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Abstract. For a Kac-Moody Lie algebra we study pairs of real roots the sum of
which is a real root. More precisely, we study in which way the existence of such pair
of roots determines the existence of certain subroot system within the root system.

0. Introduction. The study of pairs of real roots {y,, y,} of a Kac-Moody Lie
algebra g whose sum is a real root was initiated by Morita in [3] and [4] (though [4]
contains a mistake as pointed out in [5]). Morita put this information to good use to
derive information about K, in the case of Kac-Moody groups.

Morita looks at the case when {y,, y; >= —1and {y,, yy )= —a where a=1, 2, 3.
(There are also some results if a>3 but only under some strong assumptions on the
Cartan matrix.) Morita assumes that y,, y, are positive and that y, —y, is not a root
(a Morita pair in our terminology). His key observation is that a determines the existence
of certain entries in the corresponding Cartan matrix 4 of g (and hence that 4 somehow
sheds information about the existence of such pairs of roots).

Our own interest in this problem came out from trying to understand the nilpotency
degree of certain subalgebras of g (Conjecture 1 below). We will deal with a above
arbitrary and show how a determines a sequence of entries in 4 with certain properties.

1. Notation and some basic facts about root systems of Kac-Moody Lie algebra.
We begin by recalling some well-known objects related to Kac-Moody Lie algebras.
Our running reference for this will be [9, Ch. 4, 5]. Most of this material is also
covered in [1].

A=(A4;;); je; Will throughout denote a generalized Cartan matrix. (The index set /
is allowed to be infinite.) Let (b, I1, IT") be a realization of 4. Thus

M={a|iel}ch*, O¥={a)|iel}ch,

o a7 >=A Vi, jel.

ij»
As usual we set

W={(r;|ieI) where r;:=r,,,
“A=WII,
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4 the root string closure of A4 (=the set of all roots, real and
imaginary, of the corresponding Kac-Moody Lie algebra) ,

imA___A\reA ,
Q+=@Nai’
iel

A,=An0Q,, ™A,="AnQ, .

Let fe A and xe™A. Recall the a-string through B, defined by S(a, )={B+ka|ke
Z}n 4. Then there exist u, ve N such that

S, By=p—wua, ..., p,..., f+va.

Moreover u—v=,f,a")> and the reflection r, flips S(a, f) about its midpoint
B—({B,aY>/2)a. We refer to f—ux and B+va as the first and last roots of S(a, )
respectively.

We intend to describe the real and imaginary nature of the roots in a root string.
It is easy to do this visually by attaching to S(x, f) a series of nodes; black for real
roots and white for imaginary. For example @ o o e depicts a string S(x, ) with four
roots where only the first and last roots are real.

Parts of the next proposition are exercises in [1] and are also implicitly used in
[3]. For the sake of completeness and convenience we state and prove.

PROPOSITION 1. Let fe A and a€™A. Let r(o, B} denote the number of real roots
in S(a, ). Assume r(o, f)>0. Then
(1) The first and last roots of S(a, B) are real.
(1) o, B)=1,2,3, or 4. Moreover
(@) If ra, =1, then S(a, p)={B} and B is real.
(b) If r(a, B)=2, then S(a, B) is depicted by a diagram of shape
©e0--0-0e.
(© If o, By=3, then S(a, P) is depicted by the diagram e e e and {0, f}
generates a root system of type C,.
(d) If Ha, B)=4, then S(a, B) is depicted by a diagram of shape
@0 0:---0---0 @ e. Furthermore, if S(a, ) does not contain imagi-
nary roots, then {a, B} generates a root system of type G,.

Proor. There is no loss of generality in assuming that ae™4, and that S(a, f)
contains real roots. Moreover since S(«, ) is independent of fe S(a, f) we may as-
sume that fe™A4, f—a¢ ™A, and {f, a¥ ) <0. (Choose f to be the real roots of small-
est height in S(a, f).)

