter were made. The
work of Stokes et al. [1996], which focused on the influence
of insertion angle of lateral root branches on pull out force,
showed that for a certain type of branching pattern, a vari-
ation of branching angle from 30° to 90° increased pullout
force for an individual branching point by less then 5%.
Moreover, the numerical simulation of Dupuy et al. [2005]
showed that the most plausible variable for estimation of
additional friction due to branching point is the diameter of
the root’s main axis. In addition, Mickovski et al. [2007]
showed that, branching point positions (at different confin-
ing pressures) influence friction. Parameters such as con-
fining pressure, water content, and root‐soil interface
friction angle show a maximal influence on the displace-
ment at maximal tensile force of about 10%, while the
influence on maximal tensile force was even less pro-
nounced. The nonlinear behaviors of stress‐strain curves has
also been observed during single‐root tensile tests in the
laboratory (not embedded in soil) [Commandeur and Pyles,
1991], even if in this case the nonlinearity is less accentu-
ated than when progressively activating roots (such as in a
field pullout test). We thus conclude that part of the non-

Figure 15. Fitting curves using the Weibull probability
function for two data sets found in the literature [Wu
et al., 1988; Zhou et al., 1998]. (a) The used function
parameters are m = 1 and k = 3.3 (SSE is 0.0076) for the
data set of Wu et al. [1988] and (b) are m = 1 and k = 2.5
(SSE is 0.0005) for the data set of Zhou et al. [1998]. To fit
the Weibull model to the literature data we used cumulative
values of probability of the root diameter classes as given by
the authors. In the case of the data ofWu et al. [1988] the root
diameter classes are 0–2, 2–4, 4–7, 7–15, and 15–30 mm. In
the case of the data of Zhou et al. [1998] the classes are 0–1,
1–4, 4–8, 8–14, and 14–24 mm.
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linearity may be attributed to tortuosity and to redistribution
of forces between the fibers within the root material.

6.2. Slip Out Phase

[57] The approach used for estimating residual root pull-
out force during slip out phase is characterized by new and
potentially important components. First, we introduced the
use of a dynamic friction to estimate root‐soil interfacial
force distribution. Second, we considered an iterative pro-
cess for root contraction. Finally, we calculated the variation
of root surface area along the root axis based on the varia-
tion in root diameter. As shown in Figure 8, these factors
influence the estimation of residual root slip out force. An
aspect not explicitly implemented in the model is the
capacity of the soil to fill the void left behind big root
segments or by large branching points. For plastic soils this
mechanism will reduce the residual root‐soil interfacial
friction force to near zero after a few millimeters of dis-
placement. In granular and cohesionless materials, however,
the void left behind slipping roots will be filled by soil
grains and the residual‐dynamic friction strength will remain
constant with a nonzero value. These effects are considered
in our calculations for empirically calibrated dynamic
coefficient c (equation (25)).
[58] Depending on soil type, soil moisture may have

important influence on pullout behavior of root bundles. On
the one hand, increased matric potential in wet sand will not
only increase sand stiffness by increasing effective stress,
but would also modify friction and dilation behavior during
shearing [Mickovski et al., 2007]. In natural soils, moisture
conditions and the structure of the soil also strongly influ-
ence the compressibility of the soil [Lang et al., 2003]. Soil‐
moisture conditions exert a relatively small influence on the
behavior of an individual root in comparison to other
parameters. Soil moisture influences both the root‐soil
interfacial friction and the apparent Young’s modulus. In

contrast, soil moisture plays a major role in the global
behavior of a bundle of roots. Considering an individual
root, the variations of the maximal pull out force and dis-
placement due to soil moisture are at most 10%. However,
even a small variation in soil moisture can lead to a change
in the type of failure (slipping instead of breaking). In this
case, these relative small variations may lead to big differ-
ences in the global pull out behaviors of a bundle of roots,
particularly when small roots outnumber coarse roots (as is
the case in all real situations). Figure 18 shows how soil
moisture influences global pullout behavior of a typical

Figure 16. Distribution of the total number of roots at different distances from the tree stem. (Note that
some of the nine data sets collected for each distance overlap.)

