ROOT STRINGS WITH THREE OR FOUR REAL ROOTS IN KAC-MOODY ROOT SYSTEMS

Dedicated to Professor Eiichi Abe on his sixtieth birthday

JUN MORITA

(Received June 30, 1987)

0. Introduction. A characterization and a presentation of a (universal) Kac-Moody group over a field (of any characteristic) have been given by Tits [6]. Such a presentation, which is a natural generalization of Steinberg's one for a (simply connected) split semisimple algebraic group over a field (cf. [5]), is conjectured by E. Abe and established by J. Tits. The most interesting part of the presentation is the so-called "commutation relation", which is deeply related to the root strings and whose explicit description is given in [4]. In this paper, we will discuss certain root strings in Kac-Moody root systems, and give some direct applications to the associated Kac-Moody groups. Our main result is as follows.

Let $A = (a_{ij})$ be an $n \times n$ generalized Cartan matrix, Δ the associated root system, and Δ^{re} the set of real roots. Put $r(\alpha; \beta) = \# |\{\beta + k\alpha | k \in \mathbb{Z}\} \cap \Delta^{re}|$ for $(\alpha, \beta) \in \Delta^{re} \times \Delta$. Then the following two conditions are equivalent.

(1) $r(\alpha; \beta) = 3 \text{ or } 4 \text{ for some } (\alpha, \beta) \in \Delta^{re} \times \Delta.$

(2) $a_{ij} = -1$ and $a_{ji} < -1$ for some i, j $(1 \leq i, j \leq n)$.

As a corollary, we can simplify the Steinberg-Tits presentation of the associated Kac-Moody group in the case when A has a certain property.

1. Notation and lemmas. Let $A = (a_{ij})_{i,j \in I}$ be an $n \times n$ generalized Cartan matrix, $(\mathfrak{h}, \Pi, \Pi^{\vee})$ a realization of A, and $\mathfrak{g}(A)$ the Kac-Moody Lie algebra (over C associated with A), where $I = \{1, 2, \dots, n\}, \Pi = \{\alpha_1, \dots, \alpha_n\}, \Pi^{\vee} = \{h_1, \dots, h_n\}$ and $\alpha_i(h_j) = a_{ji}$ (cf. [1]). We denote by Wthe Weyl group with simple reflections w_1, \dots, w_n . Let Δ be the root system of $\mathfrak{g}(A)$ with Π as simple roots, $\Delta^{\mathrm{re}} = \{w(\alpha) | w \in W, \alpha \in \Pi\}$ the set of real roots, Δ_+ the set of positive roots, and Δ_+^{re} the set of positive real roots. For each $\alpha \in \Delta^{\mathrm{re}}$, let $h_{\alpha} \in \mathfrak{h}$ be the dual root of α . Then both $\alpha(h_{\beta})$ and $\beta(h_{\alpha})$ have the same sign (one of +, 0, -) for all $\alpha, \beta \in \Delta^{\mathrm{re}}$ (cf. [3]). Put $\operatorname{ht}(\alpha) = \sum_{k=1}^{n} c_k$, called the height of α , if $\alpha = \sum_{k=1}^{n} c_k \alpha_k \in \Delta$. Let $S(\alpha; \beta) = \{\beta + k\alpha | k \in \mathbb{Z}\} \cap \Delta$ for $(\alpha, \beta) \in \Delta^{\mathrm{re}} \times \Delta$. This $S(\alpha; \beta)$ is called the α -string through β . Let $r(\alpha; \beta) = \# |S(\alpha; \beta) \cap \varDelta^{\mathrm{re}}|$ for each $(\alpha, \beta) \in \varDelta^{\mathrm{re}} \times \varDelta$. Then one sees $r(\alpha; \beta) = 0, 1, 2, 3$ or 4. Our interest in this paper (in view of Steinberg-Tits presentation) is when $r(\alpha; \beta)$ is 3 or 4 for some $(\alpha, \beta) \in \varDelta^{\mathrm{re}} \times \varDelta$. Set $R = \{(\alpha, \beta) \in \varDelta^{\mathrm{re}} \times \varDelta^{\mathrm{re}} | \alpha - \beta \notin \varDelta, r(\alpha; \beta) = 3$ or 4} and $R_+ = R \cap (\varDelta^{\mathrm{re}} \times \varDelta^{\mathrm{re}})$. Then $(\alpha, \beta) \in R$ implies that $\alpha(h_{\beta}) = -1$ and $\beta(h_{\alpha}) < -1$.