We begin by reducing the problem to the rank 2 case. Let W’ be the subgroup of
W generated by r, and r,; and let °A"= W'ou W’f. With the terminology of [8] "4’ is
a closed subroot system of 4 and {a, #} is a base of 4’ [8, Proposition 8.1] and hence
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(Zo+ZB)nA=4", (Za+ZB)n"A="A",

where A’ denotes the root string closure of 4",

From this discussion it follows that it will suffice to establish the proposition in
the case where ™4 is a rank 2 root system with base {a, f}. We assume this for the
remainder of this proof.

Let (-|-) be a symmetric W-invariant bilinear form satisfying |y|| i=(y|y)>0 if
ye™4 and |y} <0 if ye™4.

Consider the function F, ;: R— R defined by

Fop: t |IB+tall = llal2® + 20| Byt + 118117 -

We now prove the proposition.

(i) If the first root f—ux of S(a, f) is imaginary, so is the last f+va=r(f —ua).
By assumption there exists —u <k <vsuch that §+kae™4. Then F, o(—u) <0, F, 4(k)>0
and F, 4(v)<0, which contradicts the fact that the graph of F, () is a concave up
parabola.

(i) For each ce R the equation F, 4(t)=c has at most two solutions. Now if f+
kae™4, then B+ka is W-conjugate to either a or f and hence ||f+ka| e {|«l, |81}
Thus k is a solution of either F, 4(t)=|a| or F, 4(¢)=||B]l, so at most four real roots ap-
pear in S(a, ). The statements of (a), (b), (c) and (d) now follow from the symmetry
of S(a, ) about its midpoint and the concave up nature of the graph of F, 4(r). O

2. Morita pairs. We begin by looking at root strings with two consecutive real
roots up to conjugation by the Weyl group and sign. To this end we define a non-ordered
pair of positive real roots {«, f} to be a Morita pair if

MP1. oa—f¢A

MP2. a+fed™

MP3. (Minimality condition) ht(e+ f) <ht(w(o+ f)) for all we W such that w(a),
w(f)e™4,.

PrROPOSITION 2. (i) Let ay, o;€ll. A pair {o;, a;} is a Morita pair if and only if
o af y=—1or a0 >=—1.

(i) Every Morita pair is of the form {a;, B} for some icl. Moreover if B¢ 11, then
By’ >=—1.

(i) If {o;, B} is @ Morita pair with B¢11, then {f+u;, o > <0 for all j#i.

Proor. (i) If <{a;af>=—1, then ryo;)=0;—<o;, o) >=0;+a;, hence o;+a;€
A. Since o;— ;¢ A and the minimality condition obviously holds, we have that {a;, a;}
is a Morita pair. If {a;, oy ><—1 and <a;, ' )< —1, then a;+a;¢ "4, and therefore
{o;, ;} is not a Morita pair.

(i) Let {a, B} be a Morita pair. Then a+fe™4, so that there exists ie/ such
that (o + B, & > >0. As ht(r;(o + f)) < ht(a + f) then by MP3 either ri(x)e 4 _ orr;(f)ed_,



394 Y. BILLIG AND A. PIANZOLA

so that either a=a; or f=o;. If B¢ I then a=a;. As {f+a;, ' >>0 we have (B, ;">
> —2, while {f, o} > <0 since f—u; is not a root by MP1. Thus {8, a;>=—1.

(i) If {f+a;af>>0 for some j#i, then ht(r,(B+a;))<ht(f+a;) and r;(p),
ri(a)e™a, as B¢ 11 and i#j. This contradicts MP3. |

The main theorem of this paper describes in which way the value {a;, ") of a
Morita pair {a, «;} determines the existence of a sequence of fundamental roots with
certain properties.

The next two results show in which way two real roots whose sum is a real root
determines the existence of a Morita pair {a, o;} with a certain (o, o).

PROPOSITION 3. Let y;, y,€™4 be such that y, +y,€"A.