Figure 17. Calculated values of maximal root reinforce-
ment as a function of distance from the tree stem for two
series of root distributions. First, we used mean values of
root distribution collected in the field (Uetliberg); second,
we used the fitted values of root distribution obtained using
the Weibull probability function. The considered soil profile
was 50 cm in width and 50 cm deep.
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Table 2. List of Terms

Symbol Unit Description Values Reference

a [−] Coeff. equation (8) Table 1 Table 1
b [−] Coeff. equation (8) Table 1 Table 1
g [°] Angle between root sub‐segments 24.6 Schwarz et al. [2010]
DLcon [mm] Variation of root length due to contraction equation (32) ‐

DLem [mm] Variation of embedded root length in the soil equation (31) ‐

Dx [mm] Displacement ‐ ‐

Dd [mm] Root radial contraction 0.1d ‐

" [−] Strain ‐ ‐

"i [−] Strain of the root segment i ‐ ‐

"i
f [−] Component of strain due to root material i ‐ ‐

"i
t [−] Component of strain due to root tortuosity i ‐ ‐

"f [−] Root local strain ‐ Naaman et al. [1991]
"max [−] Maximal strain of a root ‐ ‐

"max [−] Maximal root strain ‐ ‐

"slip [−] Root strain due to the slip out friction ‐ ‐

z [−] Empirical coeff. ‐ ‐

� [−] Volumetric water content ‐ ‐

�sat [−] Volumetric water content in saturated condition ‐ ‐

�min [−] Volumetric water content corresponding to c′max ‐ ‐

l [−] Empirical ratio between Et and Ef ‐ Commandeur and Pyles [1991]
nf [−] Poisson’s ratio 0.3 Dupuy et al. [2005]
s [kPa] Stress ‐ ‐

s′ [Pa] Effective normal stress ‐ Lu and Likos [2006]
s′tort [Pa] Tortuous effective stress equation (17) ‐

s [Pa] Total normal stress ‐ ‐

tb [Pa] Bonded friction equation (13) Naaman et al. [1991]
td [Pa] Debonded friction equation (16) ‐

tdyn [Pa] Root dynamic friction equation (25) Cuhna et al. [2008]

 [°] Residual root‐soil friction angle 35 ‐

c [−] Effective stress parameter ‐ Lu and Likos [2006]
Ai [mm2] Cross‐sectional area of root segment i ‐ ‐

A0 [mm2] Cross‐sectional area of root segment 0 p/4 ‐

An [mm2] Maximal cross‐sectional area of root ‐ ‐

B [mm] Mean branching distance 10–170 ‐

c [−] Empirical coeff. ‐ ‐

c′ [Pa] Apparent cohesion equation (23) and (24) Lu and Likos [2006]
c′max [Pa] Maximum value of apparent cohesion in unsaturated conditions 1–5 103 Goulding [2006]
c′res [Pa] Residual value of apparent cohesion in dry conditions ‐ ‐

d [mm] Root diameter >1 Santantonio [1990]
d0 [mm] Diameter of root tip 1 Santantonio [1990]
di [mm] Diameter of root segment i ‐ ‐

D [mm] Straight root length equation (7) Schwarz et al. [2010]
D0 [mm] Initial straight root length equation (10) Schwarz et al. [2010]
Ef [MPa] Young’s modulus root material equation (9) Schwarz et al. [2010]
Et [MPa] Young’s modulus of tortuous root ‐ Commandeur and Pyles [1991]
Eapp [MPa] Apparent Young’s modulus of the root equation (10) Commandeur and Pyles [1991]
Em [MPa] Young’s modulus of soil matrix ‐ ‐

F [N] Pullout force applied to the root ‐ ‐

Fif [N] Maximum pullout force of a root due to interfacial friction equation (18) ‐

Fmax
tot [N] Total maximal friction of a root equation (30) ‐

fi
tot [N] Total pullout force transmitted to root segment i equation (28) ‐

fi [N] Pullout friction due to root segment i equation (27) ‐

fi
bp [N] Branching point friction equation (26) ‐

i [−] Root segment index ‐ ‐

k [Pa/m2] Bond modulus 109 ‐

k [] Scale parameter of the Weibull distribution 0.8–3.3 ‐

L [mm] Tortuous root length equation (1) Commandeur and Pyles [1991]
l [mm] Tortuous length along root ‐ ‐

L0 [−] Coeff. eq. root length 100–500 Pollen et al. [2004]
Le [−] Exponent eq. root length 0.7 Pollen et al. [2004]
Lslip [mm] Root length embedded in the soil during slippage equation (33) ‐

m [−] Shape parameter of the Weibull distribution 1–1.2 ‐

N [−] Number of root diameter classes ‐ Schwarz et al. [2010]
n [−] Number of branching points equation (2) ‐