LEMMA 1. Let $i, j \in I$, and $\alpha = \sum_{k=1}^{n} c_k \alpha_k \in A_+$. Suppose $\alpha_i(h_j) = \alpha_j(h_i) = -2$.

(1) In general, $\alpha(h_i + h_j) \leq 0$.

(2) If $\alpha(h_i + h_j) = 0$, then $\alpha(h_i) = -\alpha(h_j) \equiv 0 \pmod{2}$.

PROOF. Put $\alpha' = \sum_{k \neq i,j} c_k \alpha_k$. Since $\alpha'(h_i) \leq 0$, $\alpha'(h_j) \leq 0$ and $(c_i \alpha_i + c_j \alpha_j)(h_i + h_j) = 0$, we obtain $\alpha(h_i + h_j) \leq 0$. Suppose $\alpha(h_i + h_j) = 0$. Then $\alpha'(h_i) = \alpha'(h_j) = 0$. Therefore $\alpha(h_i) = (c_i \alpha_i + c_j \alpha_j)(h_i) = 2(c_i - c_j) \equiv 0 \pmod{2}$.

LEMMA 2. Let i, $j \in I$, and $\alpha = \sum_{k=1}^{n} c_k \alpha_k \in A_+$. Suppose $\alpha_i(h_j) = -4$ and $\alpha_j(h_i) = -1$.

(1) In general, $\alpha(2h_i + h_j) \leq 0$.

(2) If $\alpha(h_i) = -1$ and $\alpha(h_j) = 2$, then $\alpha = \alpha_j + m\xi$, where $m \in \mathbb{Z}_{\geq 0}$ and $\xi = \alpha_i + 2\alpha_j$.

PROOF. By the same reason as in Lemma 1(1), we see $\alpha(2h_i + h_j) \leq 0$. Suppose $\alpha(h_i) = -1$ and $\alpha(h_j) = 2$. Then $\alpha' = \sum_{k \neq i,j} c_k \alpha_k$ must be zero and $\alpha = c_i \alpha_i + c_j \alpha_j$, since $\alpha'(h_i) = \alpha'(h_j) = 0$. If $ht(\alpha) = 1$, then $\alpha = \alpha_i$ or α_j , hence $\alpha = \alpha_j$ by the condition. Suppose $ht(\alpha) > 1$. Then $c_i > 0$ and $c_j > 0$, and $(\alpha - \alpha_j)(h_i) = (\alpha - \alpha_j)(h_j) = 0$. Therefore $\alpha - \alpha_j = m\xi$ with $m \in \mathbb{Z}_{>0}$.

LEMMA 3. Let $i, j \in I$, and suppose $\alpha_i(h_j) \cdot \alpha_j(h_i) > 4$. Put $V = \bigoplus_{k=1}^n \mathbf{R} \alpha_k$ and $V' = \{\lambda \in V | \lambda(h_i) = \lambda(h_j) = 0\}$.

(1) $V = \mathbf{R}\alpha_i \oplus \mathbf{R}\alpha_j \oplus V'$.

(2) If $\mu = b_i \alpha_i + b_j \alpha_j + \mu' \in V$ $(b_i, b_j \in \mathbf{R}, \mu' \in V')$ with $\mu(h_i) \leq 0$ and $\mu(h_j) \leq 0$, then $b_i \geq 0$ and $b_j \geq 0$.