(1) Ifyy,y,€4, andy,—y, ¢ A, then there exists we W such that {wy,, wy,} is a
Morita pair.

(ii)) There exists o€ + W such that ay,€ A, and S(oy,, 0y,)=4,.

PrROOF. (i) Among all we W for which {wy,, wy,} =4, choose one minimizing
ht(wy, +wy,).

(ii) We may assume that y, € I1. In this case either S(y,, y,)=4, (in which case
Y1, Y2€4,) or S(yy,y,)ed_. Now if S(y,,y,)cd_, then r, S(y,,y,)=4_ (since
—71€S8S(1, v2). But r, S(y4, y,)=S(—7,, r,,72) where both —y, and r, y, belong to

A _. Now (ii) follows if we set 6= —r, .

PROPOSITION 4. Let v, y,€"A4, be such that y,+y,€A. Then there exists an
integer N> —1 and a Morita pair {o, o;} such that exactly one of the following holds:

(1) vy—v,€4 and {y,,7,} is not conjugate by + W to a Morita pair, {y{,y; >=
{277 2=N, and o, a¥ )= —(2+|N|).

(i) y,—7.¢4 and {y,,7,} is conjugate by + W to {a,a;}. In particular, after
interchanging y, and y, if necessary, we have {(y,,v; y=—1 and {o;, 2> ={y5, y{ ).

Proor. By Proposition 3(ii)) we may assume that y, and S(y,, y,) lie inside 4 ,.

Assume y, —y, e 4. If {y,, y{ > <0, then y, and y, generate a G,-type root system
(Proposition 1). By direct inspection we find that {y,, yy > ={y;, y5 » = — 1. Furthermore,
any base of this subroot system can be conjugated to a Morita pair (Proposition 3(i)).
Thus (i) holds with N= —1.

If {y,,yy>=0, then y, and 7y, generate a C,-type root system and, just as above,
we see that (i) holds with N=0.

If {y2, Y >=N>0, then y:=r, (y,+y)=7y,—(N+1)y; and r,(y;)=y,— Ny, are
the first two roots of S(y,, y,). By Proposition 3(i) we can conjugate {y, y,} to a Morita
pair. This pair is as desired since (y, y; > =<{y,+7:, —y1 > = —2—N. Furthermore, we
must have {y,, y" > = —1 (Proposition 2). Thus r, r.(y;)=r,,(y; +7)= =7, +r,,y=7, and
therefore
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<y15 Vﬁl>=<)’1a rylr'y’yi/>= <ry1’YI3 ryy;/>= _<y13 ryyil>= —<r},’))1, ylv>
=<erI’ ry;yi/ > - <ry1ryy1’ 71v>=<)’2, ))I/>=N .

Finally if y,—v,¢ 4, then {y,, 7,} is conjugate to a Morita pair by Proposition
3(i1) and clearly (ii) holds. OJ

3. Submatrices attached to Morita pairs. We begin by stating (with proofs when
necessary) five lemmas that will be used in the proof of the main result. The first three
lemmas are in [3] and are here restated with our present notation for the reader’s
convenience.

LemMma 1. Let i, jel, i#j, and let ae A,. Suppose o, o) >={a;, o' >=—2. Then
we have:
(i) oo ) +<a, o) > <0.
(i) If <o, o >+ <o, o) > =0, then {a, o > = —<a, &' ) =0 (mod 2).

LEMMA 2. Let i jel, i#j, and let aed,. Suppose {a,o;>=-—4 and
<(Xj, (xiv>= — 1. Then <d, Zai" +“JY>SO.

LeMMA 3. Let i jel, i#j, and let aed,. Suppose (oo} »a; 07 >>4. If
(o, 0 Y=m>0, then {rja, o7 )< —(m+1).

