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Ror2 signaling regulates Golgi 
structure and transport through 
IFT20 for tumor invasiveness
Michiru Nishita1, Seung-Yeol Park2, Tadashi Nishio1, Koki Kamizaki1, ZhiChao Wang1,  
Kota Tamada3, Toru Takumi3, Ryuju Hashimoto4, Hiroki Otani4, Gregory J. Pazour  5,  
Victor W. Hsu2 & Yasuhiro Minami1

Signaling through the Ror2 receptor tyrosine kinase promotes invadopodia formation for tumor 
invasion. Here, we identify intraflagellar transport 20 (IFT20) as a new target of this signaling in 
tumors that lack primary cilia, and find that IFT20 mediates the ability of Ror2 signaling to induce 
the invasiveness of these tumors. We also find that IFT20 regulates the nucleation of Golgi-derived 
microtubules by affecting the GM130-AKAP450 complex, which promotes Golgi ribbon formation 
in achieving polarized secretion for cell migration and invasion. Furthermore, IFT20 promotes the 
efficiency of transport through the Golgi complex. These findings shed new insights into how Ror2 
signaling promotes tumor invasiveness, and also advance the understanding of how Golgi structure and 
transport can be regulated.

Ror2 is a member of the Ror-family of receptor tyrosine kinases, acting as a receptor for Wnt5a1. Wnt5a/Ror2 
signaling activates primarily the ß-catenin-independent non-canonical Wnt pathways, which involve various 
signal mediators, such as Dishevelled, c-Jun N-terminal kinase (JNK), �lamin A, c-Src, and Ca2+, thereby regu-
lating planar cell polarity and polarized cell motility1–9. Wnt5a/Ror2 signaling has also been shown to inhibit the 
ß-catenin-dependent pathway10. Under physiological conditions, the expression of Wnt5a and Ror2 is regulated, 
leading to modulated Ror2 signaling, such as that seen in development11–13. In contrast, higher expression levels 
of Wnt5a and Ror2 are o�en seen in various tumor types, resulting in the constitutive activation of Ror2 signaling, 
which occurs in a cell-autonomous manner14, 15.

In this setting, we have previously shown that the expression of both Wnt5a and Ror2 is dependent, at least in 
part, on the epithelial-to-mesenchymal transition (EMT)-related transcription factor Snail in human osteosar-
coma SaOS2 cells16. Wnt5a/Ror2 signaling then activates the transcription factor AP-1, which in turn induces the 
expression of the matrix metalloproteinase (MMP)-13 4, 6. MMP-13 becomes secreted to the extracellular envi-
ronment, where it degrades the extracellular matrix (ECM) to promote tumor invasion4. In addition to MMP-13, 
other MMPs, such as MMP-2 and membrane type 1-MMP (MT1-MMP), also promote tumor invasiveness17. 
MMPs are targeted to discrete structures on the surface of tumor cells, known as invadopodia, which provide a 
way of concentrating and targeting MMPs to speci�c sites of the ECM in promoting tumor invasion18, 19.

To achieve these properties of tumor invasion, the intracellular transport of proteins and membranes to the 
cell surface must be polarized. �e Golgi complex has been found to play a key role in promoting this polari-
zation, which requires the Golgi to adopt a ribbon-like structure20–22. Early studies showed that the disruption 
of microtubules (MTs), such as treating cells with nocodazole (NZ), disperses Golgi ribbons into mini-stacks23, 

24. More recently, new insights into the nature of the MT network that promotes Golgi ribbon formation have 
emerged. In contrast to the traditional organization of the MT network, which emanates from the centrosome, 
the MT network that promotes Golgi ribbon formation emanates from the Golgi25, 26. Nucleation of Golgi-derived 
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MTs can be promoted through CLASPs (CLIP-associated proteins) interacting with GCC185, which occurs on 
the trans-side of the Golgi25, 26, or AKAP450 interacting with GM130, which occurs on the cis-side of the Golgi27.

MTs also underlie the formation of the cilium, which is a sensory organelle that protrudes from the cell surface 
and plays important roles in tissue homeostasis and development28, 29. Components of the cilium are transported 
along ciliary MTs by intra�agellar transport (IFT), a conserved motility process30. Protein complexes, IFT-A 
and IFT-B, composed of ∼20 di�erent IFT proteins, serve as cargo adaptors to transport proteins bidirectionally 
between the base and tip of the cilium. Among the IFT proteins, only IFT20, a component of the IFT-B, has 
been shown to localize at the Golgi apparatus in addition to the basal body and cilia31. A Golgi-localized protein, 
known as GMAP210, anchors IFT20 to the Golgi membrane, where IFT20 is believed to function in the sorting 
and/or transport of proteins to the cilium31–33. Notably, multiple tumor types lose their cilium during transforma-
tion, but IFT20 is still expressed in these non-ciliated tumor cells. What role it may play remains unclear.

Non-ciliary roles for IFT20 are being elucidated in other circumstances. In T cells, which are non-ciliated cells, 
IFT20 has been detected at the early endosomes, the Golgi and the centrosome34. By associating with Rab5 and 
the T-cell receptor (TCR) at the early endosomes, IFT20 has been found to promote polarized endocytic recycling 
of the TCR to the immune synapse, which is essential for T cell activation34–36. In osteoblasts, IFT20 has been sug-
gested to promote ER-to-Golgi transport of type I collagen, but how it acts in this manner remains to be de�ned37. 
Here, we uncover a new non-ciliary role of IFT20, acting to regulate Golgi structure and transport, and also �nd 
that this role mediates the ability of constitutively activated Ror2 signaling to promote tumor invasiveness. We 
also elucidate how IFT20 achieves these roles.

Results
Ror2 signaling induces IFT20 expression to promote tumor invasiveness. To gain new insight into 
how constitutively activated Ror2 signaling promotes tumor invasiveness, we initially performed a microarray 
analysis on a human osteosarcoma cell line, SaOS2 (GEO accession number: GSE76535). �e expression level 
of IFT20 mRNA was found to decrease to ∼40% in cells treated with siRNAs for Ror2, as compared with those 
in control cells. �ese �ndings were con�rmed by quantitative RT-PCR (Fig. 1a) and Western blotting (Fig. 1b). 
We have also found that siRNA against Wnt5a did not a�ect IFT20 expression (Fig. 1a), suggesting that IFT20, 
induced by Ror2 signaling, is likely to be independent of Wnt5a.