(3) If $\mu \in A_+$ and $\mu(h_i) \ge m$ for some $m \in \mathbb{Z}_{>0}$, then $(w_j \mu)(h_i) \le -(m+1)$.

PROOF. For $\mu \in V$, put

$$b_i=rac{2\mu(h_i)-lpha_j(h_i)\mu(h_j)}{4-lpha_i(h_j)lpha_j(h_i)}$$
 , $b_j=rac{2\mu(h_j)-lpha_i(h_j)\mu(h_i)}{4-lpha_i(h_j)lpha_j(h_i)}$,

and $\mu' = \mu - b_i \alpha_i - b_j \alpha_j$. Then $\mu = b_i \alpha_i + b_j \alpha_j + \mu'$ and $\mu' \in V'$. If $\mu \in (\mathbf{R}\alpha_i \bigoplus \mathbf{R}\alpha_j) \cap V'$, then $\mu = 0$ since $\alpha_i(h_j) \cdot \alpha_j(h_i) > 4$. Hence $V = \mathbf{R}\alpha_i \bigoplus$

 $R\alpha_j \bigoplus V'$. If $\mu(h_i) \leq 0$ and $\mu(h_j) \leq 0$, then $b_i \geq 0$ and $b_j \geq 0$. Next suppose $\mu = \sum_{k=1}^{n} c_k \alpha_k \in \mathcal{A}_+$ and $\mu(h_i) \geq m$ for some $m \in \mathbb{Z}_{>0}$. Put $\mu_0 = \sum_{k \neq i,j} c_k \alpha_k$. Then $\mu_0(h_i) \leq 0$ and $\mu_0(h_j) \leq 0$. Therefore, by (2), we can write $\mu_0 = b_i \alpha_i + b_j \alpha_j + \mu'_0$ ($b_i, b_j \geq 0$, $\mu'_0 \in V'$). Then $\mu = d_i \alpha_i + d_j \alpha_j + \mu'_0$, where $d_i = b_i + c_i > 0$ and $d_j = b_j + c_j \geq 0$. Hence

$$egin{aligned} &(w_{j}\mu)(h_{i})=(\mu-\mu(h_{j})lpha_{j})(h_{i})=\mu(h_{i})-\mu(h_{j})lpha_{j}(h_{i})\ &=(d_{i}lpha_{i}+d_{j}lpha_{j})(h_{i})-(d_{i}lpha_{i}+d_{j}lpha_{j})(h_{j})lpha_{j}(h_{i})\ &=2d_{i}+d_{j}lpha_{j}(h_{i})-d_{i}lpha_{i}(h_{j})lpha_{j}(h_{i})-2d_{j}lpha_{j}(h_{i})\ &=(2-lpha_{i}(h_{j})lpha_{j}(h_{i}))d_{i}-d_{j}lpha_{j}(h_{i})<=-(2d_{i}+d_{j}lpha_{j}(h_{i}))=-\mu(h_{i})\leq -m\ . \end{aligned}$$

Therefore, $(w_j \mu)(h_i) \leq -(m+1)$.

2. Main result. In this section, we will establish the following theorem.

THEOREM. Notation is as in Section 1. Then the following conditions are equivalent.

(1) $r(\alpha; \beta) = 3 \text{ or } 4 \text{ for some } (\alpha, \beta) \in \Delta^{\mathrm{re}} \times \Delta.$ (2) $a_{ii} = -1 \text{ and } a_{ji} < -1 \text{ for some } i, j \in I.$

COROLLARY. The following conditions are equivalent.

(1) $a_{ij} = -1$ if and only if $a_{ji} = -1$ (i, $j \in I$).