Lemma 4. Let i,jel, i#j, and let ac™A,. Suppose (o, o Y{a; 0 >>4. If
(o, 0 >=—1 and {a, &} >>0, then {a;, o y=—1 and either {a, 07 y=1 or a=ua;

Proor (due to J. Morita). Consider f:=rja=a—<{a,a] >a; If as#a; then
perA,. Note that

<ﬂ’ aiv>=<a’ “iv>_<aa ajv ><ajs aiv>= —1 —<d, a_,y><aj’ aiv>20 .

By Lemma 3if {(f, oY > > 1, then {a, ;" ) < — 1, which will contradict the assumption
(o, & y=~1. It follows that {f, «;>=0 and hence <a, «;’ >{a;, @' )= —1. From this
last equality we deduce that {a, ;' >=1 and <{a;, &' >=—1. O

LEMMA 5. Let J be a finite subset of I such that the submatrix A, is indecomposable.
Let ue Q. be such that {u, oy > >0 for all jeJ. Assume supp(p)nJ+#J. Then we have:

(1) Aj is either of finite or affine type.

(i) If {u, o) >>0 for some jeJ, then A, is of finite type.

(i) If A; is affine and supp(p) is connected, then u is a null-root of the affine sub-
system generated by {0;};c;.

PrOOF. Let p=) .  co;. As supp(u)nJ#QJ there exists keJ such that ¢,>0.
Consider =Y, _, 4 #0. Then <{B, ay>>(u, o) > >0 for every jeJ. By a result of
Vinberg it then follows that A4, is of finite or affine type (cf. [9, Proposition 3.6.5]).
If in addition {g, a/>>0 for some jeJ, then (B, a;>>0 and A, is of finite type
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(ibid.).

From what has been said it follows that if 4, is affine then (y, a) >={p, o >=
0 for all jeJ. Hence for every vertex i¢J of the Dynkin diagram of A such that i is
connected by an edge to some vertex from J we have ¢;=0. As supp(u) is connected and
supp(p) nJ# J it follows that supp(u)=J and u=p is by definition a null-root. dJ

PROPOSITION 5. Let {o;, B} be a Morita pair with B¢ I1. Then we have:
(i) B+, o) ><0 for all jel, j#i. Furthermore if {f+a,, oy > =0, then either
(@) Lypaf)>=0or
(b) {a;, a;} generates a subsystem of type G,, with {o;, a} Y= —3,
g, 0 >=—1; and f=ri(o;)=0;+ 3a;.
(ii) Assume (i)(b) above is not the case. If je I is such that {f, o] > >0, then either
@ <Boof>=1<a,0/><—1,<a;,a ' )=—1or
(b) {a,o;} generates a subsystem of type BC{®, with {o,a;>=—4,
(aj, 07 >=—1. Moreover B=a;+nd, where neN and 6=20;+a; is a
null-root of the affine subroot system in question.
(i) There exists a unique jeI such that {B, o} ) >0. Moreover j#i.

Proor. (i) We have seen that {f+a;, a; > <0 in Proposition 2(iii). Furthermore,
if {f+o;,ay>=0, then ht(rr;(f+«;))<ht(f+a;), hence rr;q;ed_ or rir;fed_.
Consequently, either <o, o) >=<a;, a7 >=0 or f=r;a;. In the latter case B+a; is
a real root of the subsystem generated by {a;, a;}. Since {(f+a;,a/>=0 and
{B+a;, a’>=1, Lemma 5(ii) shows that {a;, «;} generate a subsystem of finite type for
which 8+ «; is a dominant root. In the C, case f+ o, is the highest root (because f§ ¢ IT).
But then 8—a; e 4, which contradicts {a;, f} being a Morita pair.

(i) From (i) and the assumption {f, a; > >0 it follows that {a;, & ><—1 and
{B+o;, ;> <0. Let us consider the cases where {o; « ;} generates a subsystem of
hyperbolic, affine or finite type separately.

Case 1. Suppose that {a;, «;} generates a hyperbolic system, i.e., {a;, o/ >{arj, & >
>4. Then by Lemma 4, {o;, o >=—1, o, a7 ><—4 and (B, o] >=1.