S [m] Local root‐soil interface slip 10−5 ‐

s [−] Scaling factor 0.75 Collet et al. [2006]
Tmax [MPa] Maximum tensile strength equation (8) ‐

ua [Pa] Pore air pressure 0 ‐

uw [Pa] Pore air pressure 0 ‐

Y [N/m] Empirical branching coeff. 0–1 Schwarz et al. [2010]
z [−] Root tortuosity 1.1 Schwarz et al. [2010]
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bundle of spruce roots. Generally speaking, roots in wet soil
(60% to 100% degree of saturation) show a smaller resis-
tance to pullout and a higher displacement at maximal
pullout force. However, the effect of soil moisture on the
global behavior of a bundle is strongly influenced by root
size distribution: it is possible that the maximal pullout
resistance is higher in wet soil than in dry soil because of the
residual strength of small roots.

6.3. Root Bundle Model

[59] One of the interesting results of the application of the
RBM is the confirmation that maximal pullout force of
different root diameters takes place at different displace-
ments, illustrating the shortcomings of one of the key
assumptions in Wu et al.’s [1979] model. Furthermore, the
RBM allows estimation of mean displacement value at
maximal pullout force for different root diameter classes.
The result highlights the importance of considering root
diameter distribution (for a single root as well as at the stand
level) and shows that the use of Wu et al.’s [1979] model,
even for relative comparison, may produce large errors due
to the different root distributions [De Beats et al., 2008]. In
this study, the choice of the Weibull distribution to fit root
distribution data is justified on the basis of its mathematical
flexibility and its superior performance in estimation of the
number of large roots when compared with a lognormal
distribution. Large roots have more influence on the global
behavior of a root bundle and thus estimating their numbers
is critical. The range of Wu’s model overestimation is
strongly dependent on details of root distribution. Assuming
a unique value of maximal root strength, Young’s modulus,
and root length for each root diameter class still leads to an
overestimation (see Figure 19). The theory behind the FBM
[Sornette, 1989] shows that the variability of these values
leads to a lower global maximal strength of the fiber bundle.
[60] In the FBM extension proposed in this work, we

assumed that no interactions take place between roots of the
same bundle. In reality this may be true only if roots are
sufficiently far away from each other. Overlapping and
interconnections between roots would lead to a more com-

plex mechanism of force redistribution and to a different
stress‐strain behavior for the bundle. Data indicate that the
mean interdistance of roots ranges between one root every
0.1 to 0.3 m [Zhou et al., 1998; Wu et al., 1988]. Some
studies indicate also that fine roots tend to be clustered
[Achat et al., 2008], which means that irrespective of
their density, roots would be interacting. Considering that
at a certain distance from tree stems, the density of roots
decreases exponentially [Ammer and Wagner, 2005], it is
reasonable to neglect root interactions in slopes with sparse
vegetation. Moreover, field observations and results of
numerical simulations show that fine roots play in many
cases a central role in slope stabilization. There are two
reasons for these conclusions: first, fine roots maximal
strength is activated at small displacements suppressing
even the smallest of deformations before the system acquires
significant kinetic energy, and second, fine roots are more
numerous and their distribution on the slope more homo-
geneous than the distribution of coarse roots. In situations
where the growth of lateral coarse root networks can be
achieved, slope stabilization will be assured through maxi-
mal root reinforcement of coarse roots and through an
efficient horizontal redistribution of forces. As showed by
Zhou et al. [1998] lateral root reinforcement is displace-
ment‐dependent, and our numerical simulations show that
force‐displacement behaviors of a root bundle are strongly
dependent on root diameter distribution (Figure 19).
Therefore, future implementation of root reinforcement in
slope stability calculations must consider this aspect, either
in an infinite slope approach or in detailed numerical
models.

Figure 18. Modeled results of root reinforcement behavior
for two different soil moisture conditions (20% degree of
saturation for dry and 90% degree of saturation for wet),
based on the root distribution data of Zhou et al. [1998].