(2) $r(\alpha; \beta) = 0, 1 \text{ or } 2 \text{ for all } (\alpha, \beta) \in \Delta^{re} \times \Delta.$

PROOF OF THEOREM. The condition (2) implies $r(\alpha_i; \alpha_i) = 3$ or 4 and, hence, the condition (1). Therefore it is required to show the converse. Suppose $r(\alpha; \beta) = 3$ or 4 for some $(\alpha, \beta) \in \mathcal{A}^{re} \times \mathcal{A}$. Then we can assume $(\alpha, \beta) \in R_+$. Let $Q = R_+ \cap W \cdot (\alpha, \beta)$. Then we can also assume $ht(\alpha + \beta)$ is minimal in Q. Since $\alpha + \beta \in \Delta^{re}$ and $ht(\alpha + \beta) > 1$, there is $\alpha_i \in \Pi$ such that $(\alpha + \beta)(h_i) > 0$. Then $\alpha \neq \alpha_i$ for $(\alpha + \beta)(h_\alpha) \leq 0$. If $\beta \neq \alpha_i$, then $(w_i\alpha, w_i\beta) \in Q$ and $ht(w_i\alpha + w_i\beta) < ht(\alpha + \beta)$, which is a contradiction. Therefore $\beta = \alpha_i$. Since $\alpha \in \Delta_+^{\text{re}}$, there are $\alpha_{i_0} \in \Pi$ and $i_1, i_2, \dots, i_l \in I$ $(l \ge 0)$ such that $\alpha = w_{il}w_{il-1}\cdots w_{i_1}\alpha_{i_0}$ and $\beta_{s-1}(h_{i_s}) < 0$ $(1 \le s \le l)$, where $\beta_0 = \alpha_{i_0}, \ \beta_s = w_{i_s} w_{i_{s-1}} \cdots w_{i_l} \alpha_{i_0} \ (1 \leq s \leq l), \ \text{and} \ \beta_l = \alpha.$ Let $j = i_l$. Then we claim $a_{ij} = -1$ and $a_{ji} < -1$, which is our goal. If l = 0, then $\alpha =$ $\alpha_{i_0} = \alpha_j$. Since $(\alpha_j, \alpha_i) \in R_+$, one sees $a_{ij} = \alpha_j(h_i) = -1$ and $a_{ji} = \alpha_i(h_j) < \infty$ -1. Therefore we suppose, from now on, l > 0, hence $ht(\alpha) > 1$. Then $j \neq i$ since $\alpha(h_i) = -1$ and $\alpha(h_j) > 0$. Put $\alpha' = \beta_{l-1}$. If $\alpha_i(h_j) = 0$, then $(\alpha', \alpha_i) = w_i(\alpha, \alpha_i) \in Q$ and $ht(\alpha' + \alpha_i) < ht(\alpha + \alpha_i)$, which is a contradiction. Thus, $\alpha_i(h_j) < 0$ and $\alpha_j(h_i) < 0$. If $\alpha'(h_i) < 0$, then $\alpha(h_i) =$ $(w_j \alpha')(h_i) = (\alpha' - \alpha'(h_j)\alpha_j)(h_i) = \alpha'(h_i) - \alpha'(h_j)\alpha_j(h_i) \leq -2.$ Hence $\alpha'(h_i) \geq 0$,

since $\alpha(h_i) = -1$.

Case 1: $\alpha'(h_i) = 0$. In this case, we obtain $-1 = \alpha(h_i) = (w_j \alpha')(h_i) = \alpha'(h_i) - \alpha'(h_j)\alpha_j(h_i) = -\alpha'(h_j)\alpha_j(h_i)$ and $\alpha'(h_j) = \alpha_j(h_i) = -1$. If $\alpha_i(h_j) = -1$, then $(\alpha', \alpha_j) = w_i w_j(\alpha, \alpha_i) \in Q$ and $\operatorname{ht}(\alpha' + \alpha_j) < \operatorname{ht}(\alpha + \alpha_i)$, a contradiction. Hence $\alpha_i(h_j) < -1$, so $a_{ij} = -1$ and $a_{ji} < -1$.

Case 2: $\alpha'(h_i) > 0$. We proceed in several steps.