Case 2. Suppose that the subsystem generated by {;, a;} is affine. Since
(B,ay>=—1 and {B,ay>>0, Lemma 1 rules out the case A‘”, o Lo ) y=
{aj, & »=—2. Since (oz,, af»<—1, the only possible case is (ocl-, af >=—4,
o, 0 y=—1. Applying Lemma 2 we get that {f, 2«;" +a; > <0, hence 0<{f, o;' > <2.
If B, o; > =1 then (ii)(a) holds. If {8, «} > =2 then by Lemma 5(iii) § —«; is a null-root
of the affine system of type BC» generated by {a;, o;}. Then f—a;=nd as prescribed
by (ii)(b).

Case 3. Suppose that {«;, a;} generate a finite subsystem. Since {a;, oy > < —1, it
follows that {a;, & >=—1 and {w;, a; > may equal either —2 or —3. If (oc,, o >= —2
then (B, a; > =1, because {B, a;’ >>O and {f+a; a; > <0. Similarly if <{a;, ;' >=—3,
then {B,a;>e{l,2}. Now if (B,ay)=2, then PBro,af>=—1, and hence
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(rr;*(B+a;)=p, whereas (r7;)*(a;)=0o;+30;. From the minimality of {8, o;} it then
follows that (r7;)*(f)e4_, so that B belongs to the finite root system generated by
{o;, ;} and either f=o;€IT or f=0u;+ 3a;, both of which are ruled out by assumption.
Consequently, <, «;" > =1 as desired.

(i) Since fe™4, there exists jel such that (B, «;>>0. Moreover, j#i since
{B, a;’y=—1 by Proposition 2(iii). We show j to be unique by way of contradiction.
To this end let us assume that {f, a; >>0 and {8, &y’ > >0, where j#k.

Note that (o, af >#0 and {a;, @' >#0 by (). Since (B, >>0, we have
p—o,ed, and

B—ay, 057 ) =—<Coy, 0 > — 120,
<ﬁ—aka ajv>=<ﬂ’ cx}’)—(ak, ajv>>0 .
By Lemma 5(ii) the root system generated by {«;, a;} is finite. Mutatis mutandi for

{o;, ). By (ii) then (o, a7 > =0y, 0 >=—1 and {{a;, 0>, {o, o >} {—2, —3}.
Write =3 _ ca, with ¢,>0. Then

1) —1={B, a7 >= Z:ICS<“S’ o > <oy, o >+ <oy, 0 >+ oy, 0 D =2¢;—cj—Cy .

On the other hand

) 0<{B, o) > <ci<oy, af Y +ciay, of > < —2¢;+2c;;

and mutatis mutandi

3) 0<{B, o ><—2¢;+2¢, .

From (2) and (3) we get that ¢;<c;—1, ¢;<¢,—1, thereby contradicting (1). O

PROPOSITION 6. Let n>2 and let {i, ..., i}, n>2, be (necessarily distinct) ele-
ments of I satisfving the following conditions

(e y s Uiy ) = —1 for k=1,...,n—1
IND 1 (o, 00> =0 for |k—m|>1;
<ai17 ai\;> S_z
Let Be™A, be such that
{B,a>=0 for k=1,...,n—=2; Boay >=—1; {Be>=1,
B,af><0 forall j#i,.
Let a=r, f=P—o; €™A,. Assume jel satisfies {a, a; ) >0. Then we have:
(i) <o 07>=0for all | <k<n, and <{a, &), >=—1. In particular j¢{i,, ..., i,}.
(i) Either
(@) oa=a;, (o, >< -2, or

IND 2 {
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(b) <o,a>=1or
(¢) the submatrix A; of the generalized Cartan matrix A corresponding to the
subset of indices J={iy,..., i, j} is of affine type BC'® and o=
a;+nd, neN, where 6 is a null-root of this subsystem.
@) op o >=—1.
(iv) j is the unique element of I with the property {a, a; > >0.
(v) Lajoy>=0forallk=1,...,n—1.