Confocal microscopy using antibodies against acetylated-tubulin and Arl13B, which track cilium formation38, 

39, revealed that SaOS2 cells are non-ciliated (Supplementary Fig. 1). As control, the same culture condition led 
to cilium formation in human bone marrow-derived mesenchymal stem cells (hMSCs) (Supplementary Fig. 1). 
�us, we next examined whether, and how, IFT20 could have a cilium-independent function in SaOS2 cells.

Because Ror2-mediated signaling promotes the invasiveness of these tumor cells4, we initially explored 
whether IFT20 could have a role in this process. A transwell invasion assay revealed that suppressing the expres-
sion of either Ror2 or IFT20 inhibited invasive cell migration through Matrigel (Fig. 2a). As tumor invasion 
involves invadopodia formation, and we have previously shown that Ror2-mediated signaling promotes inva-
dopodia formation in SaOS2 cells4, we next examined whether IFT20 is required for invadopodia formation. 
Cells were cultured on glass cover slips pre-coated with �uorescein-labeled gelatin (FL-gelatin). Invadopodia 
formation was assessed by monitoring the F-actin dots in the areas of degraded FL-gelatin, which revealed that 
siRNA against either Ror2 or IFT20 led to signi�cant inhibition (Fig. 2b,c). Notably, the ectopic expression of 
siRNA-resistant (sr)-IFT20 reverted not only the e�ect of siRNA against IFT20, which con�rms the speci�city of 
the siRNA targeting, but also the e�ect of siRNA against Ror2 (Fig. 2d,e). �is latter �nding revealed that Ror2 
signaling acts through IFT20 to promote invadopodia formation.

IFT20 regulates Golgi ribbon structure. To gain insight into how IFT20 acts in this manner, we next 
assessed the intracellular distribution of IFT20 in SaOS2 cells. Confocal microscopy revealed that a signi�cant 
pool of IFT20 exists at the Golgi (Fig. 3a), in particular at the cis-side of this organelle, as re�ected by IFT20 colo-
calizing better with GM130 (a cis-Golgi marker) than with Golgin-97 (a trans-Golgi marker) (Supplementary Fig. 
2). Moreover, the Golgi was positioned in close proximity to invadopodia structures, which could be identi�ed as 
dots-like accumulation of cortactin, a marker of invadopodia, in the areas of degraded FL-gelatin in control cells 
but not IFT20 siRNA-treated cells (Fig. 3a).

During tumor cell invasion, the Golgi and centrosome have been found to reorient toward the direction of 
invasion in providing polarized delivery of secretory proteins, such as MMPs, to invadopodia40. �us, we next 
examined whether IFT20 is involved in this polarization during tumor cell invasion. Because siRNA against 
IFT20 disrupts the ribbon morphology of the Golgi (Fig. 3a), we performed a 2D invasion assay, and assessed 
polarization by tracking the positioning of the centrosome (see the Methods section for details). In the control 
condition, we found that 70% of the cells exhibited the polarization of their centrosome, which was about 2 
fold over that expected for random orientation (33%) (Fig. 3b). In contrast, siRNA against either Ror2 or IFT20 
reduced the polarization of cells to about 40% and 50%, respectively (Fig. 3b).

We then sought insight into how siRNA against IFT20 could disrupt the Golgi structure to a�ect cell polariza-
tion. Initially, we found that knocking down not only IFT20, but also Ror2, induced Golgi dispersion, as tracked 
through GM130, a Golgi marker (Figs 3a and 4a,b). Ectopic expression of sr-IFT20 restored the e�ect of siRNA 
against IFT20 (Fig. 4c), con�rming the speci�city of the siRNA targeting. Moreover, ectopic expression of IFT20 
also overcame the e�ect of siRNA against Ror2 (Fig. 4c). �us, as cell migration and invasion have been known to 
require the Golgi to adopt a ribbon-like morphology in promoting polarized secretion to the cell surface20–22, the 
collective �ndings suggested IFT20 could be regulating Golgi ribbon formation in mediating the ability of Ror2 
signaling to promote tumor invasion.

To further pursue this possibility, we next characterized the disassembly of the Golgi ribbon induced by siRNA 
against either Ror2 or IFT20. We performed double-staining of cells with antibodies against cis-Golgi (GM130) 
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and trans-Golgi (Golgin-97) markers. In control cells, these markers were closely co-distributed, as would be 
expected for intact Golgi stacks (Fig. 4d). Notably, these two markers remained closely co-distributed in cells 
treated with siRNA against either Ror2 or IFT20, despite the overall Golgi ribbon structure having become dis-
persed (Fig. 4d). �us, IFT20 likely mediates the Ror2-induced assembly of the Golgi by a�ecting the assembly of 
Golgi ribbons, rather than the stacking of Golgi cisternae.

We also examined whether IFT20 regulates the Golgi structure similarly in other tumor cells whose inva-
siveness might be promoted by the constitutive activation of Ror2 signaling. Examining BT549 (breast cancer) 
and U2OS (osteosarcoma) cells as examples, which are also non-ciliated (Supplementary Fig. 3a), we �rst con-
�rmed that siRNA against either Ror2 or IFT20 (Supplementary Fig. 3b) also reduced the invasiveness of these 
tumor cells (Supplementary Fig. 3e). We then found that these siRNA treatments also led to Golgi dispersion 
(Supplementary Fig. 3c and d). Moreover, targeting speci�city of siRNA against IFT20 was con�rmed by the 
ectopic expression of sr-IFT20, which reverted Golgi dispersion induced by siRNA against IFT20 (Supplementary 
Fig. 3b,c and d). We also con�rmed that IFT20 mediates the e�ect of Ror2 signaling in these tumor cells, as the 
ectopic overexpression of IFT20 reverted the e�ect of siRNA against Ror2 (Supplementary Fig. 3b,c and d).