Step 1. Suppose $\alpha_i(h_j) = \alpha_j(h_i) = -2$. Then $\alpha(h_i + h_j) \leq 0$ by Lemma 1(1). Since $\alpha(h_i) = -1$ and $\alpha(h_j) > 0$, one sees $-1 < \alpha(h_i) + \alpha(h_j) \leq 0$, hence $\alpha(h_i + h_j) = 0$. By Lemma 1(2), we obtain a contradiction: $-1 = \alpha(h_i) \equiv 0 \pmod{2}$.

Step 2. Suppose $\alpha_i(h_j) \cdot \alpha_j(h_i) > 4$. Then $\alpha' \in A_+$ and $\alpha'(h_i) > 0$ imply a contradiction: $\alpha(h_i) = (w_j \alpha')(h_i) < -1$ by Lemma 3(3).

Step 3. We have just got $\{\alpha_i(h_j), \alpha_j(h_i)\} = \{-1, -1\}, \{-1, -2\}, \{-1, -3\}$ or $\{-1, -4\}$. If $w_i w_j(\alpha) \in \Delta_-^{\text{re}}$, then $\alpha' = w_j(\alpha) = \alpha_i$, hence $\alpha = \alpha_i - \alpha_i(h_j)\alpha_j$ and $-1 = \alpha(h_i) = 2 - \alpha_i(h_j)\alpha_j(h_i)$, so $\alpha_i(h_j)\alpha_j(h_i) = 3$. If $\alpha_i(h_j) = -1$ and $\alpha_j(h_i) = -3$, then $\alpha = w_j(\alpha_i) = \alpha_i + \alpha_j$ and $(\alpha, \alpha_i) \notin R$, a contradiction. If $\alpha_i(h_j) = -3$ and $\alpha_j(h_i) = -1$, then $\alpha = w_j(\alpha_i) = \alpha_i + 3\alpha_j$ and $(\alpha, \alpha_i) \notin R$, also a contradiction. Therefore $w_i w_j(\alpha) \in \Delta_+^{\text{re}}$ and $(w_i w_j \alpha, w_i w_j \alpha_i) \in Q$.

Step 4. Our hypothesis, the minimality of $ht(\alpha + \beta)$ in Q, leads to

$$egin{aligned} & ext{ht}(w_iw_j(lpha+lpha_i))- ext{ht}(lpha+lpha_i)\ &=-(lpha+lpha_i)(h_i)-(lpha+lpha_i)(h_j)+(lpha+lpha_i)(h_j)lpha_j(h_i)\ &=-(lpha+lpha_i)(h_j)[1-lpha_j(h_i)]-1\geqq 0 ext{ ,} \end{aligned}$$

which implies $(\alpha + \alpha_i)(h_j) < 0$ and $\alpha_i(h_j) < -1$. Therefore $\alpha_j(h_i) = -1$ and $\alpha_i(h_j) = -2, -3, -4$. Hence our theorem has been established. We, however, want to continue in order to obtain a stronger result.

Step 5. Suppose $\alpha_j(h_i) = -1$ and $\alpha_i(h_j) = -2$. Then Step 4 says $\alpha(h_j) = 1$ and $\alpha'(h_i) = (\alpha - \alpha_j)(h_i) = 0$, a contradiction.

Step 6. Suppose $\alpha_j(h_i) = -1$ and $\alpha_i(h_j) = -3$. Then Step 4 says $\alpha(h_j) = 1$ or 2, and $\alpha'(h_i) = \alpha(h_i) - \alpha(h_j)\alpha_j(h_i) = -1 + \alpha(h_j)$. Therefore $\alpha(h_j) = 2$ since $\alpha'(h_i) > 0$. Hence $\alpha'(h_i) = 1$. Put $w_0 = w_j w_i w_j w_i w_j \in W$. Then $w_0(\alpha, \alpha_i) = (\alpha - \alpha_i - 2\alpha_j, \alpha_i) \in Q$ and $\operatorname{ht}(w_0(\alpha + \alpha_i)) < \operatorname{ht}(\alpha + \alpha_i)$, a contradiction.