Proof. (i) This follows easily from the assumptions.

(i) If a=ua;, then (o;, x> < —2 as {a+a;,a;><0 and <a, a) > =2. If neither
(a) nor (b) hold, then (&, 2} >>1 and a#a; so that x—a;e 4, and {a;, ;> < —1 (this
last since {a+a; , o > <0). Recall that {a;; , &} > < — limplies {a 5o > <0.Wethen have

o—aj o > 20 for k=1,...,n—1;
Ca—oy 07 >=—1—<a;, 007 >>0 and
Qa—ayaf y=La, af >—22>0.

By Lemma 5(i) the submatrix A; corresponding to the subset of indices J=
{iy, ..., 1, j} is of finite or affine type. But since (o, a7 >< —1 and (a;,a;><—1
we get that 4, is of type BC?® (Figure 1). By Lemma 5(iii) @ —«; is a null-root of this
subsystem and we are in case (b).

BC® O0=0—0--0—0=0

1 2 2 2 2 2

c O0=0—-0:-0—0«0

1 2 2 2 2 1

/
2, 0=0-0--0
1 2 2 2\

FIGURE 1.

(ii)) Note that in case ii(a) and ii(c) we have {a; a>=—1 (given that
{a, o7 »= —1). Assume that ii(b) holds, i.e., {a, a; >)= —1. Suppose, by way of con-
tradiction, that (iii) fails. Then <a;, oY > < —2. Note that jesupp(a) since {(a, ;' > >0.
Thus 2a—a;e Q ., supp(2a—a;)=supp(a) is connected, and
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QCa—ay, o >20 for k=1,...,n—1;
QLa—aj o) >=—2—{a; a7 >=>0 and
Qo—aj, o) y=2{a, o] ) —2=0.

Hence, by Lemma 5(i) the submatrix 4,, where J={i, ..., i, j}, is of finite or
affine type. Then it is of type C{" in Figure 1, because (a;,, o > < — 1 and {a;, 00 > < — 1.
By Lemma 5(iii) 2z—o; is a multiple of the null-root of C{V. Thus 20—a;=
mo;, + 20, + * + - +2a; +a;), but this equality is impossible as the left hand side has a;,
with even multiplicity and «; with odd multiplicity.

(iv) Let us prove the uniqueness of jeI such that {«, a; >>0.

Suppose, by way of contradiction, that {a, a; > >0, <{a, a;’ >>0 for some kel, k#j.
From (i) k, j¢{is, ..., i,,} because <{a,a; ><0, m=1,...,n. From (ii) it follows that
{a, af y=<a, o >=1 while (iii) gives us {a;, & > =<y, 0y >=—1. As {a, o}’ >>0 and
e, o’ > >0 we have 2a—o;—a, €Q . Now

Qo—a;—oy, o >>0 for m=1,...,n—1;

Qa—o;—ay, a7 >=—2+1+1=0,

Qo—aj—ay, oy )>2-2=0,

Qa—oy—ay, 0 )=2—-2=0,
so that by Lemma 5(i) the submatrix A; corresponding to the set J={i,, ..., i, j, k} is
of finite or affine type. The only possible type for 4; is C3, in Figure 1, then by
Lemma 5(iii) 2¢—o;—a, is a multiple of the null-root of C{¥}; and consequently,
200—o;— oy =mlor;, + 20, + -+ - + 20 + o+ o) for some me V. However, this equality is
impossible as can be seen by comparing parities as above. This finishes the proof that
j 1s unique.

(iv) It remains to be shown that {a; , a; > =0 for all 1 <k <n. Suppose not. Then

neither (ii)(a) nor (ii)(c) can hold (because otherwise {a;,, «; > =0 as can be seen by (i)).