We further considered that Ror2 signaling has been shown to suppress canonical Wnt signaling in these tumor 
cells. �us, we wondered whether IFT20 also mediates this process. Wnt signaling enhances TCF/LEF-mediated 
transcription of its target genes. Examining this activity through a reporter construct (TCF/LEF-driven lucif-
erase reporter), we found that siRNA against Ror2 inhibited this activity, but siRNA against IFT20 did not 

Figure 1. Expression of IFT20 is down-regulated following suppressed expression of Ror2 in SaOS2 cells. 
(a) Quantitative RT-PCR analysis showing decreased expression levels of IFT20 in si-Ror2-transfected SaOS2 
cells. Data are expressed as mean ± SD of four independent experiments (**P < 0.005, t test). (b) Western 
blot analysis showing decreased protein levels of IFT20 in SaOS2 cells transfected with either Ror2 or IFT20 
siRNA. Whole cell lysates from the respective cells were analyzed by Western blotting with antibodies against 
the indicated proteins. �e histograms indicate the relative levels of IFT20 and Ror2. Data are expressed as 
mean ± SD of four independent experiments (**P < 0.005, t test).
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Figure 2. IFT20 plays important roles in invadopodia formation. (a) Suppressed expression of Ror2 or IFT20 
inhibits invasive migration of SaOS2 cells. SaOS2 cells were transfected with the indicated siRNAs and analyzed 
by Transwell invasion assay. Cells invaded to the lower surface of the Transwell membranes were counted. Data 
are expressed as mean ± SD of three independent experiments (**P < 0.01, t test). (b) SaOS2 cells transfected 
with the indicated siRNAs were cultured on glass coverslips pre-coated with �uorescein-conjugated gelatin (FL-
gelatin) for 6 hr and stained with rhodamine-conjugated phalloidin for F-actin. Insets show magni�ed images 
of boxed regions. Note that suppressed expression of Ror2 or IFT20 inhibits dot-like accumulation of F-actin 
and degradation of the FL-gelatin, signs of invadopodia formation. Scale bar, 10 µm. (c) Quanti�cation of the 
data shown in (b). Number of invadopodia, identi�ed as F-actin dots in the areas of degraded FL-gelatin, per 
cell was counted. Data are presented as a box-and-whisker plot. n = 127–178, three independent experiments; 
***P < 0.001, t test. (d,e) Reduced activity of invadopodia formation by suppressed expression of Ror2 or 
IFT20 can be rescued by ectopic expression of IFT20. SaOS2 cells transfected with si-Ctrl, si-Ror2 or si-IFT20#1 
were further transfected with pIRES2-ZsGreen1-siRNA-resistant (sr)-IFT20 (+) or pIRES2-ZsGreen1 (−), 
as indicated. �e respective transfected cells were subjected to Western blotting with antibodies against the 
indicated proteins (d) or plated on glass coverslips pre-coated with Alexa Fluor 596-conjugated gelatin (Alexa-
gelatin) (e). Invadopodia formation of ZsGreen1-positive cells were assessed and quanti�ed as in (c). Data are 
presented as a box-and-whisker plot. n = 40–44, three independent experiments; **P < 0.01, t test.



www.nature.com/scientificreports/

5Scientific RepoRts | 7: 1  | DOI:10.1038/s41598-016-0028-x

Figure 3. IFT20 is required for reorientation of the centrosome toward the direction of cell invasion. (a) 
Localization of IFT20 at the cis-Golgi in SaOS2 cells. Cells transfected with si-Ctrl or si-IFT20#1 were cultured 
on FL-gelatin-coated glass coverslips for 6 hr. Cells were then stained with antibodies against IFT20 and 
cortactin, and counterstained with an antibody, which is conjugated to Alexa Fluor 647 and directed against 
GM130, a cis-Golgi marker. Boxed regions are magni�ed on the middle of each image. Note that invadopodia, 
indicated by a dot-like accumulation of cortactin in the areas of degraded FL-gelatin, are formed in the close 
vicinity to the Golgi apparatus, where IFT20 is localized. Scale bar, 10 µm. (b) SaOS2 cells transfected with the 
indicated siRNAs were examined for reorientation of the centrosome using 2D invasion assay (see Methods). 
�e percentages of the edge cells in which the centrosome were detected within the 120° sector emerging 
from the center of the nucleus and facing toward the space were measured. �e red line in the graph indicates 
the level of expected random orientation of 33%. Data are expressed as mean ± SD of three independent 
experiments (**P < 0.01, ***P < 0.001, t test).
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(Supplementary Fig. 3f). �us, the �ndings revealed that IFT20 only mediates the ability of the Ror2 signaling to 
promote Golgi ribbon formation for cell invasiveness, but not the ability of Ror2 signaling to suppress canonical 
Wnt signaling.

We also noted that IFT20 has been found previously not to regulate the Golgi structure in RPE cells31. As these 
cells are ciliated, we examined whether hMSCs, which are also ciliated cells (see Supplementary Fig. S1), would 
behave like RPE cells with respect to the regulation of the Golgi by IFT20. We found that knocking down neither 
Ror2 nor IFT20 induced Golgi dispersion in hMSCs (Supplementary Fig. S4). �us, these observations suggested 

Figure 4. IFT20 is required for assembly of the Golgi apparatus. (a) SaOS2 cells transfected with the indicated 
siRNAs were stained with antibodies against GM130 and γ-tubulin to visualize the cis-Golgi and centrosome 
(centriole pair), respectively, and counterstained with DAPI (blue). Insets show magni�ed images of boxed 
regions. Scale bar, 10 µm. (b) Number of Golgi fragments per cell was quanti�ed and presented as a box-and-
whisker plot. n = 69–74, three independent experiments; ***P < 0.001, t test. (c) Golgi dispersion in Ror2- or 
IFT20-knockdown cells can be suppressed by ectopic expression of IFT20. SaOS2 cells transfected with si-
Ctrl, si-Ror2 or si-IFT20#1 were further transfected with pIRES2-ZsGreen1-sr-IFT20 (+) or pIRES2-ZsGreen1 
(−), as indicated. Number of Golgi fragments in ZsGreen1-positive cells was quanti�ed and presented as a 
box-and-whisker plot. n = 52–70, three independent experiments; *P < 0.05, ***P < 0.001, t test. (d) E�ects 
of suppressed expression of Ror2 or IFT20 in SaOS2 cells on distribution of the cis-Golgi and TGN marker 
proteins. SaOS2 cells transfected with the indicated siRNAs were stained with antibodies against GM130 and 
Golgin-97 to visualize the cis-Golgi and TGN, respectively, and counterstained with DAPI (blue). Insets show 
magni�ed images of boxed regions. Scale bar, 10 µm.
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that, upon the loss of the cilium associated with tumor invasiveness induced by Ror2 signaling, IFT20 in these 
non-ciliated cells acquires a new function at the Golgi in regulating the structure of this organelle.