Figure 19. Modeled behavior of root reinforcement for the
data of Zhou et al. [1998] for 1 m2 soil profile fitting the
mean root distribution with the Weibull distribution func-
tion. The calculated maximal reinforcement using the Wu
model [Wu et al., 1979] was 18 kPa, while the maximal
pullout force predicted with the RBM was about 13 kPa,
which is closer to the measured values (0.22–16.9 kPa). It is
important to consider that no root distributions of the single
data are reported, and thus, just the mean distribution was
used for the root reinforcement estimation [see Zhou et al.,
1998, Table 2]. For the input values of the model we used
mean values showed in the methods (branching coefficient
is 0.4 and tortuosity is 1.1).
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6.4. RBM and Slope Stability

[61] Schwarz et al. [2009] highlighted the importance of
the force‐displacement relations for realistic implementa-
tions of root reinforcement in slope stability calculations.
Results of our model show that the implementation of
vegetation mechanical effects in slope stability calculation
must take into account two important aspects. First, not all
roots break simultaneously and thus the RBM approach
allows a more realistic estimation of root reinforcement.
Second, not all resisting forces on a slope act at the same
time or amount of displacement. Hence, maximal lateral soil
cohesion should not be added to the maximal lateral root
reinforcement, because they reach their maximal values at
different displacements [Schwarz et al., 2009]. By analogy,
root reinforcement at the basal slip surface should be added
to the residual shear strength of the soil material and not to
the maximal value [Lang et al., 2003]. Moreover, with
simple parameterization the model allows estimation of root
reinforcement at a high spatial resolution [Schwarz et al.,
2009, 2010], and not at only at an average and uniform
stand scale values as usually done. In addition, the imple-
mentation of the RBM in slope stability model permits a
better estimation of the volume of shallow landslides
because the information on the force‐displacement behavior
of the rooted soil allows the simulation of crack propagation
during failure. The possibility to better estimate the volume
of shallow landslides is an important information for the
modeling of sediment transport in a catchment [Bathurst
et al., 2007] and debris flow simulations [Christen et al.,
2007]. The results of this work and other studies [Casadei

and Dietrich, 2003; Schwarz et al., 2009], lead to a more
general discussion on the role of vegetation in mitigating
slope instabilities. Considering mechanical aspects only, one
can conclude that even shallow rooted slopes may be sta-
bilized by root networks but the effective contribution of a
root network to slope stability is strongly dependent on plant
distribution, slope steepness, and the hydromechanical
properties of soil material.

7. Conclusions

[62] In summary, we have presented a model for the
estimation of root reinforcement which captures the
mechanical behavior of root‐soil interactions more realisti-
cally and yields force‐displacement pullout behavior of a
root bundle. Model estimates of tensile strength rely on the
following characteristic elements: (1) variations of Young’s
modulus as a function of root diameter along each root,
(2) consideration of root tortuosity and compression prop-
erties of the soil, (3) consideration of root deformations,
(4) inclusion of branching points as single friction element,
(5) incorporating of static and dynamic root‐soil friction,
(6) consideration of root‐soil friction variation as a function
of soil water content and soil type, and (7) accounting for the
progressive root‐soil friction activation. This study high-
lights the role of root bundle composition (size and geom-
etry) on macroscopic mechanical behavior of root bundles.
The quantification of the stress‐strain behavior of a bundle
of roots leads to new insights regarding the role of root
reinforcement in slope stability. The results show that the

Figure A1. Flowchart of the model use to calculate the pullout force in the stretching and breakage
phases of the force‐displacement behavior of an individual root.
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overestimation of root reinforcement using Wu et al.’s
[1979] approach ranges from 0 to 90%. The consideration
of force‐displacement behaviors, as done in the RBM,
highlight how the overestimation due to Wu et al.’s
approach strongly depends on root size distribution. More-
over, the sensitivity analysis of the model highlights key
topics for further research. These topics include: the need for
more quantitative methods for the estimation of root distri-
bution and root geometrical parameters (like root length,
root tortuosity, and branching patterns), the use of proba-
bility density functions to describe the variability of the
mechanical parameters of roots, implementation of these
probability functions in a system of equations to obtain a
mathematical description of the root bundle mechanical
behavior, and finally, a better understanding of how roots
contribute in space and time to the force redistribution on a
vegetated slope.

Appendix A: Algorithm

[63] Figure A1 illustrates the algorithm used for calculating
stretching and breakage phases of the force‐displacement
behavior of an individual root. The equations used in the
different steps of the algorithm are reported in detail and
referenced in the text in order to facilitate understanding of
the major steps in the root‐soil mechanical model.
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