]

We may therefore assume that {a, «; »=1. Let m<n be the maximal index with the
property {a; , o) > #0. Let {o; , o) > = —x, {a;, &; > = —y, and note that x, y>0. Since
(o, a; >=1, we have a—a;e 4. Then by (i)

<a—“jaai\:">=y;
(a—aj 0 >=>0 for k=1,...,n—1;
while also
{a—aj a7 >==14+1=0; and {a—a;a/>=1-2=~1.

Since y>0, we have a—o;—a; €4.. If we assume that y>2, then
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{o—o;—

=, ay > >0 for k=1,...,n;

Qo—oj—oy o >=—1—Lo , 0 >>0
j m? J m> )

and it then follows from Lemma 5(i) that the submatrix 4,, where J={i,, ..., i, j}, is
of finite or affine type. But this is impossible as {«;,, o, > < —1 and the Dynkin diagram
of A; contains a cycle (namely j, i,, ipns1, ..., ). If y=1 and x>2, then the same
argument works for 2(a—o;)—o,; .

We may therefore assume that x=y=1. Then (i) yields r; rj(@)=0—a;—a; . We
consider two cases:

Case 1. <o,  >=—1 Then m>1 and {a—o;—a; 7 >>0. Thus p:=
a—a;—a;, ,—o, €4, satisfies the conditions of Lemma 5(i) for J={i,, ..., L, j}.
Indeed, {u, @’ . ,>>0 and hence A4; is of finite type which contradicts the fact that 4,
has a cycle.

Case 2. (o, ><—1 Consider p:i=a—o;—a; —a

im?

ims1 €45, Then p satis-
fies the conditions of Lemma 5(i) for J={i,, ..., i,, j}. Thus 4, is, on the one hand
of finite or affine type, while on the other, having an entry less than —1 and a
cycle is of indefinite type. This contradiction completes the proof of the proposition.

4. The main theorem.

THEOREM 1. Let {a, B} be a Morita pair with {a, B¥)=—a and {f,a")>=—1.
Then exactly one of the following holds.

Case F. (Finite case.) a=1, 2, or 3 and either

(1) a,fell or

(i) a=1 and there exist a;, o;eIl such that {o;, oy y=—3, a;, 0 >=—1, and
{o, B} ={o;, 0,4 3} }.

Case A. (Affine case.) a=4 and there exists a sequence of distinct fundamental
roots o;,, ..., o, €1, 1>2, which generate an affine subsystem of type BC{?, and which
furthermore satisfy

(o, p o >=—1 for k=1,...,1-1,
o, 05,7 =0 if lk—-m|>2,
Qoo y=La_, 0 >==2 if I>2,

oy, 00> =—4 if 1=2,

a=o; , and
B=ry, - ry_ (o) +nd,
where & is a null-root of BC®, and n>0 (by convention r;,- - -r;, =1 if I=2).

Case 1. (Indefinite case.) a>S5 and there exists a sequence of distinct fundamental
roots o;,, ..., o €Il, I>2 such that
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o, oy >=—1 for k=1,...,1—-1;
<ot 457, > =0 i lk—m|=2,
oy, an><—1, oy, o ><—1;

=a7

-1
kljl <0€,~k, ai\,/(+1>

o =0 and

iy o
ﬂ=ri2' : 'ri,_,(“i,)-

ProoF. Before going into the main proof we note for future reference that if «
and f are as stated in Case A then {(a, f¥>=—4. To see this first use a positive
semidefinite W-invariant bilinear form on the affine system in question to see that
o, (B+nd)Y >=<a, B¥> for all ne Z. Thus

oy BY D=y iy v oy Oy D=Ly, o P30 0
_{<a.-l,o<i§>=—4 it 1=2
Tl o 2+ 20, o y=—4  if [>2.

If a=1, then the assertion of the theorem (namely Case F(i) or (ii)) remains true
if we interchange « and 8. It follows then by Proposition 2 that we may henceforth
assume that (B, «¥ >= —1 and that a=a, for some iel

By Proposition 2(ii) and Proposition 5 there exists je 1, j#i such that one of the
following holds:

(a) B=o;el, and (o, o )= —1.