We then sought to further characterize how IFT20 regulates the ribbon structure of the Golgi. �e assembly of 
Golgi stacks into ribbons has been elucidated in recent years to involve two processes, the translocation of Golgi 
mini-stacks toward the center of the cells, and the lateral linkage of these mini-stacks into ribbons26, 41. A key 
experimental approach that led to this appreciation has been a pharmacologic approach that allows Golgi disas-
sembly and re-assembly to be examined acutely. �is involves treating cells with NZ, a microtubule-destabilizing 
drug that disassembles the Golgi ribbon into ministacks23, 24, followed by NZ washout that allows ribbon 
re-assembly to be observed acutely. Pursuing this approach of studying Golgi assembly, we initially con�rmed in 
control cells the temporal progression from dispersed Golgi mini-stacks (Fig. 5a, class 1), to their translocation 
around the nucleus (Fig. 5a, class 2), and then the reformation of the Golgi ribbons (Fig. 5a, class 3). We then 
examined how siRNA against either Ror2 or IFT20 a�ected these processes. Whereas these siRNA treatments 
had no signi�cant e�ect on the transition from class 1 to class 2 phenotype, they reduced the progression from 
class 2 to class 3 phenotype (Fig. 5a). �us, the results suggested that IFT20 promotes Golgi ribbon formation by 
a�ecting the assembly of Golgi mini-stacks to the ribbon structure.

IFT20 is required for MT nucleation at the cis-Golgi. We then noted that Golgi ribbon formation has 
been elucidated in recent years to involve a MT network that nucleates at the Golgi, in contrast to the traditional 
mechanism of nucleation at the centrosome21, 25, 26. �us, we next examined the e�ect of siRNA against either Ror2 
or IFT20 on the nucleation of Golgi-derived MTs. Upon NZ washout, cells were stained with an anti-tyrosinated 
(Tyr)-tubulin antibody to detect newly nucleated MTs42. In control cells, three types of MT networks could be 
appreciated: (i) Golgi-derived, (ii) centrosome-derived, (iii) non-Golgi/non-centrosomal (Fig. 5b,c). Reducing 
the expression of either Ror2 or IFT20 inhibited nucleation of the Golgi-derived MTs, but not the other two pools 
of MTs (Fig. 5b,c). Notably, the reduced nucleation activity of the Golgi-MTs in Ror2- and IFT20-knockdown 
cells was also reverted by the ectopic expression of sr-IFT20 (Fig. 5d). �us, as in the case for tumor invasion 
and invadopodia formation, as well as the regulation of Golgi structure, IFT20 also mediates the regulation of 
Golgi-derived MTs by Ror2 signaling.

We next considered that MT nucleation and/or stabilization at the Golgi could be mediated by molecules local-
ized at both the cis- and trans-side of the Golgi25, 27, 43. As IFT20 resides at the cis-side of the Golgi (Supplementary 
Fig. 2), we next examined whether IFT20 interacts with AKAP450, a molecule that recruits γ-tubulin ring com-
plex (γ-TuRC) to the cis-Golgi by forming a complex with GM130 27. Performing a co-immunoprecipitation 
analysis, we detected both AKAP450 and GM130 interacting with IFT20 (Fig. 6a). We further assessed pro-
tein interactions in situ by using a proximity ligation assay (PLA)44. We found that either anti-AKAP450 or 
anti-GM130 antibody produced PLA dots when anti-IFT20 antibody was also present, while siRNA against IFT20 
prevented the formation of these PLA dots (Supplementary Fig. 5). We then sought further evidence that IFT20 
a�ects the formation of the AKAP450/GM130 complex at the Golgi. In control cells, AKAP450 was colocalized 
with GM130 at the Golgi (Fig. 6b,c). However, siRNA against either Ror2 or IFT20 reduced this colocalization, 
which was restored by the ectopic expression of sr-IFT20 (Fig. 6b,c). In contrast, the siRNA treatment did not 
a�ect the localization of AKAP450 at the centrosome (Fig. 6b). �us, these �ndings further suggested that IFT20 
acts in regulating the nucleation of Golgi-derived MTs by modulating the interaction between AKAP450 and 
GM130 at the cis-Golgi.

Consistent with these findings, treatment of SaOS2 cells with AKAP450 siRNA, which did not affect 
the expression level of IFT20 and its colocalization with GM130, also disrupted the Golgi ribbon struc-
ture (Supplementary Fig. 6a–d). Moreover, this Golgi dispersion allowed cis-Golgi (GM130) and trans-Golgi 
(TGN46) markers to remain closely co-distributed (Supplementary Fig. 6b), suggesting that the assembly of Golgi 
mini-stacks to ribbons was being a�ected by siRNA against AKAP450, rather than the stacking of Golgi cisternae. 
Further paralleling the e�ects of siRNA against IFT20 and Ror2, siRNA against AKAP450 also inhibited inva-
dopodia formation (Supplementary Fig. 6e). �us, these additional �ndings further linked the ability of IFT20 
to regulate Golgi ribbon formation with its role in mediating tumor invasiveness and invadopodia formation 
induced by Ror2 signaling.

IFT20 promotes anterograde Golgi transport. We then considered that, besides a MT-based mech-
anism, a transport-based mechanism, which involves anterograde transport through the Golgi, has also been 
uncovered in recent years to promote Golgi ribbon formation45–47. �us, we also examined whether IFT20 a�ects 
this transport. A temperature-sensitive mutant (ts045) of vesicular stomatitis virus glycoprotein (VSVG) has been 
a model cargo to assess transport through the secretory system, because its transport can be synchronized to allow 
the quantitative assessment of secretory transport45–47. Synchronization is achieved by culturing cells at 40 °C to 
accumulate VSVG at the endoplasmic reticulum (ER) followed by shi�ing to 32 °C to allow VSVG to enter the 
secretory system. Initially, we performed cell surface biotinylation, which revealed that siRNA against IFT20 
inhibited transport of VSVG from the ER to the cell surface (Supplementary Fig. 7a). To further de�ne the seg-
ment of the secretory pathway regulated by IFT20, we next examined VSVG transport from the ER to the Golgi. 
However, siRNA against IFT20 did not have an appreciable e�ect on this transport segment (Supplementary Fig. 
7b,c). We then examined transport through the Golgi, as previously described48. Brie�y, this involves shi�ing 
cells initially from 40 °C to 15 °C to accumulate VSVG at the cis-side of the Golgi, and then further shi�ing cells 
to 32 °C to allow VSVG transport through the Golgi48. We found that siRNA against either IFT20 or Ror2 reduced 
this transport, which was restored by the ectopic expression of sr-IFT20 (Fig. 7a,b).