Step 7. Suppose $\alpha_j(h_i) = -1$ and $\alpha_i(h_j) = -4$. Then Step 4 says $\alpha(h_j) = 1$, 2 or 3, and $\alpha'(h_i) = -1 + \alpha(h_j)$. Therefore $\alpha(h_j) = 2$ or 3 since $\alpha'(h_i) > 0$. Suppose $\alpha(h_j) = 3$. We inductively define γ_i $(t \in \mathbb{Z}_{\geq 0})$ by $\gamma_0 = \alpha$, $\gamma_{2m+1} = w_j(\gamma_{2m})$ and $\gamma_{2m+2} = w_i(\gamma_{2m+1})$ for $m \in \mathbb{Z}_{\geq 0}$. Then one can easily check that $\gamma_{2m}(h_j) = 2m + 3 > 0$ and $\gamma_{2m+1}(h_i) = m + 2 > 0$. This means that α must be of the form $c_i \alpha_i + c_j \alpha_j \in \mathcal{A}_+^{\mathrm{re}}$, since $\operatorname{ht}(\gamma_i) < 0$ for some (sufficiently

648

large) t. Then $0 \ge \alpha(2h_i + h_j) = 2\alpha(h_i) + \alpha(h_j) = -2 + 3 = 1$, a contradiction. Therefore $\alpha(h_j) = 2$ and $\alpha(h_i) = -1$. By Lemma 2(2), we obtain $\alpha = \alpha_j + m\xi$, where $m \in \mathbb{Z}_{\ge 0}$ and $\xi = \alpha_i + 2\alpha_j$.

Step 8. In particular, we have established that $\alpha'(h_i) > 0$ implies $a_{ij} = -1$ and $a_{ji} = -4$.

3. Relations in Kac-Moody groups. (1) Steinberg-Tits presentation. Let A be a generalized Cartan matrix and G(A) the associated (universal) Kac-Moody group over a field K. Then G(A) has the following presentation (cf. Tits [6]):

generators

 $x_{\alpha}(t)$ for all $\alpha \in \varDelta^{\mathrm{re}}$ and $t \in K$,

relations

(A)
$$x_{\alpha}(s) \cdot x_{\alpha}(t) = x_{\alpha}(s+t),$$

- (B) $[x_{\alpha}(s), x_{\beta}(t)] = \prod_{i\alpha+j\beta \in \mathcal{A}^{\mathrm{re}}; i,j>0} x_{i\alpha+j\beta} (c_{\alpha\beta ij} s^i t^j)$ if $(\mathbb{Z}_{>0}\alpha + \mathbb{Z}_{>0}\beta) \cap \mathcal{A}^{\mathrm{im}} = \emptyset$,
- (B') $w_{\alpha}(u) \cdot x_{\beta}(t) \cdot w_{\alpha}(-u) = x_{\beta'}(u't),$
- (C) $h_{\alpha}(u) \cdot h_{\alpha}(v) = h_{\alpha}(uv)$

for all $\alpha, \beta \in \Delta^{re}$, $s, t \in K$ and $u, v \in K^{\times}$, where $c_{\alpha\beta ij}$ is a certain integer, $\beta' = \beta - \beta(h_{\alpha})\alpha, u' = \pm u^{-\beta(h_{\alpha})}t, w_{\alpha}(u) = x_{\alpha}(u) \cdot x_{-\alpha}(-u^{-1}) \cdot x_{\alpha}(u)$ and $h_{\alpha}(u) = w_{\alpha}(u) \cdot w_{\alpha}(-1)$. An explicit description of the right-hand side in (B) has been calculated (cf. [4]). We must notice that the coefficients $c_{\alpha\beta ij}$ are deeply related to the root strings in the rank two subsystem generated by α and β .