(b) B=o;+3a;, where {a;, «;} generates a subsystem of type G,.

() B=ua;+nd, where {0, 0;} generates an affine subsystem of type BC{.
Moreover {a;, & >=~—1, {a; ;' >=—4 and J is a null-root of this sub-
system.

(d) <B,a7>>0 and «; is the unique element of IT with this property (i.e.,
B,y ><0 for all k#j). Moreover, (o, 0;/><—1, <a,0’>=—1 and
(B, 5 >=1

If (a) holds then we are either in Case F(i), Case A, or Case I according to whether
ae{l, 2,3}, a=4 or a>4, respectively.

If (b) holds, then Case F(ii) holds.

If (c) holds, then Case A holds with /=2 as can be seen by setting i, =i, i, =j.

Assume (d) holds. We first note that § does not belong to the subroot system A’
generated by «; and o;. Otherwise r;f=f—a;e™A’,, which is not possible given that
{rif, o >=0and {r;f,a;>=—1.Leti; =i, i=j, and f,=p. Then J,:={i,, i,} satisfy
Ind 1 while 8 satisfies Ind 2 of Proposition 6. Thus if we let S5 =r,(8,)=p,—a;, €4,
then there exists a unique iy € /\J, such that with J;:=J,u{i;} either
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(1.3) Ay, is affine of type BCY and f=«;,+nd, where 4 is a null root of
this subroot system or

2.3) Bi=o;, and (a;,, 05><—1 or

iz

(3.3) By, asd=1, (B3 o;>=—1
g a;p=1, <o, 05 >=—1
{0, & > =0 (Proposition 6(iii))
oy, a5, ><—1, and
Ba o ><0 for all k¢J; Proposition 6(v).

If (1.3) holds, then we are in Case A of the theorem with «; , «;,, a;,.

If (2.3) holds then Case A with n=0 or Case I of the theorem holds.

Assume (3.3) holds. Then J; and f; satisfy the assumptions Ind 1 and Ind2 of
Proposition 6. Thus there exists a unique i, and f,: =r;,f3=r;r;,f such that J,=J3 U {i,}
and B, satisfy the assumptions of Proposition 6.

What we have is an algorithm that creates in step /> 3 a sequence of distinct indices
Ji={iy,...,i;} and of positive roots B,, B3, ..., B, of decreasing height such that
Bi=r,_ , ri,f=PB_,—;, , and either

a.h Case A holds for the sequence «; , ..., ®;

1%

2.hH Bi=oy, and {a;, , a7 ><—1or

- 12

3.) J; and B, satisfy the assumptions Ind 1 and Ind 2 of Proposition 6.

It follows that for some 3</<ht(8)+2 it is the case that (3./—1) and either (1./) and
(2.1) hold. We then have

1-2
4 ooyttt Pay, =0 — 0, 0 D0, — " — l—[ CTNE- SN
k=1

(because of (3./—1)), while by Proposition 6(i) applied to a:=o;,=f; _, —o; _,
%) o, o > =0 forall 1<k<l.
Thus by (4) and (5)

a=[<a;, B¥o[=1<ry_, o, 4 D=

-1
kl——-ll <aik’ ai\x:+1> .

CorOLLARY. If {a, B} generate a subsystem of type

(5 %)
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where p is a prime number, then there exists we W such that wa, wBeIl.
ReMARK 1. Case F of this theorem was proved in [5].

ReMARK 2. The results of this paper hold also for root systems of a ser of root
data (cf. [8] and [9, Ch. 5]).

We now state a conjecture which is related to this work: Let g(4)=n_@®hPn, be
a Kac-Moody algebra corresponding to a generalized Cartan matrix A, and let
s, :=n, nw(n_) for we W. The subalgebra s, is nilpotent (since it is finite-dimensional
and n, is residually nilpotent).

CONJECTURE 1. The degree of nilpotency of s,, is bounded by a constant which
depends on A but not on w.
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