We next considered that enhanced anterograde Golgi transport has been elucidated in recent years to involve 
the Coat Protein I (COPI) complex generating tubules that connect the Golgi stacks47, 48. However, COPI also 
generates vesicles for retrograde Golgi transport, which can be tracked in cells by following the fate of a retrograde 
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Figure 5. IFT20 is required for MT nucleation at the Golgi. (a) E�ect of suppressed expression of Ror2 or 
IFT20 on Golgi reassembly during MT repolymerization. SaOS2 cells transfected with the indicated siRNAs 
were treated with 0.5 µg/ml nocodazole (NZ) for 3 hr. A�er removal of NZ, cells were incubated for 0, 30, 60, 
and 90 min at 37 °C. Fixed cells were stained with anti-GM130 antibody (green) and DAPI (blue). Based on the 
pattern of the Golgi structures, cells were categorized into 3 classes as shown on the top panels: class 1 (cells with 
dispersed Golgi throughout the cytoplasm), class 2 (cells with dispersed Golgi around the nucleus), and class 
3 (cells with normal compact Golgi). �e mean percentages of cells in the respective classes were measured. 
n = 108–200, four independent experiments. (b) E�ect of Ror2 or IFT20 knockdown on MT nucleation. SaOS2 
cells transfected with Ctrl, Ror2 or IFT20 siRNA were treated with 3 µg/ml NZ for 2 hr. Cells were washed with 
ice-cold medium to remove NZ followed by 5 min incubation at 25 °C before �xation. Fixed cells were stained 
with antibodies against GM130 and tyrosinated (Tyr)-tubulin to visualize the cis-Golgi and newly nucleated MTs, 
respectively. Serial optical confocal z sections were obtained and stacked. Insets show magni�ed images of boxed 
regions. �e arrows and arrowheads indicate Golgi-derived MTs (Golgi-MTs), one end of which is attached to 
a Golgi fragment, and non-centrosomal, non-Golgi-MTs, respectively. �e asterisks indicate the centrosome. 
Inverted gray scale images of Tyr-tubulin were shown on the right. Scale bar, 10 µm. (c) Number of Golgi-MTs 
and non-centrosomal, non-Golgi-MTs per cell was quanti�ed. Data are presented as a box-and-whisker plot. 
n = 50–56, three independent experiments; ***P < 0.001, N.S. = not signi�cant, t test. (d) Reduced nucleation of 
Golgi-MTs by suppressed expression of Ror2 or IFT20 can be rescued by ectopic expression of IFT20. SaOS2 cells 
transfected with si-Ctrl, si-Ror2 or si-IFT20#1 were further transfected with pIRES2-ZsGreen1-siRNA-sr-IFT20 
(+) or pIRES2-ZsGreen1 (−), as indicated. MT nucleation of the respective transfected cells was assessed as 
described in (c), and the number of Golgi-MTs in ZsGreen1-positive cells was quanti�ed and presented as a box-
and-whisker plot. n = 24–39, three independent experiments; ***P < 0.001, t test.
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Figure 6. IFT20 is associated with AKAP450 and GM130 and required to maintain expression of AKAP450 
at the cis-Golgi. (a) Co-immunoprecipitation of AKAP450 and GM130 with IFT20 in SaOS2 cells. Whole-
cell lysates (WCL) from SaOS2 cells were immunoprecipitated with anti-IFT20 antibody or Ctrl IgG. 
Immunoprecipitates (IP) and WCL were analyzed by Western blotting with antibodies against the indicated 
proteins. (b) SaOS2 cells transfected with si-Ctrl, si-Ror2 or si-IFT20#1 were stained with antibodies against 
GM130 and AKAP450. Note that siRNA against Ror2 or IFT20 inhibits the colocalization of GM130 and 
AKAP450. �e asterisks indicate AKAP450 at the centrosome. Scale bar, 10 µm. (c) SaOS2 cells transfected 
with si-Ctrl, si-Ror2 or si-IFT20#1 were further transfected with pIRES2-ZsGreen1-siRNA-sr-IFT20 (+) or 
pIRES2-ZsGreen1 (−), as indicated. Colocalization of GM130 and AKAP450 was assessed as described in (b) 
and quanti�ed. Data are presented as a box-and-whisker plot. n = 31–43, three independent experiments; 
**P < 0.001, t test).
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COPI cargo protein, known as VSVG-KDELR47, 48. We found that siRNA against IFT20 did not have an apprecia-
ble e�ect on retrograde COPI transport (Fig. 7c). �us, IFT20 acts selectively in promoting anterograde, but not 
retrograde, Golgi transport.

We also examined whether IFT20 regulates the intra-Golgi transport of MT1-MMP, which is a transmem-
brane protein that has been shown to play a pivotal role in the formation and function of the invadopodia40, 

49, 50. Previous studies have examined the tra�cking of MT1-MMP40, 49–51, and found that its cytoplasmic tail 
(20 amino acids) controls its transport itinerary52. �us, we pursued an established approach of tracking the 
intra-Golgi transport of any cargo of interest, which involves replacing the cytoplasmic domain of VSVG with 
the cytoplasmic domain of a di�erent cargo protein of interest47. Because the luminal domain of VSVG allows 
the synchronization of transport, and the cytoplasmic domain of cargoes dictates their transport itinerary, the 
resulting chimeric VSVG allows the intra-Golgi transport of a particular cargo of interest to be studied47. Taking 
this approach, we found that siRNA against IFT20 also reduced the intra-Golgi transport of VSVG-MT1-MMP 
(Fig. 7d).