(2) Symmetry of -1. Suppose that $A = (a_{ij})_{i,j \in I}$ has the property that $a_{ij} = -1$ if and only if $a_{ji} = -1$ $(i, j \in I)$. Then the above relation (B) can be simplified as follows:

(B)
$$[x_{\alpha}(s), x_{\beta}(t)] = \begin{cases} 1 & \text{if } \alpha + \beta \notin \varDelta, \\ x_{\alpha+\beta}(\pm st) & \text{if } \alpha + \beta \in \varDelta^{\text{re}}. \end{cases}$$

The other type relations for (B) (cf. [4]) do not happen here. This comes from our theorem (or its corollary). Then we should compare this to the corresponding relation for SL_n .

(3) A_2 -subsystems. As a direct consequence of Kac-Peterson conjugacy theorems (cf. [2]), we obtain the equivalence of the following two conditions.

(i) There exist α , $\beta \in \Delta^{re}$ such that α and β generate an A_2 -subsystem of Δ .

(ii) There are some $i, j \in I$ such that $a_{ij} \cdot a_{ji} = 1$ or 3.

(4) No entry of -1. If A has no -1 as an entry, then from (2) and (3) we see that the relation (B) is just

J. MORITA

(B) $[x_{\alpha}(s), x_{\beta}(t)] = 1$ if $\alpha + \beta \notin \Delta$.

(5) The set P(A). Let P(A) be the set of all the prime numbers p having the property that p divides $|a_{ij}|$ for some $i, j \in I$ with $a_{ji} = -1$. If char K does not belong to P(A), then the following two conditions are equivalent.

- (i) $[x_{\alpha}(s), x_{\beta}(t)] = 1.$
- (ii) $\alpha + \beta \notin \Delta$.

Here $\alpha, \beta \in \Delta^{re}$ and $s, t \in K^{\times}$. This equivalence is due to [4], [6] and the proof of Theorem. For example, $P(B_n) = \{2\}$, $P(G_2) = \{3\}$, $P(A_1^{(1)}) = \emptyset$, and $P\left(\begin{pmatrix} 2 & -6\\ -1 & 2 \end{pmatrix}\right) = \{2, 3\}.$

(6) Example. Let $A = \begin{pmatrix} 2 & -a \\ -b & 2 \end{pmatrix}$ with $ab \ge 4$, and U(A) the subgroup of G(A) generated by $x_{\alpha}(t)$ for all $\alpha \in \Delta_{+}^{re}$ and $t \in K$. Put $\Phi_i = \{\alpha \in \Delta_{+}^{re} | \alpha(h_i) > 0\}$ for each i = 1, 2. Then $\Delta_{+}^{re} = \Phi_1 \cup \Phi_2$. Let U_i be the subgroup of U(A) generated by $x_{\alpha}(t)$ for all $\alpha \in \Phi_i$ and $t \in K$ (i = 1, 2). If char K = 0, then we see $U(A) \simeq U_1 * U_2$, the free product of U_1 and U_2 (cf. [6], (1)). If $\alpha > 1$ and b > 1, then each U_i is abelian by Theorem. Suppose a = 1 (, hence $b \ge 4$). If char K belongs to P(A), then each U_i is abelian. Otherwise each U_i is meta-abelian (not abelian).

References

- V.G. KAC, Infinite dimensional Lie algebras, 44 Progress in Math., Birkhäuser, Boston, 1983.
- [2] V.G. KAC AND D.H. PETERSON, On geometric invariant theory for infinite demensional groups, preprint.
- [3] R. V. MOODY AND T. YOKONUMA, Root systems and Cartan matrices, Canad. J. Math. (1) 34 (1982), 63-79.
- [4] J. MORITA, Commutator relations in Kac-Moody groups, Proc. Japan Acad., Ser. A, (1) 63 (1987), 21-22.
- [5] R. STEINBERG, Lectures on Chevalley groups, Yale Univ. Lecture notes, 1967/68.
- [6] J. TITS, Uniqueness and presentation of Kac-Moody groups over fields, J. Algebra, 105 (1987), 542-573.

INSTITUTE OF MATHEMATICS University of Tsukuba Tsukuba, 305 Japan

650