Figure 7. IFT20 is required for e�cient anterograde transport through the Golgi. (a,b) cis-Golgi-to-TGN 
transport of VSVG is delayed by suppressed expression of IFT20 or Ror2. SaOS2 cells treated with either 
IFT20 (a) or Ror2 (b) siRNA were further transfected with expression plasmid for VSVG-Myc with or without 
expression plasmid for sr-IFT20 (a) or IFT20 (b). Cells were incubated at 15 °C to accumulate VSVG-Myc 
at the pre-Golgi and then shi�ed to 32 °C. At the indicated time points, colocalization of immunostained 
VSVG and TGN46, a TGN marker, was examined by confocal microscopy and quanti�ed. Data are expressed 
as mean ± SEM of three independent experiments. n ≥ 15 in each time point; *p < 0.05; **p < 0.01; Mann 
Whitney test. Note that delayed transport of VSVG in IFT20- (a) or Ror2-knockdown cells (b) is rescued by 
ectopic expression of sr-IFT20 or IFT20, respectively. (c) IFT20 knockdown fails to a�ect kinetics of retrograde 
COPI transport from the Golgi to the ER. SaOS2 cells were transfected with either Ctrl or IFT20 siRNA 
along with expression plasmid for VSVG-KDELR-Myc. Cells were incubated at 32 °C and then shi�ed to 
40 °C to allow Golgi-to-ER transport of VSVG-KDELR-Myc. At the indicated time points, colocalization of 
immunostained VSVG-KDELR-Myc and Giantin, a cis-Golgi marker, was examined by confocal microscopy 
and quanti�ed. Data are expressed as mean ± SEM of three independent experiments. n ≥ 15 in each time point. 
(d) Anterograde transport of VSVG-MT1-MMP through the Golgi is delayed by suppressed expression of 
IFT20. SaOS2 cells were transfected with either Ctrl or IFT20 siRNA along with expression plasmid for VSVG-
MT1-MMP. Anterograde transport of VSVG-MT1-MMP was assessed as described in (a). Data are expressed 
as mean ± SEM of three independent experiments. n ≥ 15 in each time point; *p < 0.05; **p < 0.005; Mann 
Whitney test.
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Discussion
Invadopodia formation and tumor invasiveness have been found to be promoted by the constitutive activation of 
Ror2 signaling14, 15. In this study, we elucidate how Ror2 signaling exerts these e�ects through a newly identi�ed 
mechanism. Initially examining SaOS2 cells as a model tumor, we �nd that Ror2 signaling promotes the expres-
sion of IFT20. We then �nd that IFT20 mediates the ability of Ror2 to promote the invasiveness of these tumor 
cells. An initial clue into how IFT20 achieves this role comes from our discovery that IFT20 regulates the ribbon 
structure of the Golgi. We were then led by previous studies that had found a MT network emanating from Golgi 
membrane to promote Golgi ribbon formation26, 53. Mechanistically, this involves the nucleation of the Golgi MT 
network through GM130 on Golgi membrane interacting with AKAP450 on MTs27. Adding to this mechanistic 
understanding, we show that IFT20 promotes the GM130-AKAP450 interaction to nucleate Golgi-derived MTs, 
resulting in Golgi ribbon formation being promoted for tumor invasiveness. �e link between the regulation of 
the Golgi by IFT20 and its role in mediating tumor invasiveness induced by Ror2 signaling is further strength-
ened by our additional �nding that AKAP450 is also needed for the ability of Ror2 signaling to promote tumor 
invasion and invadopodia formation.

Besides regulating the Golgi structure, we have also uncovered that IFT20 mediates the ability of Ror2 signa-
ling to promote transport through the Golgi complex. In this regard, whereas the role of MTs has dominated the 
current view of how Golgi ribbon formation occurs, a transport-based mechanism has been uncovered recently. 
�e COPI complex has been known to form transport vesicles in mediating retrograde Golgi transport47, 48. 
Recently, COPI has also been discovered recently to form tubules47, 48, which act in two general ways to promote 
Golgi ribbon formation. One way involves COPI tubules linking Golgi stacks laterally47, which is predicted to act 
in conjunction with the MT-based mechanism to achieve Golgi ribbon formation. A second way involves COPI 
tubules linking the Golgi stacks longitudinally, which has been suggested to act independently of MTs in promot-
ing a faster rate of anterograde transport through the Golgi47, 48. Mechanistically, as we have found that IFT20 pro-
motes anterograde Golgi transport but not retrograde Golgi transport, this �nding predicts that COPI is unlikely 
to be the direct target by which IFT20 enhances anterograde Golgi transport. In considering how IFT20 could 
act instead, we note that COPI is involved in the formation of Golgi tubules, while the molecular mechanism by 
which these tubules target an adjacent cisterna to connect the Golgi cisternae remains to be elucidated. �us, the 
future identi�cation of the direct target(s) by which IFT20 promotes anterograde Golgi transport will likely come 
from a better understanding of how COPI tubules connect the Golgi cisternae in forming Golgi stacks.

Our �ndings also uncover complexities in how IFT20 can act depending on the context. Many cells form a 
cilium at their surface, which is a MT-based sensory organelle that plays important roles in tissue development 
and homeostasis28, 29. IFT20 is known to reside not only at the cilium, but also at the Golgi31. Previous studies 
on the role of IFT20 at the Golgi suggest that it does not function in regulating Golgi structure in cells that 
possess primary cilia31. Instead, the Golgi-localized IFT20 is suggested to act in transport from the Golgi to the 
cilium31–33. However, many tumor cells lose their cilium during transformation, including breast54–56, basal cell57, 
and renal cell carcinoma58, as well as osteosarcomas59. In these tumors, we have now identi�ed a new function for 
IFT20, regulating both Golgi structure and transport. �is �nding is distinct from a non-ciliary role for IFT20 
in T cells, which also lack cilia. In these cells, IFT20 at the early endosome has been found to regulate endocytic 
recycling34–36, while we have found that the Golgi pool of IFT20 in non-ciliated tumor cells regulates Golgi struc-
ture and transport. We further note that AKAP450 and its binding partner, casein kinase 1δ, in the context of 
ciliated cells has been suggested previously to regulate the localization and role of IFT20 in promoting transport 
from the Golgi to the cilium for ciliogenesis60. In contrast, we have found in non-ciliated tumor cells that IFT20 
regulates the role of AKAP450 in nucleating MTs for Golgi ribbon formation. �us, these di�erences add to the 
growing appreciation for how IFT20 can have di�erent roles depending on whether it is expressed in ciliated 
versus non-ciliated cells, or whether it resides at the Golgi or at a di�erent compartment in the cell. On a broader 
level, our �ndings on how constitutively activated Ror2 signaling induces tumor invasiveness through IFT20 by 
regulating Golgi structure and transport, have not only shed new insights into how cancer invasiveness can be 
achieved, but also advance a new understanding for how the function of the Golgi complex can be regulated.

Methods
Cells and transfection. SaOS2 and U2OS cells were maintained in DMEM (Nacalai Tesque) containing 
10% (v/v) fetal bovine serum (FBS). BT549 cells were maintained in RPMI1640 (Nacalai Tesque) containing 10% 
(v/v) FBS. Human MSCs were purchased from Lonza (Basel, Switzerland) and maintained in MSCGM medium 
(Lonza). Cells were transfected with the respective siRNAs and expression plasmids by using Lipofectamine 
RNAiMAX (Life Technologies) and ViaFect (Promega), respectively, according to the manufacturer’s instructions.

Antibodies. Rabbit anti-Ror2 61 and anti-IFT20 31 antibodies were prepared as described previously. Sheep 
anti-TGN46 and rabbit anti-Giantin antibodies have been described previously62. Following antibodies were 
purchased commercially: mouse anti-GM130 (35, BD), anti-Cortactin (4F11, Millipore), anti-γ-tubulin (GTU-
88, Sigma), anti-tyrosinated tubulin (TUB01A2, Sigma), anti-AKAP450 (15, BD), anti-GFP (JL-8, Clontech), 
anti-acetylated tubulin (6-11B-1, Sigma), anti-Myc (9E10, Santa Cruz), anti-Golgin-97 (CDF4, �ermo), and 
Alexa Fluor 647-conjugated anti-GM130 (5G8, MBL); rabbit anti-IFT20 (13615-1-AP, Proteintech), anti-Arl13B 
(ab83879, Abcam), anti-GM130 (PM061, MBL), anti-γ-tubulin (T5192, Sigma), anti-Golgin-97 (D8P2K, Cell 
Signaling Technology), and HRP-conjugated anti-α-tubulin (PM054-7, MBL).

Plasmids and siRNAs. �e full length cDNA encoding human IFT20 was isolated from SaOS2 cells and 
subcloned into pIRES2-ZsGreen1 vector (Clontech). To construct expression plasmids encoding the sr-IFT20, 
four bases in the targeting sequence within the corresponding human IFT20 cDNA were altered by PCR-based 
mutagenesis (GCGTAGAGTACGAAGCTTT) and subcloned into pIRES2-ZsGreen1 vector. Plasmids for 
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VSVG-Myc, VSVG-GFP, and VSVG-KDELR-Myc were gifts from Jennifer Lippincott-Schwartz (National 
Institutes of Health, Bethesda, MD). �e VSVG-MT1-MMP plasmid, encoding the fusion protein consisting of 
the luminal and transmembrane domains of VSVG (ts045) and the cytoplasmic tail of human MT1-MMP, was 
constructed by replacing a portion of the VSVG-GFP plasmid encoding both the cytoplasmic tail of VSVG and 
GFP with the cDNA encoding the cytoplasmic tail of human MT1-MMP. �e SuperTopFlash was kindly provided 
by Randall T. Moon (University of Washington, Seattle, WA). �e sequences of the siRNAs used were as follows: 
si-IFT20#1, 5′-GGGUUGAAUAUGAAGCUUUdTdT-3′ (sense) and 5′-AAAGCUUCAUAUUCAACCCdTdT-3′ 
( a n t i - s e n s e ) ;  s i - I F T 2 0 # 2 ,  5 ′ - G C A A A G A C U U U G U G G A C A A U U - 3 ′  ( s e n s e )  a n d 
5′-UUGUCCACAAAGUCUUUGCUU-3′ (anti-sense); si-AKAP450, 5′-CUUUGAAGUUAACUAUCAAUU-3′ 
(sense) and 5′-UUGAUAGUUAACUUCAAAGUU (anti-sense). �e sequences of si-Ror2, si-Wnt5a, and nega-
tive control siRNA (si-Ctrl) were described previously4.

RNA isolation and quantitative RT-PCR. Total RNAs were isolated using Isogen (Nippon Gene) and 
reverse-transcribed using PrimeScript RT reagent kit (TAKARA Bio). Real-time PCR was performed on the 
LightCycler 480 system (Roche Diagnostics) using LightCycler 480 SYBR Green I Master mix (Roche Diagnostics). 
�e amount of mRNA was normalized relative to that of 18S ribosomal RNA. �e following primers were used: Ror2, 
5′-CAATTCCACTGGTCATCGCT-3′ (forward) and 5′-TGAGGGGCATTTCCATGTC-3′ (reverse); Wnt5a, 
5′-TAAGCCCAGGAGTTGCTTTG-3′ (forward) and 5′-GCAGAGAGGCTGTGCTCCTA-3′ (reverse); IFT20, 
5′-CAGAACTCCTCTAGGGAACCTG-3′ (forward) and 5′-GCTCTATGGTCTGCTGGGTAA-3′ (reverse); 18S 
ribosomal RNA, 5′-ATGGCCGTTCTTAGTTGGTG-3′ (forward) and 5′-CGCTGAGCCAGTCAGTGTAG-3′ 
(reverse).

DNA microarray analysis. DNA microarray analysis was performed as described previously63. Brie�y, total 
RNAs were extracted from SaOS2 cells and used for synthesis of digoxigenin-labeled cRNA probes. Probes were 
hybridized to Human Genome Survey Microarray v.2.0 (Applied Biosystems). Microarray images were analyzed 
using Expression Array System So�ware v1.1.1. (Applied Biosystems). �e raw signal intensity was then normal-
ized for aligning the di�erent arrays by global median normalization. �e microarray data have been deposited in 
the NCBI Gene Expression Omnibus (GEO) under accession number GSE76535.

Immunoprecipitation and Western blotting. Cells were solubilized with lysis bu�er [50 mM Tris-HCl 
(pH7.5), 150 mM NaCl, 5 mM EDTA, 0.5% (v/v) NP-40, 50 mM NaF, 1 mM Na3VO4, 10 µg/ml leupeptin, 10 µg/ml 
aprotinin, 0.25 mM pAPMSF] and centrifuged at 12,000 × g for 20 min. For co-immunoprecipitation assay, cells 
were sonicated brie�y in lysis bu�er before centrifugation. �e lysates were subjected to immunoprecipitation, 
SDS-PAGE, and Western blot analyses as described2.

Immunofluorescence and Microscopy. Cells were cultured on glass coverslips (Matsunami) pre-coated 
with 10 µg/ml �bronectin (Sigma) and �xed with 4% (w/v) paraformaldehyde in PBS or BRB80 [80 mM Pipes 
(pH 6.8), 1 mM MgCl2, and 1 mM EGTA] for 10 min at room temperature. Fixed cells were stained with the 
respective antibodies, phalloidin conjugated with either Alexa Fluor 488 or rhodamine (Invitrogen), along with 
DAPI (Sigma) as described previously2, 54. In situ proximity ligation assay (PLA) was performed using Duolink kit 
(Olink Bioscience) according to the manufacturer’s instructions. A�er completion of the PLA reaction, samples 
were re�xed with 4% (w/v) paraformaldehyde and incubated with Alexa Fluor-conjugated secondary antibodies 
(Life Technologies) to detect the individual proteins. Fluorescence images were obtained using a laser scanning 
confocal imaging system (LSM700, Carl Zeiss) and processed using the ImageJ so�ware. Number of Golgi frag-
ments was quanti�ed by using the ImageJ particle analysis tool. Colocalization was examined using the ImageJ 
JACoP plugin64 or Metamorph (Molecular Devices).

Polarization of the centrosome. The reorientation of the centrosome during tumor invasion was 
assessed by 2D invasion assay. �e two-well culture insert with 0.5 mm gap between wells (ibidi) was placed on 
a �bronectin-coated glass-bottom dish. SaOS2 cells transfected with the respective siRNAs were plated onto the 
culture insert and grown to con�uent monolayers. A�er the inserts were removed, the monolayers were washed 
with PBS and overlaid with Matrigel (BD) diluted 1:20 in PBS, followed by incubation for 4 hr before addition of 
growth medium. Cells were then cultured for 24 hr to allow invasion toward the space between the monolayers. 
A�er �xation with 4% (w/v) paraformaldehyde, cells were stained with antibody to γ-tubulin to visualize the cen-
trosome, and counterstained with DAPI. �e percentages of the edge cells in which the centrosome was within 
the 120° sector emerging from the center of the nucleus and facing toward the space between the monolayers was 
measured.

Transwell invasion and ECM degradation assays. Transwell invasion assay was performed as described 
previously4. In brief, cells were loaded onto the upper well of the Transwell chamber with 8 µm φ pore mem-
brane (Coster), precoated with Matrigel on an upper side of the chamber. �e lower well was �lled with 600 µl 
of DMEM containing 10% FBS. A�er incubation for 24 hr, cells invaded to lower surface of the membrane were 
counted. For ECM degradation assay, glass coverslips were coated with gelatin conjugated with either Alexa Fluor 
594 (Invitrogen) (Alexa-gelatin) or �uorescein (Invitrogen) (FL-gelatin) as described65. Transfected cells were 
trypsinized, replated on these glass coverslips, and cultured for 6 hr. A�er �xation, cells were �xed and stained 
with phalloidin. Number of invadopodia, identi�ed as F-actin dots in the areas of degraded gelatin, was quanti-
�ed by using the ImageJ particle analysis tool.

Transport assays. SaOS2 cells were transfected with the respective siRNAs and then with the respective 
expression plasmids for VSVG-GFP, VSVG-Myc, VSVG-MT1-MMP, or VSVG-KDELR-Myc with or without 
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expression plasmid for sr-IFT20 or IFT20. To examine the ER-to-cell surface transport, VSVG-GFP-transfected 
SaOS2 cells were incubated overnight at 40 °C in DMEM containing 1% FBS to accumulate VSVG-GFP at the 
ER, and then shi�ed to DMEM containing 1% FBS and 0.1 mg/ml cycloheximide pre-warmed at 32 °C to allow 
transport through the Golgi. A�er 30 or 60 min in culture, cell surface proteins were biotinylated with 0.5 mg/ml 
Sulfo-NHS-ss-biotin (�ermo) in Dulbecco’s PBS (DPBS) for 30 min at 4 °C and quenched with 50 mM NH4Cl in 
DPBS for 10 min at 4 °C. A�er washing with ice-cold DPBS, cells were solubilized with Triton X-100 lysis bu�er 
[25 mM Tris-HCl (pH7.5), 150 mM NaCl, 5 mM EDTA, 1% (v/v) Triton X-100, 0.4% (w/v) sodium deoxycho-
late, 10 µg/ml leupeptin, 10 µg/ml aprotinin, 0.25 mM pAPMSF]. Biotinylated proteins were a�nity-puri�ed with 
streptavidin-Sepharose beads and subjected to SDS-PAGE followed Western blot analyses. ER-to-cis-Golgi and 
intra-Golgi transport of VSVG and VSVG-MT1-MMP and retrograde transport of VSVG-KDELR have been 
described previously48.

MT nucleation assay. Transfected cells were treated with 3 µg/ml nocodazole (NZ) in culture medium for 
2 hr. Cells were washed with ice-cold DMEM 5 times on ice to remove NZ and then incubated for 0∼8 min in 
CO2-independent medium (Life Technologies) containing 1% (v/v) FBS at 25 °C. Cells were �xed with 4% (w/v) 
paraformaldehyde in BRB80 for 5 min at 25 °C, followed by 10 min �xation with methanol at −20 °C. Fixed cells 
were stained with antibodies against GM130 and tyrosinated (Tyr)-tubulin to visualize the cis-Golgi and newly 
nucleated MTs, respectively. Serial optical confocal z sections spanning the entire cell were obtained and stacked 
using a maximal intensity projection. Number of Golgi-MTs (non-centrosomal MT that has one end attached 
to a Golgi fragment) and non-centrosomal, non-Golgi-MT was quanti�ed from the z sections and their stacked 
images.

Reporter Assay. Cells were transfected with the respective siRNAs. A�er two days in culture, cells were fur-
ther transfected with the SuperTopFlash reporter plasmid together with the internal control plasmid pGL4.74[hR-
luc/TK] (Promega) at the ratio of 100:1 and cultured for one day. Luciferase activities were measured by using 
Dual-Luciferase Reporter Assay System (Promega) and GloMax 96 Microplate Luminometer (Promega), accord-
ing to the manufacturer’s instructions.
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